Files
tidb/br/pkg/restore/split.go

629 lines
19 KiB
Go

// Copyright 2020 PingCAP, Inc. Licensed under Apache-2.0.
package restore
import (
"bytes"
"context"
"sort"
"strings"
"sync"
"time"
"github.com/opentracing/opentracing-go"
"github.com/pingcap/errors"
backuppb "github.com/pingcap/kvproto/pkg/brpb"
sst "github.com/pingcap/kvproto/pkg/import_sstpb"
"github.com/pingcap/log"
berrors "github.com/pingcap/tidb/br/pkg/errors"
"github.com/pingcap/tidb/br/pkg/logutil"
"github.com/pingcap/tidb/br/pkg/restore/split"
"github.com/pingcap/tidb/br/pkg/rtree"
"github.com/pingcap/tidb/br/pkg/utils"
"github.com/pingcap/tidb/br/pkg/utils/iter"
"github.com/pingcap/tidb/pkg/tablecodec"
"github.com/pingcap/tidb/pkg/util"
"github.com/pingcap/tidb/pkg/util/codec"
"go.uber.org/zap"
"golang.org/x/sync/errgroup"
)
type Granularity string
const (
FineGrained Granularity = "fine-grained"
CoarseGrained Granularity = "coarse-grained"
maxSplitKeysOnce = 10240
)
// RegionSplitter is a executor of region split by rules.
type RegionSplitter struct {
client split.SplitClient
}
// NewRegionSplitter returns a new RegionSplitter.
func NewRegionSplitter(client split.SplitClient) *RegionSplitter {
return &RegionSplitter{
client: client,
}
}
// OnSplitFunc is called before split a range.
type OnSplitFunc func(key [][]byte)
// ExecuteSplit executes regions split and make sure new splitted regions are balance.
// It will split regions by the rewrite rules,
// then it will split regions by the end key of each range.
// tableRules includes the prefix of a table, since some ranges may have
// a prefix with record sequence or index sequence.
// note: all ranges and rewrite rules must have raw key.
func (rs *RegionSplitter) ExecuteSplit(
ctx context.Context,
ranges []rtree.Range,
) error {
if len(ranges) == 0 {
log.Info("skip split regions, no range")
return nil
}
if span := opentracing.SpanFromContext(ctx); span != nil && span.Tracer() != nil {
span1 := span.Tracer().StartSpan("RegionSplitter.Split", opentracing.ChildOf(span.Context()))
defer span1.Finish()
ctx = opentracing.ContextWithSpan(ctx, span1)
}
// Sort the range for getting the min and max key of the ranges
// TODO: this sort may not needed if we sort tables after creatation outside.
sortedRanges, errSplit := SortRanges(ranges)
if errSplit != nil {
return errors.Trace(errSplit)
}
if len(sortedRanges) == 0 {
log.Info("skip split regions after sorted, no range")
return nil
}
sortedKeys := make([][]byte, 0, len(sortedRanges))
totalRangeSize := uint64(0)
for _, r := range sortedRanges {
sortedKeys = append(sortedKeys, r.EndKey)
totalRangeSize += r.Size
}
// the range size must be greater than 0 here
return rs.executeSplitByRanges(ctx, sortedKeys)
}
func (rs *RegionSplitter) executeSplitByRanges(
ctx context.Context,
sortedKeys [][]byte,
) error {
startTime := time.Now()
// Choose the rough region split keys,
// each splited region contains 128 regions to be splitted.
const regionIndexStep = 128
roughSortedSplitKeys := make([][]byte, 0, len(sortedKeys)/regionIndexStep+1)
for curRegionIndex := regionIndexStep; curRegionIndex < len(sortedKeys); curRegionIndex += regionIndexStep {
roughSortedSplitKeys = append(roughSortedSplitKeys, sortedKeys[curRegionIndex])
}
if len(roughSortedSplitKeys) > 0 {
if err := rs.executeSplitByKeys(ctx, roughSortedSplitKeys); err != nil {
return errors.Trace(err)
}
}
log.Info("finish spliting regions roughly", zap.Duration("take", time.Since(startTime)))
// Then send split requests to each TiKV.
if err := rs.executeSplitByKeys(ctx, sortedKeys); err != nil {
return errors.Trace(err)
}
log.Info("finish spliting and scattering regions", zap.Duration("take", time.Since(startTime)))
return nil
}
// executeSplitByKeys will split regions by **sorted** keys with following steps.
// 1. locate regions with correspond keys.
// 2. split these regions with correspond keys.
// 3. make sure new split regions are balanced.
func (rs *RegionSplitter) executeSplitByKeys(
ctx context.Context,
sortedKeys [][]byte,
) error {
startTime := time.Now()
scatterRegions, err := rs.client.SplitKeysAndScatter(ctx, sortedKeys)
if err != nil {
return errors.Trace(err)
}
if len(scatterRegions) > 0 {
log.Info("finish splitting and scattering regions. and starts to wait", zap.Int("regions", len(scatterRegions)),
zap.Duration("take", time.Since(startTime)))
rs.waitRegionsScattered(ctx, scatterRegions, split.ScatterWaitUpperInterval)
} else {
log.Info("finish splitting regions.", zap.Duration("take", time.Since(startTime)))
}
return nil
}
// waitRegionsScattered try to wait mutilple regions scatterd in 3 minutes.
// this could timeout, but if many regions scatterd the restore could continue
// so we don't wait long time here.
func (rs *RegionSplitter) waitRegionsScattered(ctx context.Context, scatterRegions []*split.RegionInfo, timeout time.Duration) {
log.Info("start to wait for scattering regions", zap.Int("regions", len(scatterRegions)))
startTime := time.Now()
leftCnt := rs.WaitForScatterRegionsTimeout(ctx, scatterRegions, timeout)
if leftCnt == 0 {
log.Info("waiting for scattering regions done",
zap.Int("regions", len(scatterRegions)),
zap.Duration("take", time.Since(startTime)))
} else {
log.Warn("waiting for scattering regions timeout",
zap.Int("not scattered Count", leftCnt),
zap.Int("regions", len(scatterRegions)),
zap.Duration("take", time.Since(startTime)))
}
}
func (rs *RegionSplitter) WaitForScatterRegionsTimeout(ctx context.Context, regionInfos []*split.RegionInfo, timeout time.Duration) int {
ctx2, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
leftRegions, _ := rs.client.WaitRegionsScattered(ctx2, regionInfos)
return leftRegions
}
func replacePrefix(s []byte, rewriteRules *RewriteRules) ([]byte, *sst.RewriteRule) {
// We should search the dataRules firstly.
for _, rule := range rewriteRules.Data {
if bytes.HasPrefix(s, rule.GetOldKeyPrefix()) {
return append(append([]byte{}, rule.GetNewKeyPrefix()...), s[len(rule.GetOldKeyPrefix()):]...), rule
}
}
return s, nil
}
type rewriteSplitter struct {
rewriteKey []byte
tableID int64
rule *RewriteRules
splitter *split.SplitHelper
}
type splitHelperIterator struct {
tableSplitters []*rewriteSplitter
}
func (iter *splitHelperIterator) Traverse(fn func(v split.Valued, endKey []byte, rule *RewriteRules) bool) {
for _, entry := range iter.tableSplitters {
endKey := codec.EncodeBytes([]byte{}, tablecodec.EncodeTablePrefix(entry.tableID+1))
rule := entry.rule
entry.splitter.Traverse(func(v split.Valued) bool {
return fn(v, endKey, rule)
})
}
}
func NewSplitHelperIteratorForTest(helper *split.SplitHelper, tableID int64, rule *RewriteRules) *splitHelperIterator {
return &splitHelperIterator{
tableSplitters: []*rewriteSplitter{
{
tableID: tableID,
rule: rule,
splitter: helper,
},
},
}
}
type LogSplitHelper struct {
tableSplitter map[int64]*split.SplitHelper
rules map[int64]*RewriteRules
client split.SplitClient
pool *util.WorkerPool
eg *errgroup.Group
regionsCh chan []*split.RegionInfo
splitThreSholdSize uint64
splitThreSholdKeys int64
}
func NewLogSplitHelper(rules map[int64]*RewriteRules, client split.SplitClient, splitSize uint64, splitKeys int64) *LogSplitHelper {
return &LogSplitHelper{
tableSplitter: make(map[int64]*split.SplitHelper),
rules: rules,
client: client,
pool: util.NewWorkerPool(128, "split region"),
eg: nil,
splitThreSholdSize: splitSize,
splitThreSholdKeys: splitKeys,
}
}
func (helper *LogSplitHelper) iterator() *splitHelperIterator {
tableSplitters := make([]*rewriteSplitter, 0, len(helper.tableSplitter))
for tableID, splitter := range helper.tableSplitter {
delete(helper.tableSplitter, tableID)
rewriteRule, exists := helper.rules[tableID]
if !exists {
log.Info("skip splitting due to no table id matched", zap.Int64("tableID", tableID))
continue
}
newTableID := GetRewriteTableID(tableID, rewriteRule)
if newTableID == 0 {
log.Warn("failed to get the rewrite table id", zap.Int64("tableID", tableID))
continue
}
tableSplitters = append(tableSplitters, &rewriteSplitter{
rewriteKey: codec.EncodeBytes([]byte{}, tablecodec.EncodeTablePrefix(newTableID)),
tableID: newTableID,
rule: rewriteRule,
splitter: splitter,
})
}
sort.Slice(tableSplitters, func(i, j int) bool {
return bytes.Compare(tableSplitters[i].rewriteKey, tableSplitters[j].rewriteKey) < 0
})
return &splitHelperIterator{
tableSplitters: tableSplitters,
}
}
const splitFileThreshold = 1024 * 1024 // 1 MB
func (helper *LogSplitHelper) skipFile(file *backuppb.DataFileInfo) bool {
_, exist := helper.rules[file.TableId]
return file.Length < splitFileThreshold || file.IsMeta || !exist
}
func (helper *LogSplitHelper) Merge(file *backuppb.DataFileInfo) {
if helper.skipFile(file) {
return
}
splitHelper, exist := helper.tableSplitter[file.TableId]
if !exist {
splitHelper = split.NewSplitHelper()
helper.tableSplitter[file.TableId] = splitHelper
}
splitHelper.Merge(split.Valued{
Key: split.Span{
StartKey: file.StartKey,
EndKey: file.EndKey,
},
Value: split.Value{
Size: file.Length,
Number: file.NumberOfEntries,
},
})
}
type splitFunc = func(context.Context, *RegionSplitter, uint64, int64, *split.RegionInfo, []split.Valued) error
func (helper *LogSplitHelper) splitRegionByPoints(
ctx context.Context,
regionSplitter *RegionSplitter,
initialLength uint64,
initialNumber int64,
region *split.RegionInfo,
valueds []split.Valued,
) error {
var (
splitPoints [][]byte = make([][]byte, 0)
lastKey []byte = region.Region.StartKey
length uint64 = initialLength
number int64 = initialNumber
)
for _, v := range valueds {
// decode will discard ts behind the key, which results in the same key for consecutive ranges
if !bytes.Equal(lastKey, v.GetStartKey()) && (v.Value.Size+length > helper.splitThreSholdSize || v.Value.Number+number > helper.splitThreSholdKeys) {
_, rawKey, _ := codec.DecodeBytes(v.GetStartKey(), nil)
splitPoints = append(splitPoints, rawKey)
length = 0
number = 0
}
lastKey = v.GetStartKey()
length += v.Value.Size
number += v.Value.Number
}
if len(splitPoints) == 0 {
return nil
}
helper.pool.ApplyOnErrorGroup(helper.eg, func() error {
newRegions, errSplit := regionSplitter.client.SplitWaitAndScatter(ctx, region, splitPoints)
if errSplit != nil {
log.Warn("failed to split the scaned region", zap.Error(errSplit))
_, startKey, _ := codec.DecodeBytes(region.Region.StartKey, nil)
ranges := make([]rtree.Range, 0, len(splitPoints))
for _, point := range splitPoints {
ranges = append(ranges, rtree.Range{StartKey: startKey, EndKey: point})
startKey = point
}
return regionSplitter.ExecuteSplit(ctx, ranges)
}
select {
case <-ctx.Done():
return nil
case helper.regionsCh <- newRegions:
}
log.Info("split the region", zap.Uint64("region-id", region.Region.Id), zap.Int("split-point-number", len(splitPoints)))
return nil
})
return nil
}
// GetRewriteTableID gets rewrite table id by the rewrite rule and original table id
func GetRewriteTableID(tableID int64, rewriteRules *RewriteRules) int64 {
tableKey := tablecodec.GenTableRecordPrefix(tableID)
rule := matchOldPrefix(tableKey, rewriteRules)
if rule == nil {
return 0
}
return tablecodec.DecodeTableID(rule.GetNewKeyPrefix())
}
// SplitPoint selects ranges overlapped with each region, and calls `splitF` to split the region
func SplitPoint(
ctx context.Context,
iter *splitHelperIterator,
client split.SplitClient,
splitF splitFunc,
) (err error) {
// common status
var (
regionSplitter *RegionSplitter = NewRegionSplitter(client)
)
// region traverse status
var (
// the region buffer of each scan
regions []*split.RegionInfo = nil
regionIndex int = 0
)
// region split status
var (
// range span +----------------+------+---+-------------+
// region span +------------------------------------+
// +initial length+ +end valued+
// regionValueds is the ranges array overlapped with `regionInfo`
regionValueds []split.Valued = nil
// regionInfo is the region to be split
regionInfo *split.RegionInfo = nil
// intialLength is the length of the part of the first range overlapped with the region
initialLength uint64 = 0
initialNumber int64 = 0
)
// range status
var (
// regionOverCount is the number of regions overlapped with the range
regionOverCount uint64 = 0
)
iter.Traverse(func(v split.Valued, endKey []byte, rule *RewriteRules) bool {
if v.Value.Number == 0 || v.Value.Size == 0 {
return true
}
var (
vStartKey []byte
vEndKey []byte
)
// use `vStartKey` and `vEndKey` to compare with region's key
vStartKey, vEndKey, err = GetRewriteEncodedKeys(v, rule)
if err != nil {
return false
}
// traverse to the first region overlapped with the range
for ; regionIndex < len(regions); regionIndex++ {
if bytes.Compare(vStartKey, regions[regionIndex].Region.EndKey) < 0 {
break
}
}
// cannot find any regions overlapped with the range
// need to scan regions again
if regionIndex == len(regions) {
regions = nil
}
regionOverCount = 0
for {
if regionIndex >= len(regions) {
var startKey []byte
if len(regions) > 0 {
// has traversed over the region buffer, should scan from the last region's end-key of the region buffer
startKey = regions[len(regions)-1].Region.EndKey
} else {
// scan from the range's start-key
startKey = vStartKey
}
// scan at most 64 regions into the region buffer
regions, err = split.ScanRegionsWithRetry(ctx, client, startKey, endKey, 64)
if err != nil {
return false
}
regionIndex = 0
}
region := regions[regionIndex]
// this region must be overlapped with the range
regionOverCount++
// the region is the last one overlapped with the range,
// should split the last recorded region,
// and then record this region as the region to be split
if bytes.Compare(vEndKey, region.Region.EndKey) < 0 {
endLength := v.Value.Size / regionOverCount
endNumber := v.Value.Number / int64(regionOverCount)
if len(regionValueds) > 0 && regionInfo != region {
// add a part of the range as the end part
if bytes.Compare(vStartKey, regionInfo.Region.EndKey) < 0 {
regionValueds = append(regionValueds, split.NewValued(vStartKey, regionInfo.Region.EndKey, split.Value{Size: endLength, Number: endNumber}))
}
// try to split the region
err = splitF(ctx, regionSplitter, initialLength, initialNumber, regionInfo, regionValueds)
if err != nil {
return false
}
regionValueds = make([]split.Valued, 0)
}
if regionOverCount == 1 {
// the region completely contains the range
regionValueds = append(regionValueds, split.Valued{
Key: split.Span{
StartKey: vStartKey,
EndKey: vEndKey,
},
Value: v.Value,
})
} else {
// the region is overlapped with the last part of the range
initialLength = endLength
initialNumber = endNumber
}
regionInfo = region
// try the next range
return true
}
// try the next region
regionIndex++
}
})
if err != nil {
return errors.Trace(err)
}
if len(regionValueds) > 0 {
// try to split the region
err = splitF(ctx, regionSplitter, initialLength, initialNumber, regionInfo, regionValueds)
if err != nil {
return errors.Trace(err)
}
}
return nil
}
func (helper *LogSplitHelper) Split(ctx context.Context) error {
var ectx context.Context
var wg sync.WaitGroup
helper.eg, ectx = errgroup.WithContext(ctx)
helper.regionsCh = make(chan []*split.RegionInfo, 1024)
wg.Add(1)
go func() {
defer wg.Done()
scatterRegions := make([]*split.RegionInfo, 0)
receiveNewRegions:
for {
select {
case <-ectx.Done():
return
case newRegions, ok := <-helper.regionsCh:
if !ok {
break receiveNewRegions
}
scatterRegions = append(scatterRegions, newRegions...)
}
}
regionSplitter := NewRegionSplitter(helper.client)
// It is too expensive to stop recovery and wait for a small number of regions
// to complete scatter, so the maximum waiting time is reduced to 1 minute.
_ = regionSplitter.WaitForScatterRegionsTimeout(ctx, scatterRegions, time.Minute)
}()
iter := helper.iterator()
if err := SplitPoint(ectx, iter, helper.client, helper.splitRegionByPoints); err != nil {
return errors.Trace(err)
}
// wait for completion of splitting regions
if err := helper.eg.Wait(); err != nil {
return errors.Trace(err)
}
// wait for completion of scattering regions
close(helper.regionsCh)
wg.Wait()
return nil
}
type LogFilesIterWithSplitHelper struct {
iter LogIter
helper *LogSplitHelper
buffer []*LogDataFileInfo
next int
}
const SplitFilesBufferSize = 4096
func NewLogFilesIterWithSplitHelper(iter LogIter, rules map[int64]*RewriteRules, client split.SplitClient, splitSize uint64, splitKeys int64) LogIter {
return &LogFilesIterWithSplitHelper{
iter: iter,
helper: NewLogSplitHelper(rules, client, splitSize, splitKeys),
buffer: nil,
next: 0,
}
}
func (splitIter *LogFilesIterWithSplitHelper) TryNext(ctx context.Context) iter.IterResult[*LogDataFileInfo] {
if splitIter.next >= len(splitIter.buffer) {
splitIter.buffer = make([]*LogDataFileInfo, 0, SplitFilesBufferSize)
for r := splitIter.iter.TryNext(ctx); !r.Finished; r = splitIter.iter.TryNext(ctx) {
if r.Err != nil {
return r
}
f := r.Item
splitIter.helper.Merge(f.DataFileInfo)
splitIter.buffer = append(splitIter.buffer, f)
if len(splitIter.buffer) >= SplitFilesBufferSize {
break
}
}
splitIter.next = 0
if len(splitIter.buffer) == 0 {
return iter.Done[*LogDataFileInfo]()
}
log.Info("start to split the regions")
startTime := time.Now()
if err := splitIter.helper.Split(ctx); err != nil {
return iter.Throw[*LogDataFileInfo](errors.Trace(err))
}
log.Info("end to split the regions", zap.Duration("takes", time.Since(startTime)))
}
res := iter.Emit(splitIter.buffer[splitIter.next])
splitIter.next += 1
return res
}
type splitBackoffer struct {
state utils.RetryState
}
func newSplitBackoffer() *splitBackoffer {
return &splitBackoffer{
state: utils.InitialRetryState(split.SplitRetryTimes, split.SplitRetryInterval, split.SplitMaxRetryInterval),
}
}
func (bo *splitBackoffer) NextBackoff(err error) time.Duration {
switch {
case berrors.ErrPDBatchScanRegion.Equal(err):
log.Warn("inconsistent region info get.", logutil.ShortError(err))
return time.Second
case strings.Contains(err.Error(), "no valid key"):
bo.state.GiveUp()
return 0
case berrors.ErrInvalidRange.Equal(err):
bo.state.GiveUp()
return 0
}
return bo.state.ExponentialBackoff()
}
func (bo *splitBackoffer) Attempt() int {
return bo.state.Attempt()
}