236 lines
6.3 KiB
Go
236 lines
6.3 KiB
Go
// Copyright 2017 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package executor
|
|
|
|
import (
|
|
"math/rand"
|
|
"strconv"
|
|
"time"
|
|
|
|
"github.com/juju/errors"
|
|
"github.com/pingcap/tidb/ast"
|
|
"github.com/pingcap/tidb/context"
|
|
"github.com/pingcap/tidb/expression"
|
|
"github.com/pingcap/tidb/sessionctx"
|
|
"github.com/pingcap/tidb/sessionctx/variable"
|
|
"github.com/pingcap/tidb/sessionctx/varsutil"
|
|
"github.com/pingcap/tidb/statistics"
|
|
"github.com/pingcap/tidb/util/types"
|
|
)
|
|
|
|
var _ Executor = &AnalyzeExec{}
|
|
|
|
// AnalyzeExec represents Analyze executor.
|
|
type AnalyzeExec struct {
|
|
ctx context.Context
|
|
tasks []analyzeTask
|
|
}
|
|
|
|
const (
|
|
maxSampleCount = 10000
|
|
maxSketchSize = 1000
|
|
defaultBucketCount = 256
|
|
)
|
|
|
|
// Schema implements the Executor Schema interface.
|
|
func (e *AnalyzeExec) Schema() *expression.Schema {
|
|
return expression.NewSchema()
|
|
}
|
|
|
|
// Close implements the Executor Close interface.
|
|
func (e *AnalyzeExec) Close() error {
|
|
for _, task := range e.tasks {
|
|
err := task.src.Close()
|
|
if err != nil {
|
|
return errors.Trace(err)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Next implements the Executor Next interface.
|
|
func (e *AnalyzeExec) Next() (*Row, error) {
|
|
concurrency, err := getBuildStatsConcurrency(e.ctx)
|
|
if err != nil {
|
|
return nil, errors.Trace(err)
|
|
}
|
|
taskCh := make(chan analyzeTask, len(e.tasks))
|
|
resultCh := make(chan analyzeResult, len(e.tasks))
|
|
for i := 0; i < concurrency; i++ {
|
|
go analyzeWorker(taskCh, resultCh)
|
|
}
|
|
for _, task := range e.tasks {
|
|
taskCh <- task
|
|
}
|
|
close(taskCh)
|
|
results := make([]analyzeResult, 0, len(e.tasks))
|
|
for i := 0; i < len(e.tasks); i++ {
|
|
result := <-resultCh
|
|
results = append(results, result)
|
|
if result.err != nil {
|
|
return nil, errors.Trace(err)
|
|
}
|
|
}
|
|
for _, result := range results {
|
|
for _, hg := range result.hist {
|
|
err = hg.SaveToStorage(e.ctx, result.tableID, result.count, result.isIndex)
|
|
if err != nil {
|
|
return nil, errors.Trace(err)
|
|
}
|
|
}
|
|
}
|
|
dom := sessionctx.GetDomain(e.ctx)
|
|
lease := dom.DDL().GetLease()
|
|
if lease > 0 {
|
|
// We sleep two lease to make sure other tidb node has updated this node.
|
|
time.Sleep(lease * 2)
|
|
} else {
|
|
err := dom.StatsHandle().Update(GetInfoSchema(e.ctx))
|
|
if err != nil {
|
|
return nil, errors.Trace(err)
|
|
}
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
func getBuildStatsConcurrency(ctx context.Context) (int, error) {
|
|
sessionVars := ctx.GetSessionVars()
|
|
concurrency, err := varsutil.GetSessionSystemVar(sessionVars, variable.TiDBBuildStatsConcurrency)
|
|
if err != nil {
|
|
return 0, errors.Trace(err)
|
|
}
|
|
c, err := strconv.ParseInt(concurrency, 10, 64)
|
|
return int(c), errors.Trace(err)
|
|
}
|
|
|
|
type taskType int
|
|
|
|
const (
|
|
pkTask taskType = iota
|
|
colTask
|
|
idxTask
|
|
)
|
|
|
|
type analyzeTask struct {
|
|
taskType taskType
|
|
src Executor
|
|
}
|
|
|
|
type analyzeResult struct {
|
|
tableID int64
|
|
hist []*statistics.Histogram
|
|
count int64
|
|
isIndex int
|
|
err error
|
|
}
|
|
|
|
func analyzeWorker(taskCh <-chan analyzeTask, resultCh chan<- analyzeResult) {
|
|
for task := range taskCh {
|
|
switch task.taskType {
|
|
case pkTask:
|
|
resultCh <- analyzePK(task.src.(*XSelectTableExec))
|
|
case colTask:
|
|
resultCh <- analyzeColumns(task.src.(*XSelectTableExec))
|
|
case idxTask:
|
|
resultCh <- analyzeIndex(task.src.(*XSelectIndexExec))
|
|
}
|
|
}
|
|
}
|
|
|
|
func analyzePK(exec *XSelectTableExec) analyzeResult {
|
|
count, hg, err := statistics.BuildPK(exec.ctx, defaultBucketCount, exec.Columns[0].ID, &recordSet{executor: exec})
|
|
return analyzeResult{tableID: exec.tableInfo.ID, hist: []*statistics.Histogram{hg}, count: count, isIndex: 0, err: err}
|
|
}
|
|
|
|
func analyzeColumns(exec *XSelectTableExec) analyzeResult {
|
|
count, sampleRows, colNDVs, err := CollectSamplesAndEstimateNDVs(&recordSet{executor: exec}, len(exec.Columns))
|
|
if err != nil {
|
|
return analyzeResult{err: err}
|
|
}
|
|
columnSamples := rowsToColumnSamples(sampleRows)
|
|
if columnSamples == nil {
|
|
columnSamples = make([][]types.Datum, len(exec.Columns))
|
|
}
|
|
result := analyzeResult{tableID: exec.tableInfo.ID, count: count, isIndex: 0}
|
|
for i, col := range exec.Columns {
|
|
hg, err := statistics.BuildColumn(exec.ctx, defaultBucketCount, col.ID, colNDVs[i], count, columnSamples[i])
|
|
result.hist = append(result.hist, hg)
|
|
if err != nil && result.err == nil {
|
|
result.err = err
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
func analyzeIndex(exec *XSelectIndexExec) analyzeResult {
|
|
count, hg, err := statistics.BuildIndex(exec.ctx, defaultBucketCount, exec.indexPlan.Index.ID, &recordSet{executor: exec})
|
|
return analyzeResult{tableID: exec.tableInfo.ID, hist: []*statistics.Histogram{hg}, count: count, isIndex: 1, err: err}
|
|
}
|
|
|
|
// CollectSamplesAndEstimateNDVs collects sample from the result set using Reservoir Sampling algorithm,
|
|
// and estimates NDVs using FM Sketch during the collecting process.
|
|
// See https://en.wikipedia.org/wiki/Reservoir_sampling
|
|
// Exported for test.
|
|
func CollectSamplesAndEstimateNDVs(e ast.RecordSet, numCols int) (count int64, samples []*ast.Row, ndvs []int64, err error) {
|
|
var sketches []*statistics.FMSketch
|
|
for i := 0; i < numCols; i++ {
|
|
sketches = append(sketches, statistics.NewFMSketch(maxSketchSize))
|
|
}
|
|
for {
|
|
row, err := e.Next()
|
|
if err != nil {
|
|
return count, samples, ndvs, errors.Trace(err)
|
|
}
|
|
if row == nil {
|
|
break
|
|
}
|
|
for i, val := range row.Data {
|
|
err = sketches[i].InsertValue(val)
|
|
if err != nil {
|
|
return count, samples, ndvs, errors.Trace(err)
|
|
}
|
|
}
|
|
if len(samples) < maxSampleCount {
|
|
samples = append(samples, row)
|
|
} else {
|
|
shouldAdd := rand.Int63n(count) < maxSampleCount
|
|
if shouldAdd {
|
|
idx := rand.Intn(maxSampleCount)
|
|
samples[idx] = row
|
|
}
|
|
}
|
|
count++
|
|
}
|
|
for _, sketch := range sketches {
|
|
ndvs = append(ndvs, sketch.NDV())
|
|
}
|
|
return count, samples, ndvs, nil
|
|
}
|
|
|
|
func rowsToColumnSamples(rows []*ast.Row) [][]types.Datum {
|
|
if len(rows) == 0 {
|
|
return nil
|
|
}
|
|
columnSamples := make([][]types.Datum, len(rows[0].Data))
|
|
for i := range columnSamples {
|
|
columnSamples[i] = make([]types.Datum, len(rows))
|
|
}
|
|
for j, row := range rows {
|
|
for i, val := range row.Data {
|
|
columnSamples[i][j] = val
|
|
}
|
|
}
|
|
return columnSamples
|
|
}
|