Files
tidb/executor/builder.go
Ewan Chou e6f86e35d2 plan: build prepared statement plan in Optimize phase. (#4914)
When we build the `Execute` plan, the underlying plan is not built, so we don't know what the plan is before we execute it.
This PR move the plan building for prepared statement to optimizer, so we know what plan we are going to execute before we execute it.
2017-10-28 23:04:07 +08:00

1309 lines
36 KiB
Go

// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package executor
import (
"math"
"time"
"github.com/juju/errors"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/context"
"github.com/pingcap/tidb/distsql"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/infoschema"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/plan"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/util/admin"
"github.com/pingcap/tidb/util/ranger"
"github.com/pingcap/tidb/util/types"
"github.com/pingcap/tipb/go-tipb"
goctx "golang.org/x/net/context"
)
// executorBuilder builds an Executor from a Plan.
// The InfoSchema must not change during execution.
type executorBuilder struct {
ctx context.Context
is infoschema.InfoSchema
priority int
// err is set when there is error happened during Executor building process.
err error
}
func newExecutorBuilder(ctx context.Context, is infoschema.InfoSchema, priority int) *executorBuilder {
return &executorBuilder{
ctx: ctx,
is: is,
priority: priority,
}
}
func (b *executorBuilder) build(p plan.Plan) Executor {
switch v := p.(type) {
case nil:
return nil
case *plan.CheckTable:
return b.buildCheckTable(v)
case *plan.DDL:
return b.buildDDL(v)
case *plan.Deallocate:
return b.buildDeallocate(v)
case *plan.Delete:
return b.buildDelete(v)
case *plan.Execute:
return b.buildExecute(v)
case *plan.Explain:
return b.buildExplain(v)
case *plan.Insert:
return b.buildInsert(v)
case *plan.LoadData:
return b.buildLoadData(v)
case *plan.Limit:
return b.buildLimit(v)
case *plan.Prepare:
return b.buildPrepare(v)
case *plan.SelectLock:
return b.buildSelectLock(v)
case *plan.CancelDDLJobs:
return b.buildCancelDDLJobs(v)
case *plan.ShowDDL:
return b.buildShowDDL(v)
case *plan.ShowDDLJobs:
return b.buildShowDDLJobs(v)
case *plan.Show:
return b.buildShow(v)
case *plan.Simple:
return b.buildSimple(v)
case *plan.Set:
return b.buildSet(v)
case *plan.Sort:
return b.buildSort(v)
case *plan.TopN:
return b.buildTopN(v)
case *plan.Union:
return b.buildUnion(v)
case *plan.Update:
return b.buildUpdate(v)
case *plan.PhysicalUnionScan:
return b.buildUnionScanExec(v)
case *plan.PhysicalHashJoin:
return b.buildHashJoin(v)
case *plan.PhysicalMergeJoin:
return b.buildMergeJoin(v)
case *plan.PhysicalHashSemiJoin:
return b.buildSemiJoin(v)
case *plan.PhysicalIndexJoin:
return b.buildIndexJoin(v)
case *plan.Selection:
return b.buildSelection(v)
case *plan.PhysicalAggregation:
return b.buildAggregation(v)
case *plan.Projection:
return b.buildProjection(v)
case *plan.PhysicalMemTable:
return b.buildMemTable(v)
case *plan.PhysicalTableScan:
return b.buildTableScan(v)
case *plan.PhysicalIndexScan:
return b.buildIndexScan(v)
case *plan.TableDual:
return b.buildTableDual(v)
case *plan.PhysicalApply:
return b.buildApply(v)
case *plan.Exists:
return b.buildExists(v)
case *plan.MaxOneRow:
return b.buildMaxOneRow(v)
case *plan.Cache:
return b.buildCache(v)
case *plan.Analyze:
return b.buildAnalyze(v)
case *plan.PhysicalTableReader:
return b.buildTableReader(v)
case *plan.PhysicalIndexReader:
return b.buildIndexReader(v)
case *plan.PhysicalIndexLookUpReader:
return b.buildIndexLookUpReader(v)
default:
b.err = ErrUnknownPlan.Gen("Unknown Plan %T", p)
return nil
}
}
func (b *executorBuilder) buildCancelDDLJobs(v *plan.CancelDDLJobs) Executor {
e := &CancelDDLJobsExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
JobIDs: v.JobIDs,
}
e.errs, b.err = admin.CancelJobs(e.ctx.Txn(), e.JobIDs)
if b.err != nil {
return nil
}
return e
}
func (b *executorBuilder) buildShowDDL(v *plan.ShowDDL) Executor {
// We get DDLInfo here because for Executors that returns result set,
// next will be called after transaction has been committed.
// We need the transaction to get DDLInfo.
e := &ShowDDLExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
}
var err error
ownerManager := sessionctx.GetDomain(e.ctx).DDL().OwnerManager()
ctx, cancel := goctx.WithTimeout(goctx.Background(), 3*time.Second)
e.ddlOwnerID, err = ownerManager.GetOwnerID(ctx)
cancel()
if err != nil {
b.err = errors.Trace(err)
return nil
}
ddlInfo, err := admin.GetDDLInfo(e.ctx.Txn())
if err != nil {
b.err = errors.Trace(err)
return nil
}
e.ddlInfo = ddlInfo
e.selfID = ownerManager.ID()
return e
}
func (b *executorBuilder) buildShowDDLJobs(v *plan.ShowDDLJobs) Executor {
e := &ShowDDLJobsExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
}
var err error
e.jobs, err = admin.GetDDLJobs(e.ctx.Txn())
if err != nil {
b.err = errors.Trace(err)
return nil
}
historyJobs, err := admin.GetHistoryDDLJobs(e.ctx.Txn())
if err != nil {
b.err = errors.Trace(err)
return nil
}
e.jobs = append(e.jobs, historyJobs...)
return e
}
func (b *executorBuilder) buildCheckTable(v *plan.CheckTable) Executor {
return &CheckTableExec{
tables: v.Tables,
ctx: b.ctx,
is: b.is,
}
}
func (b *executorBuilder) buildDeallocate(v *plan.Deallocate) Executor {
return &DeallocateExec{
ctx: b.ctx,
Name: v.Name,
}
}
func (b *executorBuilder) buildSelectLock(v *plan.SelectLock) Executor {
src := b.build(v.Children()[0])
if !b.ctx.GetSessionVars().InTxn() {
// Locking of rows for update using SELECT FOR UPDATE only applies when autocommit
// is disabled (either by beginning transaction with START TRANSACTION or by setting
// autocommit to 0. If autocommit is enabled, the rows matching the specification are not locked.
// See https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
return src
}
e := &SelectLockExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
Lock: v.Lock,
}
return e
}
func (b *executorBuilder) buildLimit(v *plan.Limit) Executor {
e := &LimitExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
Offset: v.Offset,
Count: v.Count,
}
return e
}
func (b *executorBuilder) buildPrepare(v *plan.Prepare) Executor {
return &PrepareExec{
Ctx: b.ctx,
IS: b.is,
Name: v.Name,
SQLText: v.SQLText,
}
}
func (b *executorBuilder) buildExecute(v *plan.Execute) Executor {
return &ExecuteExec{
Ctx: b.ctx,
IS: b.is,
Name: v.Name,
UsingVars: v.UsingVars,
ID: v.ExecID,
Stmt: v.Stmt,
Plan: v.Plan,
}
}
func (b *executorBuilder) buildShow(v *plan.Show) Executor {
e := &ShowExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
Tp: v.Tp,
DBName: model.NewCIStr(v.DBName),
Table: v.Table,
Column: v.Column,
User: v.User,
Flag: v.Flag,
Full: v.Full,
GlobalScope: v.GlobalScope,
is: b.is,
}
if e.Tp == ast.ShowGrants && e.User == nil {
e.User = e.ctx.GetSessionVars().User
}
return e
}
func (b *executorBuilder) buildSimple(v *plan.Simple) Executor {
switch s := v.Statement.(type) {
case *ast.GrantStmt:
return b.buildGrant(s)
case *ast.RevokeStmt:
return b.buildRevoke(s)
}
return &SimpleExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
Statement: v.Statement,
is: b.is,
}
}
func (b *executorBuilder) buildSet(v *plan.Set) Executor {
return &SetExecutor{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
vars: v.VarAssigns,
}
}
func (b *executorBuilder) buildInsert(v *plan.Insert) Executor {
ivs := &InsertValues{
ctx: b.ctx,
Columns: v.Columns,
Lists: v.Lists,
Setlist: v.Setlist,
GenColumns: v.GenCols.Columns,
GenExprs: v.GenCols.Exprs,
needFillDefaultValues: v.NeedFillDefaultValue,
}
if len(v.Children()) > 0 {
ivs.SelectExec = b.build(v.Children()[0])
}
ivs.Table = v.Table
if v.IsReplace {
return b.buildReplace(ivs)
}
insert := &InsertExec{
InsertValues: ivs,
OnDuplicate: append(v.OnDuplicate, v.GenCols.OnDuplicates...),
Priority: v.Priority,
IgnoreErr: v.IgnoreErr,
}
return insert
}
func (b *executorBuilder) buildLoadData(v *plan.LoadData) Executor {
tbl, ok := b.is.TableByID(v.Table.TableInfo.ID)
if !ok {
b.err = errors.Errorf("Can not get table %d", v.Table.TableInfo.ID)
return nil
}
insertVal := &InsertValues{
ctx: b.ctx,
Table: tbl,
Columns: v.Columns,
GenColumns: v.GenCols.Columns,
GenExprs: v.GenCols.Exprs,
}
tableCols := tbl.Cols()
columns, err := insertVal.getColumns(tableCols)
if err != nil {
b.err = errors.Trace(err)
return nil
}
return &LoadData{
IsLocal: v.IsLocal,
loadDataInfo: &LoadDataInfo{
row: make([]types.Datum, len(columns)),
insertVal: insertVal,
Path: v.Path,
Table: tbl,
FieldsInfo: v.FieldsInfo,
LinesInfo: v.LinesInfo,
Ctx: b.ctx,
columns: columns,
},
}
}
func (b *executorBuilder) buildReplace(vals *InsertValues) Executor {
return &ReplaceExec{
InsertValues: vals,
}
}
func (b *executorBuilder) buildGrant(grant *ast.GrantStmt) Executor {
return &GrantExec{
ctx: b.ctx,
Privs: grant.Privs,
ObjectType: grant.ObjectType,
Level: grant.Level,
Users: grant.Users,
WithGrant: grant.WithGrant,
is: b.is,
}
}
func (b *executorBuilder) buildRevoke(revoke *ast.RevokeStmt) Executor {
return &RevokeExec{
ctx: b.ctx,
Privs: revoke.Privs,
ObjectType: revoke.ObjectType,
Level: revoke.Level,
Users: revoke.Users,
is: b.is,
}
}
func (b *executorBuilder) buildDDL(v *plan.DDL) Executor {
return &DDLExec{Statement: v.Statement, ctx: b.ctx, is: b.is}
}
func (b *executorBuilder) buildExplain(v *plan.Explain) Executor {
exec := &ExplainExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
}
exec.rows = make([]Row, 0, len(v.Rows))
for _, row := range v.Rows {
exec.rows = append(exec.rows, row)
}
return exec
}
func (b *executorBuilder) buildUnionScanExec(v *plan.PhysicalUnionScan) Executor {
src := b.build(v.Children()[0])
if b.err != nil {
return nil
}
us := &UnionScanExec{baseExecutor: newBaseExecutor(v.Schema(), b.ctx, src)}
// Get the handle column index of the below plan.
// We can guarantee that there must be only one col in the map.
for _, cols := range v.Children()[0].Schema().TblID2Handle {
for _, col := range cols {
us.belowHandleIndex = col.Index
// If we don't found the handle column in the union scan's schema,
// we need to remove it when output.
if us.schema.ColumnIndex(col) != -1 {
us.handleColIsUsed = true
}
}
}
switch x := src.(type) {
case *XSelectTableExec:
us.desc = x.desc
us.dirty = getDirtyDB(b.ctx).getDirtyTable(x.table.Meta().ID)
us.conditions = v.Conditions
us.columns = x.Columns
b.err = us.buildAndSortAddedRows(x.table)
case *TableReaderExecutor:
us.desc = x.desc
us.dirty = getDirtyDB(b.ctx).getDirtyTable(x.table.Meta().ID)
us.conditions = v.Conditions
us.columns = x.columns
b.err = us.buildAndSortAddedRows(x.table)
case *XSelectIndexExec:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.schema.Columns {
if col.ColName.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.dirty = getDirtyDB(b.ctx).getDirtyTable(x.table.Meta().ID)
us.conditions = v.Conditions
us.columns = x.columns
b.err = us.buildAndSortAddedRows(x.table)
case *IndexReaderExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.schema.Columns {
if col.ColName.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.dirty = getDirtyDB(b.ctx).getDirtyTable(x.table.Meta().ID)
us.conditions = v.Conditions
us.columns = x.columns
b.err = us.buildAndSortAddedRows(x.table)
case *IndexLookUpExecutor:
us.desc = x.desc
for _, ic := range x.index.Columns {
for i, col := range x.schema.Columns {
if col.ColName.L == ic.Name.L {
us.usedIndex = append(us.usedIndex, i)
break
}
}
}
us.dirty = getDirtyDB(b.ctx).getDirtyTable(x.table.Meta().ID)
us.conditions = v.Conditions
us.columns = x.columns
b.err = us.buildAndSortAddedRows(x.table)
default:
// The mem table will not be written by sql directly, so we can omit the union scan to avoid err reporting.
return src
}
if b.err != nil {
return nil
}
return us
}
// buildMergeJoin builds SortMergeJoin executor.
// TODO: Refactor against different join strategies by extracting common code base
func (b *executorBuilder) buildMergeJoin(v *plan.PhysicalMergeJoin) Executor {
joinBuilder := &joinBuilder{
context: b.ctx,
leftChild: b.build(v.Children()[0]),
rightChild: b.build(v.Children()[1]),
eqConditions: v.EqualConditions,
leftFilter: v.LeftConditions,
rightFilter: v.RightConditions,
otherFilter: v.OtherConditions,
schema: v.Schema(),
joinType: v.JoinType,
defaultValues: v.DefaultValues,
}
exec, err := joinBuilder.BuildMergeJoin(v.Desc)
if err != nil {
b.err = err
return nil
}
if exec == nil {
b.err = ErrBuildExecutor.GenByArgs("failed to generate merge join executor: ", v.ID())
return nil
}
return exec
}
func (b *executorBuilder) buildHashJoin(v *plan.PhysicalHashJoin) Executor {
var leftHashKey, rightHashKey []*expression.Column
for _, eqCond := range v.EqualConditions {
ln, _ := eqCond.GetArgs()[0].(*expression.Column)
rn, _ := eqCond.GetArgs()[1].(*expression.Column)
leftHashKey = append(leftHashKey, ln)
rightHashKey = append(rightHashKey, rn)
}
e := &HashJoinExec{
schema: v.Schema(),
otherFilter: v.OtherConditions,
prepared: false,
ctx: b.ctx,
concurrency: v.Concurrency,
defaultValues: v.DefaultValues,
}
if v.SmallTable == 1 {
e.smallFilter = v.RightConditions
e.bigFilter = v.LeftConditions
e.smallHashKey = rightHashKey
e.bigHashKey = leftHashKey
e.leftSmall = false
} else {
e.leftSmall = true
e.smallFilter = v.LeftConditions
e.bigFilter = v.RightConditions
e.smallHashKey = leftHashKey
e.bigHashKey = rightHashKey
}
if v.JoinType == plan.LeftOuterJoin || v.JoinType == plan.RightOuterJoin {
e.outer = true
}
if e.leftSmall {
e.smallExec = b.build(v.Children()[0])
e.bigExec = b.build(v.Children()[1])
} else {
e.smallExec = b.build(v.Children()[1])
e.bigExec = b.build(v.Children()[0])
}
for i := 0; i < e.concurrency; i++ {
ctx := &hashJoinCtx{}
if e.bigFilter != nil {
ctx.bigFilter = e.bigFilter.Clone()
}
if e.otherFilter != nil {
ctx.otherFilter = e.otherFilter.Clone()
}
ctx.datumBuffer = make([]types.Datum, len(e.bigHashKey))
ctx.hashKeyBuffer = make([]byte, 0, 10000)
e.hashJoinContexts = append(e.hashJoinContexts, ctx)
}
return e
}
func (b *executorBuilder) buildSemiJoin(v *plan.PhysicalHashSemiJoin) *HashSemiJoinExec {
var leftHashKey, rightHashKey []*expression.Column
for _, eqCond := range v.EqualConditions {
ln, _ := eqCond.GetArgs()[0].(*expression.Column)
rn, _ := eqCond.GetArgs()[1].(*expression.Column)
leftHashKey = append(leftHashKey, ln)
rightHashKey = append(rightHashKey, rn)
}
e := &HashSemiJoinExec{
schema: v.Schema(),
otherFilter: v.OtherConditions,
bigFilter: v.LeftConditions,
smallFilter: v.RightConditions,
bigExec: b.build(v.Children()[0]),
smallExec: b.build(v.Children()[1]),
prepared: false,
ctx: b.ctx,
bigHashKey: leftHashKey,
smallHashKey: rightHashKey,
auxMode: v.WithAux,
anti: v.Anti,
}
return e
}
func (b *executorBuilder) buildAggregation(v *plan.PhysicalAggregation) Executor {
if v.AggType == plan.StreamedAgg {
return &StreamAggExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
StmtCtx: b.ctx.GetSessionVars().StmtCtx,
AggFuncs: v.AggFuncs,
GroupByItems: v.GroupByItems,
}
}
return &HashAggExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
sc: b.ctx.GetSessionVars().StmtCtx,
AggFuncs: v.AggFuncs,
GroupByItems: v.GroupByItems,
aggType: v.AggType,
hasGby: v.HasGby,
}
}
func (b *executorBuilder) buildSelection(v *plan.Selection) Executor {
exec := &SelectionExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
Conditions: v.Conditions,
}
return exec
}
func (b *executorBuilder) buildProjection(v *plan.Projection) Executor {
return &ProjectionExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
exprs: v.Exprs,
}
}
func (b *executorBuilder) buildTableDual(v *plan.TableDual) Executor {
return &TableDualExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx),
rowCount: v.RowCount,
}
}
func (b *executorBuilder) getStartTS() uint64 {
startTS := b.ctx.GetSessionVars().SnapshotTS
if startTS == 0 {
startTS = b.ctx.Txn().StartTS()
}
return startTS
}
func (b *executorBuilder) buildMemTable(v *plan.PhysicalMemTable) Executor {
tb, _ := b.is.TableByID(v.Table.ID)
ts := &TableScanExec{
t: tb,
ctx: b.ctx,
columns: v.Columns,
schema: v.Schema(),
seekHandle: math.MinInt64,
ranges: v.Ranges,
isVirtualTable: tb.Type() == table.VirtualTable,
}
return ts
}
func (b *executorBuilder) buildTableScan(v *plan.PhysicalTableScan) Executor {
startTS := b.getStartTS()
if b.err != nil {
return nil
}
tbl, _ := b.is.TableByID(v.Table.ID)
client := b.ctx.GetClient()
supportDesc := client.IsRequestTypeSupported(kv.ReqTypeSelect, kv.ReqSubTypeDesc)
var handleCol *expression.Column
if v.NeedColHandle {
handleCol = v.Schema().TblID2Handle[v.Table.ID][0]
}
e := &XSelectTableExec{
tableInfo: v.Table,
ctx: b.ctx,
startTS: startTS,
supportDesc: supportDesc,
table: tbl,
schema: v.Schema(),
Columns: v.Columns,
ranges: v.Ranges,
desc: v.Desc,
limitCount: v.LimitCount,
keepOrder: v.KeepOrder,
where: v.TableConditionPBExpr,
aggregate: v.Aggregated,
aggFuncs: v.AggFuncsPB,
byItems: v.GbyItemsPB,
orderByList: v.SortItemsPB,
handleCol: handleCol,
priority: b.priority,
}
return e
}
func (b *executorBuilder) buildIndexScan(v *plan.PhysicalIndexScan) Executor {
startTS := b.getStartTS()
if b.err != nil {
return nil
}
tbl, _ := b.is.TableByID(v.Table.ID)
client := b.ctx.GetClient()
supportDesc := client.IsRequestTypeSupported(kv.ReqTypeIndex, kv.ReqSubTypeDesc)
var handleCol *expression.Column
if v.NeedColHandle {
handleCol = v.Schema().TblID2Handle[v.Table.ID][0]
}
e := &XSelectIndexExec{
tableInfo: v.Table,
ctx: b.ctx,
supportDesc: supportDesc,
table: tbl,
singleReadMode: !v.DoubleRead,
startTS: startTS,
where: v.TableConditionPBExpr,
schema: v.Schema(),
ranges: v.Ranges,
limitCount: v.LimitCount,
sortItemsPB: v.SortItemsPB,
columns: v.Columns,
index: v.Index,
desc: v.Desc,
outOfOrder: v.OutOfOrder,
indexConditionPBExpr: v.IndexConditionPBExpr,
aggregate: v.Aggregated,
aggFuncs: v.AggFuncsPB,
byItems: v.GbyItemsPB,
handleCol: handleCol,
priority: b.priority,
}
vars := b.ctx.GetSessionVars()
if v.OutOfOrder {
e.scanConcurrency = vars.DistSQLScanConcurrency
} else {
// The cost of index scan double-read is higher than single-read. Usually ordered index scan has a limit
// which may not have been pushed down, so we set concurrency lower to avoid fetching unnecessary data.
e.scanConcurrency = vars.IndexSerialScanConcurrency
}
if !e.aggregate && e.singleReadMode {
// Single read index result has the schema of full index columns.
schemaColumns := make([]*expression.Column, len(e.index.Columns))
for i, col := range e.index.Columns {
colInfo := e.tableInfo.Columns[col.Offset]
schemaColumns[i] = &expression.Column{
Index: i,
ColName: col.Name,
RetType: &colInfo.FieldType,
}
}
if e.handleCol != nil {
schemaColumns = append(schemaColumns, &expression.Column{
FromID: v.ID(),
ID: model.ExtraHandleID,
})
}
e.idxColsSchema = expression.NewSchema(schemaColumns...)
}
return e
}
func (b *executorBuilder) buildSort(v *plan.Sort) Executor {
sortExec := SortExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
ByItems: v.ByItems,
schema: v.Schema(),
}
if v.ExecLimit != nil {
return &TopNExec{
SortExec: sortExec,
limit: v.ExecLimit,
}
}
return &sortExec
}
func (b *executorBuilder) buildTopN(v *plan.TopN) Executor {
sortExec := SortExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
ByItems: v.ByItems,
schema: v.Schema(),
}
return &TopNExec{
SortExec: sortExec,
limit: &plan.Limit{Count: v.Count, Offset: v.Offset},
}
}
func (b *executorBuilder) buildNestedLoopJoin(v *plan.PhysicalHashJoin) *NestedLoopJoinExec {
for _, cond := range v.EqualConditions {
cond.GetArgs()[0].(*expression.Column).ResolveIndices(v.Schema())
cond.GetArgs()[1].(*expression.Column).ResolveIndices(v.Schema())
}
if v.SmallTable == 1 {
return &NestedLoopJoinExec{
SmallExec: b.build(v.Children()[1]),
BigExec: b.build(v.Children()[0]),
Ctx: b.ctx,
BigFilter: v.LeftConditions,
SmallFilter: v.RightConditions,
OtherFilter: append(expression.ScalarFuncs2Exprs(v.EqualConditions), v.OtherConditions...),
schema: v.Schema(),
outer: v.JoinType != plan.InnerJoin,
defaultValues: v.DefaultValues,
}
}
return &NestedLoopJoinExec{
SmallExec: b.build(v.Children()[0]),
BigExec: b.build(v.Children()[1]),
leftSmall: true,
Ctx: b.ctx,
BigFilter: v.RightConditions,
SmallFilter: v.LeftConditions,
OtherFilter: append(expression.ScalarFuncs2Exprs(v.EqualConditions), v.OtherConditions...),
schema: v.Schema(),
outer: v.JoinType != plan.InnerJoin,
defaultValues: v.DefaultValues,
}
}
func (b *executorBuilder) buildApply(v *plan.PhysicalApply) Executor {
var join joinExec
switch x := v.PhysicalJoin.(type) {
case *plan.PhysicalHashSemiJoin:
join = b.buildSemiJoin(x)
case *plan.PhysicalHashJoin:
if x.JoinType == plan.InnerJoin || x.JoinType == plan.LeftOuterJoin || x.JoinType == plan.RightOuterJoin {
join = b.buildNestedLoopJoin(x)
} else {
b.err = errors.Errorf("Unsupported join type %v in nested loop join", x.JoinType)
}
default:
b.err = errors.Errorf("Unsupported plan type %T in apply", v)
}
apply := &ApplyJoinExec{
join: join,
outerSchema: v.OuterSchema,
schema: v.Schema(),
}
return apply
}
func (b *executorBuilder) buildExists(v *plan.Exists) Executor {
return &ExistsExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
}
}
func (b *executorBuilder) buildMaxOneRow(v *plan.MaxOneRow) Executor {
return &MaxOneRowExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
}
}
func (b *executorBuilder) buildUnion(v *plan.Union) Executor {
srcs := make([]Executor, len(v.Children()))
for i, sel := range v.Children() {
selExec := b.build(sel)
srcs[i] = selExec
}
e := &UnionExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, srcs...),
}
return e
}
func (b *executorBuilder) buildUpdate(v *plan.Update) Executor {
tblID2table := make(map[int64]table.Table)
for id := range v.Schema().TblID2Handle {
tblID2table[id], _ = b.is.TableByID(id)
}
return &UpdateExec{
baseExecutor: newBaseExecutor(nil, b.ctx),
SelectExec: b.build(v.Children()[0]),
OrderedList: v.OrderedList,
tblID2table: tblID2table,
IgnoreErr: v.IgnoreErr,
}
}
func (b *executorBuilder) buildDelete(v *plan.Delete) Executor {
tblID2table := make(map[int64]table.Table)
for id := range v.Schema().TblID2Handle {
tblID2table[id], _ = b.is.TableByID(id)
}
return &DeleteExec{
baseExecutor: newBaseExecutor(nil, b.ctx),
SelectExec: b.build(v.Children()[0]),
Tables: v.Tables,
IsMultiTable: v.IsMultiTable,
tblID2Table: tblID2table,
}
}
func (b *executorBuilder) buildCache(v *plan.Cache) Executor {
return &CacheExec{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
}
}
func (b *executorBuilder) buildTableScanForAnalyze(tblInfo *model.TableInfo, pk *model.ColumnInfo, cols []*model.ColumnInfo) Executor {
startTS := uint64(math.MaxUint64)
table, _ := b.is.TableByID(tblInfo.ID)
keepOrder := false
if pk != nil {
keepOrder = true
cols = append([]*model.ColumnInfo{pk}, cols...)
}
schema := expression.NewSchema(expression.ColumnInfos2Columns(tblInfo.Name, cols)...)
ranges := []types.IntColumnRange{{LowVal: math.MinInt64, HighVal: math.MaxInt64}}
if b.ctx.GetClient().IsRequestTypeSupported(kv.ReqTypeDAG, kv.ReqSubTypeBasic) {
e := &TableReaderExecutor{
table: table,
tableID: tblInfo.ID,
ranges: ranges,
keepOrder: keepOrder,
dagPB: &tipb.DAGRequest{
StartTs: startTS,
TimeZoneOffset: timeZoneOffset(b.ctx),
Flags: statementContextToFlags(b.ctx.GetSessionVars().StmtCtx),
},
schema: schema,
columns: cols,
ctx: b.ctx,
}
for i := range schema.Columns {
e.dagPB.OutputOffsets = append(e.dagPB.OutputOffsets, uint32(i))
}
e.dagPB.Executors = append(e.dagPB.Executors, &tipb.Executor{
Tp: tipb.ExecType_TypeTableScan,
TblScan: &tipb.TableScan{
TableId: tblInfo.ID,
Columns: distsql.ColumnsToProto(cols, tblInfo.PKIsHandle),
},
})
b.err = setPBColumnsDefaultValue(b.ctx, e.dagPB.Executors[0].TblScan.Columns, cols)
return e
}
e := &XSelectTableExec{
tableInfo: tblInfo,
ctx: b.ctx,
startTS: startTS,
table: table,
schema: schema,
Columns: cols,
ranges: ranges,
keepOrder: keepOrder,
priority: b.priority,
}
return e
}
func (b *executorBuilder) buildIndexScanForAnalyze(tblInfo *model.TableInfo, idxInfo *model.IndexInfo) Executor {
startTS := uint64(math.MaxUint64)
table, _ := b.is.TableByID(tblInfo.ID)
cols := make([]*model.ColumnInfo, len(idxInfo.Columns))
for i, col := range idxInfo.Columns {
cols[i] = tblInfo.Columns[col.Offset]
}
schema := expression.NewSchema(expression.ColumnInfos2Columns(tblInfo.Name, cols)...)
idxRange := &types.IndexRange{LowVal: []types.Datum{types.MinNotNullDatum()}, HighVal: []types.Datum{types.MaxValueDatum()}}
scanConcurrency := b.ctx.GetSessionVars().IndexSerialScanConcurrency
if b.ctx.GetClient().IsRequestTypeSupported(kv.ReqTypeDAG, kv.ReqSubTypeBasic) {
e := &IndexReaderExecutor{
table: table,
index: idxInfo,
tableID: tblInfo.ID,
ranges: []*types.IndexRange{idxRange},
keepOrder: true,
dagPB: &tipb.DAGRequest{
StartTs: startTS,
TimeZoneOffset: timeZoneOffset(b.ctx),
Flags: statementContextToFlags(b.ctx.GetSessionVars().StmtCtx),
},
schema: schema,
columns: cols,
ctx: b.ctx,
priority: b.priority,
}
for i := range schema.Columns {
e.dagPB.OutputOffsets = append(e.dagPB.OutputOffsets, uint32(i))
}
e.dagPB.Executors = append(e.dagPB.Executors, &tipb.Executor{
Tp: tipb.ExecType_TypeIndexScan,
IdxScan: &tipb.IndexScan{
TableId: tblInfo.ID,
IndexId: idxInfo.ID,
Columns: distsql.ColumnsToProto(cols, tblInfo.PKIsHandle),
},
})
b.err = setPBColumnsDefaultValue(b.ctx, e.dagPB.Executors[0].IdxScan.Columns, cols)
return e
}
e := &XSelectIndexExec{
tableInfo: tblInfo,
ctx: b.ctx,
table: table,
singleReadMode: true,
startTS: startTS,
idxColsSchema: schema,
schema: schema,
ranges: []*types.IndexRange{idxRange},
columns: cols,
index: idxInfo,
outOfOrder: false,
scanConcurrency: scanConcurrency,
priority: b.priority,
}
return e
}
func (b *executorBuilder) buildAnalyzeIndexPushdown(task plan.AnalyzeIndexTask) *AnalyzeIndexExec {
e := &AnalyzeIndexExec{
ctx: b.ctx,
tblInfo: task.TableInfo,
idxInfo: task.IndexInfo,
concurrency: b.ctx.GetSessionVars().IndexSerialScanConcurrency,
priority: b.priority,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeIndex,
StartTs: math.MaxUint64,
Flags: statementContextToFlags(b.ctx.GetSessionVars().StmtCtx),
TimeZoneOffset: timeZoneOffset(b.ctx),
},
}
e.analyzePB.IdxReq = &tipb.AnalyzeIndexReq{
BucketSize: maxBucketSize,
NumColumns: int32(len(task.IndexInfo.Columns)),
}
return e
}
func (b *executorBuilder) buildAnalyzeColumnsPushdown(task plan.AnalyzeColumnsTask) *AnalyzeColumnsExec {
cols := task.ColsInfo
keepOrder := false
if task.PKInfo != nil {
keepOrder = true
cols = append([]*model.ColumnInfo{task.PKInfo}, cols...)
}
e := &AnalyzeColumnsExec{
ctx: b.ctx,
tblInfo: task.TableInfo,
colsInfo: task.ColsInfo,
pkInfo: task.PKInfo,
concurrency: b.ctx.GetSessionVars().DistSQLScanConcurrency,
priority: b.priority,
keepOrder: keepOrder,
analyzePB: &tipb.AnalyzeReq{
Tp: tipb.AnalyzeType_TypeColumn,
StartTs: math.MaxUint64,
Flags: statementContextToFlags(b.ctx.GetSessionVars().StmtCtx),
TimeZoneOffset: timeZoneOffset(b.ctx),
},
}
e.analyzePB.ColReq = &tipb.AnalyzeColumnsReq{
BucketSize: maxBucketSize,
SampleSize: maxRegionSampleSize,
SketchSize: maxSketchSize,
ColumnsInfo: distsql.ColumnsToProto(cols, task.TableInfo.PKIsHandle),
}
b.err = setPBColumnsDefaultValue(b.ctx, e.analyzePB.ColReq.ColumnsInfo, cols)
return e
}
func (b *executorBuilder) buildAnalyze(v *plan.Analyze) Executor {
e := &AnalyzeExec{
ctx: b.ctx,
tasks: make([]*analyzeTask, 0, len(v.Children())),
}
for _, task := range v.ColTasks {
if task.PushDown {
e.tasks = append(e.tasks, &analyzeTask{
taskType: colTask,
colExec: b.buildAnalyzeColumnsPushdown(task),
})
} else {
e.tasks = append(e.tasks, &analyzeTask{
taskType: colTask,
src: b.buildTableScanForAnalyze(task.TableInfo, task.PKInfo, task.ColsInfo),
tableInfo: task.TableInfo,
Columns: task.ColsInfo,
PKInfo: task.PKInfo,
})
}
}
for _, task := range v.IdxTasks {
if task.PushDown {
e.tasks = append(e.tasks, &analyzeTask{
taskType: idxTask,
idxExec: b.buildAnalyzeIndexPushdown(task),
})
} else {
e.tasks = append(e.tasks, &analyzeTask{
taskType: idxTask,
src: b.buildIndexScanForAnalyze(task.TableInfo, task.IndexInfo),
indexInfo: task.IndexInfo,
tableInfo: task.TableInfo,
})
}
}
return e
}
func (b *executorBuilder) constructDAGReq(plans []plan.PhysicalPlan) *tipb.DAGRequest {
dagReq := &tipb.DAGRequest{}
dagReq.StartTs = b.getStartTS()
dagReq.TimeZoneOffset = timeZoneOffset(b.ctx)
sc := b.ctx.GetSessionVars().StmtCtx
dagReq.Flags = statementContextToFlags(sc)
for _, p := range plans {
execPB, err := p.ToPB(b.ctx)
if err != nil {
b.err = errors.Trace(err)
return nil
}
dagReq.Executors = append(dagReq.Executors, execPB)
}
return dagReq
}
func (b *executorBuilder) constructTableRanges(ts *plan.PhysicalTableScan) (newRanges []types.IntColumnRange) {
sc := b.ctx.GetSessionVars().StmtCtx
cols := expression.ColumnInfos2ColumnsWithDBName(ts.DBName, ts.Table.Name, ts.Columns)
newRanges = ranger.FullIntRange()
var pkCol *expression.Column
if ts.Table.PKIsHandle {
if pkColInfo := ts.Table.GetPkColInfo(); pkColInfo != nil {
pkCol = expression.ColInfo2Col(cols, pkColInfo)
}
}
if pkCol != nil {
var ranges []types.Range
ranges, b.err = ranger.BuildRange(sc, ts.AccessCondition, ranger.IntRangeType, []*expression.Column{pkCol}, nil)
if b.err != nil {
return nil
}
newRanges = ranger.Ranges2IntRanges(ranges)
}
return newRanges
}
func (b *executorBuilder) constructIndexRanges(is *plan.PhysicalIndexScan) (newRanges []*types.IndexRange) {
sc := b.ctx.GetSessionVars().StmtCtx
cols := expression.ColumnInfos2ColumnsWithDBName(is.DBName, is.Table.Name, is.Columns)
idxCols, colLengths := expression.IndexInfo2Cols(cols, is.Index)
newRanges = ranger.FullIndexRange()
if len(idxCols) > 0 {
var ranges []types.Range
ranges, b.err = ranger.BuildRange(sc, is.AccessCondition, ranger.IndexRangeType, idxCols, colLengths)
if b.err != nil {
return nil
}
newRanges = ranger.Ranges2IndexRanges(ranges)
}
return newRanges
}
func (b *executorBuilder) buildIndexJoin(v *plan.PhysicalIndexJoin) Executor {
batchSize := 1
if !v.KeepOrder {
batchSize = b.ctx.GetSessionVars().IndexJoinBatchSize
}
return &IndexLookUpJoin{
baseExecutor: newBaseExecutor(v.Schema(), b.ctx, b.build(v.Children()[0])),
innerExec: b.build(v.Children()[1]).(DataReader),
outerJoinKeys: v.OuterJoinKeys,
innerJoinKeys: v.InnerJoinKeys,
outer: v.Outer,
leftConditions: v.LeftConditions,
rightConditions: v.RightConditions,
otherConditions: v.OtherConditions,
defaultValues: v.DefaultValues,
batchSize: batchSize,
}
}
func (b *executorBuilder) buildTableReader(v *plan.PhysicalTableReader) Executor {
dagReq := b.constructDAGReq(v.TablePlans)
if b.err != nil {
return nil
}
ts := v.TablePlans[0].(*plan.PhysicalTableScan)
table, _ := b.is.TableByID(ts.Table.ID)
newRanges := b.constructTableRanges(ts)
if b.err != nil {
return nil
}
e := &TableReaderExecutor{
ctx: b.ctx,
schema: v.Schema(),
dagPB: dagReq,
tableID: ts.Table.ID,
table: table,
keepOrder: ts.KeepOrder,
desc: ts.Desc,
ranges: newRanges,
columns: ts.Columns,
priority: b.priority,
}
for i := range v.Schema().Columns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(i))
}
return e
}
func (b *executorBuilder) buildIndexReader(v *plan.PhysicalIndexReader) Executor {
dagReq := b.constructDAGReq(v.IndexPlans)
if b.err != nil {
return nil
}
is := v.IndexPlans[0].(*plan.PhysicalIndexScan)
newRanges := b.constructIndexRanges(is)
if b.err != nil {
return nil
}
table, _ := b.is.TableByID(is.Table.ID)
e := &IndexReaderExecutor{
ctx: b.ctx,
schema: v.Schema(),
dagPB: dagReq,
tableID: is.Table.ID,
table: table,
index: is.Index,
keepOrder: !is.OutOfOrder,
desc: is.Desc,
ranges: newRanges,
columns: is.Columns,
priority: b.priority,
}
for _, col := range v.OutputColumns {
dagReq.OutputOffsets = append(dagReq.OutputOffsets, uint32(col.Index))
}
return e
}
func (b *executorBuilder) buildIndexLookUpReader(v *plan.PhysicalIndexLookUpReader) Executor {
indexReq := b.constructDAGReq(v.IndexPlans)
if b.err != nil {
return nil
}
tableReq := b.constructDAGReq(v.TablePlans)
if b.err != nil {
return nil
}
is := v.IndexPlans[0].(*plan.PhysicalIndexScan)
indexReq.OutputOffsets = []uint32{uint32(len(is.Index.Columns))}
var (
handleCol *expression.Column
tableReaderSchema *expression.Schema
)
table, _ := b.is.TableByID(is.Table.ID)
length := v.Schema().Len()
if v.NeedColHandle {
handleCol = v.Schema().TblID2Handle[is.Table.ID][0]
} else if !is.OutOfOrder {
tableReaderSchema = v.Schema().Clone()
handleCol = &expression.Column{
ID: model.ExtraHandleID,
ColName: model.NewCIStr("_rowid"),
Index: v.Schema().Len(),
RetType: types.NewFieldType(mysql.TypeLonglong),
}
tableReaderSchema.Append(handleCol)
length = tableReaderSchema.Len()
}
for i := 0; i < length; i++ {
tableReq.OutputOffsets = append(tableReq.OutputOffsets, uint32(i))
}
newRanges := b.constructIndexRanges(is)
if b.err != nil {
return nil
}
ranges := make([]*types.IndexRange, 0, len(newRanges))
for _, rangeInPlan := range newRanges {
ranges = append(ranges, rangeInPlan.Clone())
}
e := &IndexLookUpExecutor{
ctx: b.ctx,
schema: v.Schema(),
dagPB: indexReq,
tableID: is.Table.ID,
table: table,
index: is.Index,
keepOrder: !is.OutOfOrder,
desc: is.Desc,
ranges: ranges,
tableRequest: tableReq,
columns: is.Columns,
handleCol: handleCol,
priority: b.priority,
tableReaderSchema: tableReaderSchema,
}
return e
}