507 lines
18 KiB
Go
507 lines
18 KiB
Go
// Copyright 2017 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package statistics
|
|
|
|
import (
|
|
"bytes"
|
|
"math"
|
|
|
|
"github.com/pingcap/errors"
|
|
"github.com/pingcap/tidb/pkg/sessionctx"
|
|
"github.com/pingcap/tidb/pkg/sessionctx/stmtctx"
|
|
statslogutil "github.com/pingcap/tidb/pkg/statistics/handle/logutil"
|
|
"github.com/pingcap/tidb/pkg/types"
|
|
"github.com/pingcap/tidb/pkg/util/codec"
|
|
"github.com/pingcap/tidb/pkg/util/collate"
|
|
"github.com/pingcap/tidb/pkg/util/memory"
|
|
"go.uber.org/zap"
|
|
)
|
|
|
|
// SortedBuilder is used to build histograms for PK and index.
|
|
type SortedBuilder struct {
|
|
sc *stmtctx.StatementContext
|
|
hist *Histogram
|
|
numBuckets int64
|
|
valuesPerBucket int64
|
|
lastNumber int64
|
|
bucketIdx int64
|
|
Count int64
|
|
needBucketNDV bool
|
|
}
|
|
|
|
// NewSortedBuilder creates a new SortedBuilder.
|
|
func NewSortedBuilder(sc *stmtctx.StatementContext, numBuckets, id int64, tp *types.FieldType, statsVer int) *SortedBuilder {
|
|
return &SortedBuilder{
|
|
sc: sc,
|
|
numBuckets: numBuckets,
|
|
valuesPerBucket: 1,
|
|
hist: NewHistogram(id, 0, 0, 0, tp, int(numBuckets), 0),
|
|
needBucketNDV: statsVer >= Version2,
|
|
}
|
|
}
|
|
|
|
// Hist returns the histogram built by SortedBuilder.
|
|
func (b *SortedBuilder) Hist() *Histogram {
|
|
return b.hist
|
|
}
|
|
|
|
// Iterate updates the histogram incrementally.
|
|
func (b *SortedBuilder) Iterate(data types.Datum) error {
|
|
b.Count++
|
|
appendBucket := b.hist.AppendBucket
|
|
if b.needBucketNDV {
|
|
appendBucket = func(lower, upper *types.Datum, count, repeat int64) {
|
|
b.hist.AppendBucketWithNDV(lower, upper, count, repeat, 1)
|
|
}
|
|
}
|
|
if b.Count == 1 {
|
|
appendBucket(&data, &data, 1, 1)
|
|
b.hist.NDV = 1
|
|
return nil
|
|
}
|
|
cmp, err := b.hist.GetUpper(int(b.bucketIdx)).Compare(b.sc.TypeCtx(), &data, collate.GetBinaryCollator())
|
|
if err != nil {
|
|
return errors.Trace(err)
|
|
}
|
|
if cmp == 0 {
|
|
// The new item has the same value as current bucket value, to ensure that
|
|
// a same value only stored in a single bucket, we do not increase bucketIdx even if it exceeds
|
|
// valuesPerBucket.
|
|
b.hist.Buckets[b.bucketIdx].Count++
|
|
b.hist.Buckets[b.bucketIdx].Repeat++
|
|
} else if b.hist.Buckets[b.bucketIdx].Count+1-b.lastNumber <= b.valuesPerBucket {
|
|
// The bucket still have room to store a new item, update the bucket.
|
|
b.hist.updateLastBucket(&data, b.hist.Buckets[b.bucketIdx].Count+1, 1, b.needBucketNDV)
|
|
b.hist.NDV++
|
|
} else {
|
|
// All buckets are full, we should merge buckets.
|
|
if b.bucketIdx+1 == b.numBuckets {
|
|
b.hist.mergeBuckets(int(b.bucketIdx))
|
|
b.valuesPerBucket *= 2
|
|
b.bucketIdx = b.bucketIdx / 2
|
|
if b.bucketIdx == 0 {
|
|
b.lastNumber = 0
|
|
} else {
|
|
b.lastNumber = b.hist.Buckets[b.bucketIdx-1].Count
|
|
}
|
|
}
|
|
// We may merge buckets, so we should check it again.
|
|
if b.hist.Buckets[b.bucketIdx].Count+1-b.lastNumber <= b.valuesPerBucket {
|
|
b.hist.updateLastBucket(&data, b.hist.Buckets[b.bucketIdx].Count+1, 1, b.needBucketNDV)
|
|
} else {
|
|
b.lastNumber = b.hist.Buckets[b.bucketIdx].Count
|
|
b.bucketIdx++
|
|
appendBucket(&data, &data, b.lastNumber+1, 1)
|
|
}
|
|
b.hist.NDV++
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// BuildColumnHist build a histogram for a column.
|
|
// numBuckets: number of buckets for the histogram.
|
|
// id: the id of the table.
|
|
// collector: the collector of samples.
|
|
// tp: the FieldType for the column.
|
|
// count: represents the row count for the column.
|
|
// ndv: represents the number of distinct values for the column.
|
|
// nullCount: represents the number of null values for the column.
|
|
func BuildColumnHist(ctx sessionctx.Context, numBuckets, id int64, collector *SampleCollector, tp *types.FieldType, count int64, ndv int64, nullCount int64) (*Histogram, error) {
|
|
if ndv > count {
|
|
ndv = count
|
|
}
|
|
if count == 0 || len(collector.Samples) == 0 {
|
|
return NewHistogram(id, ndv, nullCount, 0, tp, 0, collector.TotalSize), nil
|
|
}
|
|
sc := ctx.GetSessionVars().StmtCtx
|
|
samples := collector.Samples
|
|
err := sortSampleItems(sc, samples)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
hg := NewHistogram(id, ndv, nullCount, 0, tp, int(numBuckets), collector.TotalSize)
|
|
|
|
corrXYSum, err := buildHist(sc, hg, samples, count, ndv, numBuckets, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
hg.Correlation = calcCorrelation(int64(len(samples)), corrXYSum)
|
|
return hg, nil
|
|
}
|
|
|
|
// buildHist builds histogram from samples and other information.
|
|
// It stores the built histogram in hg and return corrXYSum used for calculating the correlation.
|
|
func buildHist(sc *stmtctx.StatementContext, hg *Histogram, samples []*SampleItem, count, ndv, numBuckets int64, memTracker *memory.Tracker) (corrXYSum float64, err error) {
|
|
sampleNum := int64(len(samples))
|
|
// As we use samples to build the histogram, the bucket number and repeat should multiply a factor.
|
|
sampleFactor := float64(count) / float64(sampleNum)
|
|
ndvFactor := float64(count) / float64(ndv)
|
|
if ndvFactor > sampleFactor {
|
|
ndvFactor = sampleFactor
|
|
}
|
|
// Since bucket count is increased by sampleFactor, so the actual max values per bucket is
|
|
// floor(valuesPerBucket/sampleFactor)*sampleFactor, which may less than valuesPerBucket,
|
|
// thus we need to add a sampleFactor to avoid building too many buckets.
|
|
valuesPerBucket := float64(count)/float64(numBuckets) + sampleFactor
|
|
|
|
bucketIdx := 0
|
|
var lastCount int64
|
|
corrXYSum = float64(0)
|
|
hg.AppendBucket(&samples[0].Value, &samples[0].Value, int64(sampleFactor), int64(ndvFactor))
|
|
bufferedMemSize := int64(0)
|
|
bufferedReleaseSize := int64(0)
|
|
defer func() {
|
|
if memTracker != nil {
|
|
memTracker.Consume(bufferedMemSize)
|
|
memTracker.Release(bufferedReleaseSize)
|
|
}
|
|
}()
|
|
var upper = new(types.Datum)
|
|
for i := int64(1); i < sampleNum; i++ {
|
|
corrXYSum += float64(i) * float64(samples[i].Ordinal)
|
|
hg.UpperToDatum(bucketIdx, upper)
|
|
if memTracker != nil {
|
|
// tmp memory usage
|
|
deltaSize := upper.MemUsage()
|
|
memTracker.BufferedConsume(&bufferedMemSize, deltaSize)
|
|
memTracker.BufferedRelease(&bufferedReleaseSize, deltaSize)
|
|
}
|
|
cmp, err := upper.Compare(sc.TypeCtx(), &samples[i].Value, collate.GetBinaryCollator())
|
|
if err != nil {
|
|
return 0, errors.Trace(err)
|
|
}
|
|
totalCount := float64(i+1) * sampleFactor
|
|
if cmp == 0 {
|
|
// The new item has the same value as current bucket value, to ensure that
|
|
// a same value only stored in a single bucket, we do not increase bucketIdx even if it exceeds
|
|
// valuesPerBucket.
|
|
hg.Buckets[bucketIdx].Count = int64(totalCount)
|
|
if hg.Buckets[bucketIdx].Repeat == int64(ndvFactor) {
|
|
hg.Buckets[bucketIdx].Repeat = int64(2 * sampleFactor)
|
|
} else {
|
|
hg.Buckets[bucketIdx].Repeat += int64(sampleFactor)
|
|
}
|
|
} else if totalCount-float64(lastCount) <= valuesPerBucket {
|
|
// The bucket still have room to store a new item, update the bucket.
|
|
hg.updateLastBucket(&samples[i].Value, int64(totalCount), int64(ndvFactor), false)
|
|
} else {
|
|
lastCount = hg.Buckets[bucketIdx].Count
|
|
// The bucket is full, store the item in the next bucket.
|
|
bucketIdx++
|
|
hg.AppendBucket(&samples[i].Value, &samples[i].Value, int64(totalCount), int64(ndvFactor))
|
|
}
|
|
}
|
|
return corrXYSum, nil
|
|
}
|
|
|
|
// calcCorrelation computes column order correlation with the handle.
|
|
func calcCorrelation(sampleNum int64, corrXYSum float64) float64 {
|
|
if sampleNum == 1 {
|
|
return 1
|
|
}
|
|
// X means the ordinal of the item in original sequence, Y means the ordinal of the item in the
|
|
// sorted sequence, we know that X and Y value sets are both:
|
|
// 0, 1, ..., sampleNum-1
|
|
// we can simply compute sum(X) = sum(Y) =
|
|
// (sampleNum-1)*sampleNum / 2
|
|
// and sum(X^2) = sum(Y^2) =
|
|
// (sampleNum-1)*sampleNum*(2*sampleNum-1) / 6
|
|
// We use "Pearson correlation coefficient" to compute the order correlation of columns,
|
|
// the formula is based on https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
|
|
// Note that (itemsCount*corrX2Sum - corrXSum*corrXSum) would never be zero when sampleNum is larger than 1.
|
|
itemsCount := float64(sampleNum)
|
|
corrXSum := (itemsCount - 1) * itemsCount / 2.0
|
|
corrX2Sum := (itemsCount - 1) * itemsCount * (2*itemsCount - 1) / 6.0
|
|
return (itemsCount*corrXYSum - corrXSum*corrXSum) / (itemsCount*corrX2Sum - corrXSum*corrXSum)
|
|
}
|
|
|
|
// BuildColumn builds histogram from samples for column.
|
|
func BuildColumn(ctx sessionctx.Context, numBuckets, id int64, collector *SampleCollector, tp *types.FieldType) (*Histogram, error) {
|
|
return BuildColumnHist(ctx, numBuckets, id, collector, tp, collector.Count, collector.FMSketch.NDV(), collector.NullCount)
|
|
}
|
|
|
|
// BuildHistAndTopN build a histogram and TopN for a column or an index from samples.
|
|
func BuildHistAndTopN(
|
|
ctx sessionctx.Context,
|
|
numBuckets, numTopN int,
|
|
id int64,
|
|
collector *SampleCollector,
|
|
tp *types.FieldType,
|
|
isColumn bool,
|
|
memTracker *memory.Tracker,
|
|
needExtStats bool,
|
|
) (*Histogram, *TopN, error) {
|
|
bufferedMemSize := int64(0)
|
|
bufferedReleaseSize := int64(0)
|
|
defer func() {
|
|
if memTracker != nil {
|
|
memTracker.Consume(bufferedMemSize)
|
|
memTracker.Release(bufferedReleaseSize)
|
|
}
|
|
}()
|
|
var getComparedBytes func(datum types.Datum) ([]byte, error)
|
|
if isColumn {
|
|
getComparedBytes = func(datum types.Datum) ([]byte, error) {
|
|
encoded, err := codec.EncodeKey(ctx.GetSessionVars().StmtCtx.TimeZone(), nil, datum)
|
|
err = ctx.GetSessionVars().StmtCtx.HandleError(err)
|
|
if memTracker != nil {
|
|
// tmp memory usage
|
|
deltaSize := int64(cap(encoded))
|
|
memTracker.BufferedConsume(&bufferedMemSize, deltaSize)
|
|
memTracker.BufferedRelease(&bufferedReleaseSize, deltaSize)
|
|
}
|
|
return encoded, err
|
|
}
|
|
} else {
|
|
getComparedBytes = func(datum types.Datum) ([]byte, error) {
|
|
return datum.GetBytes(), nil
|
|
}
|
|
}
|
|
count := collector.Count
|
|
ndv := collector.FMSketch.NDV()
|
|
nullCount := collector.NullCount
|
|
if ndv > count {
|
|
ndv = count
|
|
}
|
|
if count == 0 || len(collector.Samples) == 0 || ndv == 0 {
|
|
return NewHistogram(id, ndv, nullCount, 0, tp, 0, collector.TotalSize), nil, nil
|
|
}
|
|
sc := ctx.GetSessionVars().StmtCtx
|
|
var samples []*SampleItem
|
|
// if we need to build extended stats, we need to copy the samples to avoid modifying the original samples.
|
|
if needExtStats {
|
|
samples = make([]*SampleItem, len(collector.Samples))
|
|
copy(samples, collector.Samples)
|
|
} else {
|
|
samples = collector.Samples
|
|
}
|
|
err := sortSampleItems(sc, samples)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
hg := NewHistogram(id, ndv, nullCount, 0, tp, numBuckets, collector.TotalSize)
|
|
|
|
sampleNum := int64(len(samples))
|
|
// As we use samples to build the histogram, the bucket number and repeat should multiply a factor.
|
|
sampleFactor := float64(count) / float64(len(samples))
|
|
|
|
// Step1: collect topn from samples
|
|
|
|
// the topNList is always sorted by count from more to less
|
|
topNList := make([]TopNMeta, 0, numTopN)
|
|
cur, err := getComparedBytes(samples[0].Value)
|
|
if err != nil {
|
|
return nil, nil, errors.Trace(err)
|
|
}
|
|
curCnt := float64(0)
|
|
var corrXYSum float64
|
|
|
|
// Iterate through the samples
|
|
for i := int64(0); i < sampleNum; i++ {
|
|
if isColumn {
|
|
corrXYSum += float64(i) * float64(samples[i].Ordinal)
|
|
}
|
|
if numTopN == 0 {
|
|
continue
|
|
}
|
|
sampleBytes, err := getComparedBytes(samples[i].Value)
|
|
if err != nil {
|
|
return nil, nil, errors.Trace(err)
|
|
}
|
|
// case 1, this value is equal to the last one: current count++
|
|
if bytes.Equal(cur, sampleBytes) {
|
|
curCnt++
|
|
continue
|
|
}
|
|
// case 2, meet a different value: counting for the "current" is complete
|
|
// case 2-1, now topn is empty: append the "current" count directly
|
|
if len(topNList) == 0 {
|
|
topNList = append(topNList, TopNMeta{Encoded: cur, Count: uint64(curCnt)})
|
|
cur, curCnt = sampleBytes, 1
|
|
continue
|
|
}
|
|
// case 2-2, now topn is full, and the "current" count is less than the least count in the topn: no need to insert the "current"
|
|
if len(topNList) >= numTopN && uint64(curCnt) <= topNList[len(topNList)-1].Count {
|
|
cur, curCnt = sampleBytes, 1
|
|
continue
|
|
}
|
|
// case 2-3, now topn is not full, or the "current" count is larger than the least count in the topn: need to find a slot to insert the "current"
|
|
j := len(topNList)
|
|
for ; j > 0; j-- {
|
|
if uint64(curCnt) < topNList[j-1].Count {
|
|
break
|
|
}
|
|
}
|
|
topNList = append(topNList, TopNMeta{})
|
|
copy(topNList[j+1:], topNList[j:])
|
|
topNList[j] = TopNMeta{Encoded: cur, Count: uint64(curCnt)}
|
|
if len(topNList) > numTopN {
|
|
topNList = topNList[:numTopN]
|
|
}
|
|
cur, curCnt = sampleBytes, 1
|
|
}
|
|
|
|
// Calc the correlation of the column between the handle column.
|
|
if isColumn {
|
|
hg.Correlation = calcCorrelation(sampleNum, corrXYSum)
|
|
}
|
|
|
|
// Handle the counting for the last value. Basically equal to the case 2 above.
|
|
// now topn is empty: append the "current" count directly
|
|
if numTopN != 0 {
|
|
if len(topNList) == 0 {
|
|
topNList = append(topNList, TopNMeta{Encoded: cur, Count: uint64(curCnt)})
|
|
} else if len(topNList) < numTopN || uint64(curCnt) > topNList[len(topNList)-1].Count {
|
|
// now topn is not full, or the "current" count is larger than the least count in the topn: need to find a slot to insert the "current"
|
|
j := len(topNList)
|
|
for ; j > 0; j-- {
|
|
if uint64(curCnt) < topNList[j-1].Count {
|
|
break
|
|
}
|
|
}
|
|
topNList = append(topNList, TopNMeta{})
|
|
copy(topNList[j+1:], topNList[j:])
|
|
topNList[j] = TopNMeta{Encoded: cur, Count: uint64(curCnt)}
|
|
if len(topNList) > numTopN {
|
|
topNList = topNList[:numTopN]
|
|
}
|
|
}
|
|
}
|
|
|
|
topNList = pruneTopNItem(topNList, ndv, nullCount, sampleNum, count)
|
|
|
|
// Step2: exclude topn from samples
|
|
if numTopN != 0 {
|
|
for i := int64(0); i < int64(len(samples)); i++ {
|
|
sampleBytes, err := getComparedBytes(samples[i].Value)
|
|
if err != nil {
|
|
return nil, nil, errors.Trace(err)
|
|
}
|
|
// For debugging invalid sample data.
|
|
var (
|
|
foundTwice bool
|
|
firstTimeSample types.Datum
|
|
)
|
|
for j := 0; j < len(topNList); j++ {
|
|
if bytes.Equal(sampleBytes, topNList[j].Encoded) {
|
|
// This should never happen, but we met this panic before, so we add this check here.
|
|
// See: https://github.com/pingcap/tidb/issues/35948
|
|
if foundTwice {
|
|
datumString, err := firstTimeSample.ToString()
|
|
if err != nil {
|
|
statslogutil.StatsLogger().Error("try to convert datum to string failed", zap.Error(err))
|
|
}
|
|
|
|
statslogutil.StatsLogger().Warn(
|
|
"invalid sample data",
|
|
zap.Bool("isColumn", isColumn),
|
|
zap.Int64("columnID", id),
|
|
zap.String("datum", datumString),
|
|
zap.Binary("sampleBytes", sampleBytes),
|
|
zap.Binary("topNBytes", topNList[j].Encoded),
|
|
)
|
|
// NOTE: if we don't return here, we may meet panic in the following code.
|
|
// The i may decrease to a negative value.
|
|
// We haven't fix the issue here, because we don't know how to
|
|
// remove the invalid sample data from the samples.
|
|
break
|
|
}
|
|
// First time to find the same value in topN: need to record the sample data for debugging.
|
|
firstTimeSample = samples[i].Value
|
|
// Found the same value in topn: need to skip over this value in samples.
|
|
copy(samples[i:], samples[uint64(i)+topNList[j].Count:])
|
|
samples = samples[:uint64(len(samples))-topNList[j].Count]
|
|
i--
|
|
foundTwice = true
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
topn := &TopN{TopN: topNList}
|
|
topn.Scale(sampleFactor)
|
|
|
|
if uint64(count) <= topn.TotalCount() || int(hg.NDV) <= len(topn.TopN) {
|
|
// TopN includes all sample data
|
|
return hg, topn, nil
|
|
}
|
|
|
|
// Step3: build histogram with the rest samples
|
|
if len(samples) > 0 {
|
|
_, err = buildHist(sc, hg, samples, count-int64(topn.TotalCount()), ndv-int64(len(topn.TopN)), int64(numBuckets), memTracker)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
}
|
|
|
|
return hg, topn, nil
|
|
}
|
|
|
|
// pruneTopNItem tries to prune the least common values in the top-n list if it is not significantly more common than the values not in the list.
|
|
//
|
|
// We assume that the ones not in the top-n list's selectivity is 1/remained_ndv which is the internal implementation of EqualRowCount
|
|
func pruneTopNItem(topns []TopNMeta, ndv, nullCount, sampleRows, totalRows int64) []TopNMeta {
|
|
// If the sampleRows holds all rows, or NDV of samples equals to actual NDV, we just return the TopN directly.
|
|
if sampleRows == totalRows || totalRows <= 1 || int64(len(topns)) >= ndv || len(topns) == 0 {
|
|
return topns
|
|
}
|
|
// Sum the occurrence except the least common one from the top-n list. To check whether the lest common one is worth
|
|
// storing later.
|
|
sumCount := uint64(0)
|
|
for i := 0; i < len(topns)-1; i++ {
|
|
sumCount += topns[i].Count
|
|
}
|
|
topNNum := len(topns)
|
|
for topNNum > 0 {
|
|
// Selectivity for the ones not in the top-n list.
|
|
// (1 - things in top-n list - null) / remained ndv.
|
|
selectivity := 1.0 - float64(sumCount)/float64(sampleRows) - float64(nullCount)/float64(totalRows)
|
|
if selectivity < 0.0 {
|
|
selectivity = 0
|
|
}
|
|
if selectivity > 1 {
|
|
selectivity = 1
|
|
}
|
|
otherNDV := float64(ndv) - (float64(topNNum) - 1)
|
|
if otherNDV > 1 {
|
|
selectivity /= otherNDV
|
|
}
|
|
totalRowsN := float64(totalRows)
|
|
n := float64(sampleRows)
|
|
k := totalRowsN * float64(topns[topNNum-1].Count) / n
|
|
// Since we are sampling without replacement. The distribution would be a hypergeometric distribution.
|
|
// Thus the variance is the following formula.
|
|
variance := n * k * (totalRowsN - k) * (totalRowsN - n) / (totalRowsN * totalRowsN * (totalRowsN - 1))
|
|
stddev := math.Sqrt(variance)
|
|
// We choose the bound that plus two stddev of the sample frequency, plus an additional 0.5 for the continuity correction.
|
|
// Note:
|
|
// The mean + 2 * stddev is known as Wald confidence interval, plus 0.5 would be continuity-corrected Wald interval
|
|
if float64(topns[topNNum-1].Count) > selectivity*n+2*stddev+0.5 {
|
|
// Estimated selectivity of this item in the TopN is significantly higher than values not in TopN.
|
|
// So this value, and all other values in the TopN (selectivity of which is higher than this value) are
|
|
// worth being remained in the TopN list, and we stop pruning now.
|
|
break
|
|
}
|
|
// Current one is not worth storing, remove it and subtract it from sumCount, go to next one.
|
|
topNNum--
|
|
if topNNum == 0 {
|
|
break
|
|
}
|
|
sumCount -= topns[topNNum-1].Count
|
|
}
|
|
return topns[:topNNum]
|
|
}
|