Files
tidb/pkg/ddl/backfilling.go

902 lines
30 KiB
Go

// Copyright 2020 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ddl
import (
"context"
"encoding/hex"
"fmt"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
sess "github.com/pingcap/tidb/pkg/ddl/internal/session"
ddlutil "github.com/pingcap/tidb/pkg/ddl/util"
"github.com/pingcap/tidb/pkg/expression"
"github.com/pingcap/tidb/pkg/kv"
"github.com/pingcap/tidb/pkg/metrics"
"github.com/pingcap/tidb/pkg/parser/model"
"github.com/pingcap/tidb/pkg/parser/terror"
"github.com/pingcap/tidb/pkg/sessionctx"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
"github.com/pingcap/tidb/pkg/store/copr"
"github.com/pingcap/tidb/pkg/store/driver/backoff"
"github.com/pingcap/tidb/pkg/table"
"github.com/pingcap/tidb/pkg/tablecodec"
"github.com/pingcap/tidb/pkg/util"
"github.com/pingcap/tidb/pkg/util/dbterror"
"github.com/pingcap/tidb/pkg/util/logutil"
decoder "github.com/pingcap/tidb/pkg/util/rowDecoder"
"github.com/pingcap/tidb/pkg/util/timeutil"
"github.com/pingcap/tidb/pkg/util/topsql"
"github.com/prometheus/client_golang/prometheus"
"github.com/tikv/client-go/v2/tikv"
kvutil "github.com/tikv/client-go/v2/util"
"go.uber.org/zap"
)
type backfillerType byte
const (
typeAddIndexWorker backfillerType = 0
typeUpdateColumnWorker backfillerType = 1
typeCleanUpIndexWorker backfillerType = 2
typeAddIndexMergeTmpWorker backfillerType = 3
typeReorgPartitionWorker backfillerType = 4
)
func (bT backfillerType) String() string {
switch bT {
case typeAddIndexWorker:
return "add index"
case typeUpdateColumnWorker:
return "update column"
case typeCleanUpIndexWorker:
return "clean up index"
case typeAddIndexMergeTmpWorker:
return "merge temporary index"
case typeReorgPartitionWorker:
return "reorganize partition"
default:
return "unknown"
}
}
// By now the DDL jobs that need backfilling include:
// 1: add-index
// 2: modify-column-type
// 3: clean-up global index
// 4: reorganize partition
//
// They all have a write reorganization state to back fill data into the rows existed.
// Backfilling is time consuming, to accelerate this process, TiDB has built some sub
// workers to do this in the DDL owner node.
//
// DDL owner thread (also see comments before runReorgJob func)
// ^
// | (reorgCtx.doneCh)
// |
// worker master
// ^ (waitTaskResults)
// |
// |
// v (sendRangeTask)
// +--------------------+---------+---------+------------------+--------------+
// | | | | |
// backfillworker1 backfillworker2 backfillworker3 backfillworker4 ...
//
// The worker master is responsible for scaling the backfilling workers according to the
// system variable "tidb_ddl_reorg_worker_cnt". Essentially, reorg job is mainly based
// on the [start, end] range of the table to backfill data. We did not do it all at once,
// there were several ddl rounds.
//
// [start1---end1 start2---end2 start3---end3 start4---end4 ... ... ]
// | | | | | | | |
// +-------+ +-------+ +-------+ +-------+ ... ...
// | | | |
// bfworker1 bfworker2 bfworker3 bfworker4 ... ...
// | | | | | |
// +---------------- (round1)----------------+ +--(round2)--+
//
// The main range [start, end] will be split into small ranges.
// Each small range corresponds to a region and it will be delivered to a backfillworker.
// Each worker can only be assigned with one range at one round, those remaining ranges
// will be cached until all the backfill workers have had their previous range jobs done.
//
// [ region start --------------------- region end ]
// |
// v
// [ batch ] [ batch ] [ batch ] [ batch ] ...
// | | | |
// v v v v
// (a kv txn) -> -> ->
//
// For a single range, backfill worker doesn't backfill all the data in one kv transaction.
// Instead, it is divided into batches, each time a kv transaction completes the backfilling
// of a partial batch.
// backfillTaskContext is the context of the batch adding indices or updating column values.
// After finishing the batch adding indices or updating column values, result in backfillTaskContext will be merged into backfillResult.
type backfillTaskContext struct {
nextKey kv.Key
done bool
addedCount int
scanCount int
warnings map[errors.ErrorID]*terror.Error
warningsCount map[errors.ErrorID]int64
finishTS uint64
}
type backfillCtx struct {
id int
*ddlCtx
sessCtx sessionctx.Context
schemaName string
table table.Table
batchCnt int
jobContext *JobContext
metricCounter prometheus.Counter
}
func newBackfillCtx(ctx *ddlCtx, id int, sessCtx sessionctx.Context,
schemaName string, tbl table.Table, jobCtx *JobContext, label string, isDistributed bool) *backfillCtx {
if isDistributed {
id = int(backfillContextID.Add(1))
}
return &backfillCtx{
id: id,
ddlCtx: ctx,
sessCtx: sessCtx,
schemaName: schemaName,
table: tbl,
batchCnt: int(variable.GetDDLReorgBatchSize()),
jobContext: jobCtx,
metricCounter: metrics.BackfillTotalCounter.WithLabelValues(
metrics.GenerateReorgLabel(label, schemaName, tbl.Meta().Name.String())),
}
}
type backfiller interface {
BackfillData(handleRange reorgBackfillTask) (taskCtx backfillTaskContext, err error)
AddMetricInfo(float64)
GetCtx() *backfillCtx
String() string
}
type backfillResult struct {
taskID int
addedCount int
scanCount int
totalCount int
nextKey kv.Key
err error
}
type reorgBackfillTask struct {
physicalTable table.PhysicalTable
// TODO: Remove the following fields after remove the function of run.
id int
startKey kv.Key
endKey kv.Key
jobID int64
sqlQuery string
priority int
}
func (r *reorgBackfillTask) getJobID() int64 {
return r.jobID
}
func (r *reorgBackfillTask) String() string {
pID := r.physicalTable.GetPhysicalID()
start := hex.EncodeToString(r.startKey)
end := hex.EncodeToString(r.endKey)
jobID := r.getJobID()
return fmt.Sprintf("taskID: %d, physicalTableID: %d, range: [%s, %s), jobID: %d", r.id, pID, start, end, jobID)
}
// mergeBackfillCtxToResult merge partial result in taskCtx into result.
func mergeBackfillCtxToResult(taskCtx *backfillTaskContext, result *backfillResult) {
result.nextKey = taskCtx.nextKey
result.addedCount += taskCtx.addedCount
result.scanCount += taskCtx.scanCount
}
type backfillWorker struct {
backfiller
taskCh chan *reorgBackfillTask
resultCh chan *backfillResult
ctx context.Context
cancel func()
wg *sync.WaitGroup
}
func newBackfillWorker(ctx context.Context, bf backfiller) *backfillWorker {
bfCtx, cancel := context.WithCancel(ctx)
return &backfillWorker{
backfiller: bf,
taskCh: make(chan *reorgBackfillTask, 1),
resultCh: make(chan *backfillResult, 1),
ctx: bfCtx,
cancel: cancel,
}
}
func (w *backfillWorker) String() string {
return fmt.Sprintf("backfill-worker %d, tp %s", w.GetCtx().id, w.backfiller.String())
}
func (w *backfillWorker) Close() {
if w.cancel != nil {
w.cancel()
w.cancel = nil
}
}
func closeBackfillWorkers(workers []*backfillWorker) {
for _, worker := range workers {
worker.Close()
}
}
// ResultCounterForTest is used for test.
var ResultCounterForTest *atomic.Int32
// handleBackfillTask backfills range [task.startHandle, task.endHandle) handle's index to table.
func (w *backfillWorker) handleBackfillTask(d *ddlCtx, task *reorgBackfillTask, bf backfiller) *backfillResult {
handleRange := *task
result := &backfillResult{
taskID: task.id,
err: nil,
addedCount: 0,
nextKey: handleRange.startKey,
}
lastLogCount := 0
lastLogTime := time.Now()
startTime := lastLogTime
jobID := task.getJobID()
rc := d.getReorgCtx(jobID)
for {
// Give job chance to be canceled or paused, if we not check it here,
// we will never cancel the job once there is panic in bf.BackfillData.
// Because reorgRecordTask may run a long time,
// we should check whether this ddl job is still runnable.
err := d.isReorgRunnable(jobID, false)
if err != nil {
result.err = err
return result
}
taskCtx, err := bf.BackfillData(handleRange)
if err != nil {
result.err = err
return result
}
bf.AddMetricInfo(float64(taskCtx.addedCount))
mergeBackfillCtxToResult(&taskCtx, result)
// Although `handleRange` is for data in one region, but back fill worker still split it into many
// small reorg batch size slices and reorg them in many different kv txn.
// If a task failed, it may contained some committed small kv txn which has already finished the
// small range reorganization.
// In the next round of reorganization, the target handle range may overlap with last committed
// small ranges. This will cause the `redo` action in reorganization.
// So for added count and warnings collection, it is recommended to collect the statistics in every
// successfully committed small ranges rather than fetching it in the total result.
rc.increaseRowCount(int64(taskCtx.addedCount))
rc.mergeWarnings(taskCtx.warnings, taskCtx.warningsCount)
if num := result.scanCount - lastLogCount; num >= 90000 {
lastLogCount = result.scanCount
logutil.BgLogger().Info("backfill worker back fill index", zap.String("category", "ddl"), zap.Stringer("worker", w),
zap.Int("addedCount", result.addedCount), zap.Int("scanCount", result.scanCount),
zap.String("next key", hex.EncodeToString(taskCtx.nextKey)),
zap.Float64("speed(rows/s)", float64(num)/time.Since(lastLogTime).Seconds()))
lastLogTime = time.Now()
}
handleRange.startKey = taskCtx.nextKey
if taskCtx.done {
break
}
}
logutil.BgLogger().Info("backfill worker finish task", zap.String("category", "ddl"),
zap.Stringer("worker", w), zap.Stringer("task", task),
zap.Int("added count", result.addedCount),
zap.Int("scan count", result.scanCount),
zap.String("next key", hex.EncodeToString(result.nextKey)),
zap.Stringer("take time", time.Since(startTime)))
if ResultCounterForTest != nil && result.err == nil {
ResultCounterForTest.Add(1)
}
return result
}
func (w *backfillWorker) run(d *ddlCtx, bf backfiller, job *model.Job) {
logutil.BgLogger().Info("backfill worker start", zap.String("category", "ddl"), zap.Stringer("worker", w))
var curTaskID int
defer w.wg.Done()
defer util.Recover(metrics.LabelDDL, "backfillWorker.run", func() {
w.resultCh <- &backfillResult{taskID: curTaskID, err: dbterror.ErrReorgPanic}
}, false)
for {
if util.HasCancelled(w.ctx) {
logutil.BgLogger().Info("backfill worker exit on context done", zap.String("category", "ddl"), zap.Stringer("worker", w))
return
}
task, more := <-w.taskCh
if !more {
logutil.BgLogger().Info("backfill worker exit", zap.String("category", "ddl"), zap.Stringer("worker", w))
return
}
curTaskID = task.id
d.setDDLLabelForTopSQL(job.ID, job.Query)
logutil.BgLogger().Debug("backfill worker got task", zap.String("category", "ddl"), zap.Int("workerID", w.GetCtx().id), zap.String("task", task.String()))
failpoint.Inject("mockBackfillRunErr", func() {
if w.GetCtx().id == 0 {
result := &backfillResult{taskID: task.id, addedCount: 0, nextKey: nil, err: errors.Errorf("mock backfill error")}
w.resultCh <- result
failpoint.Continue()
}
})
failpoint.Inject("mockHighLoadForAddIndex", func() {
sqlPrefixes := []string{"alter"}
topsql.MockHighCPULoad(job.Query, sqlPrefixes, 5)
})
failpoint.Inject("mockBackfillSlow", func() {
time.Sleep(100 * time.Millisecond)
})
// Change the batch size dynamically.
w.GetCtx().batchCnt = int(variable.GetDDLReorgBatchSize())
result := w.handleBackfillTask(d, task, bf)
w.resultCh <- result
if result.err != nil {
logutil.BgLogger().Info("backfill worker exit on error", zap.String("category", "ddl"),
zap.Stringer("worker", w), zap.Error(result.err))
return
}
}
}
// splitTableRanges uses PD region's key ranges to split the backfilling table key range space,
// to speed up backfilling data in table with disperse handle.
// The `t` should be a non-partitioned table or a partition.
func splitTableRanges(t table.PhysicalTable, store kv.Storage, startKey, endKey kv.Key, limit int) ([]kv.KeyRange, error) {
logutil.BgLogger().Info("split table range from PD", zap.String("category", "ddl"),
zap.Int64("physicalTableID", t.GetPhysicalID()),
zap.String("start key", hex.EncodeToString(startKey)),
zap.String("end key", hex.EncodeToString(endKey)))
kvRange := kv.KeyRange{StartKey: startKey, EndKey: endKey}
s, ok := store.(tikv.Storage)
if !ok {
// Only support split ranges in tikv.Storage now.
return []kv.KeyRange{kvRange}, nil
}
maxSleep := 10000 // ms
bo := backoff.NewBackofferWithVars(context.Background(), maxSleep, nil)
rc := copr.NewRegionCache(s.GetRegionCache())
ranges, err := rc.SplitRegionRanges(bo, []kv.KeyRange{kvRange}, limit)
if err != nil {
return nil, errors.Trace(err)
}
if len(ranges) == 0 {
errMsg := fmt.Sprintf("cannot find region in range [%s, %s]", startKey.String(), endKey.String())
return nil, errors.Trace(dbterror.ErrInvalidSplitRegionRanges.GenWithStackByArgs(errMsg))
}
return ranges, nil
}
type resultConsumer struct {
dc *ddlCtx
wg *sync.WaitGroup
err error
hasError *atomic.Bool
reorgInfo *reorgInfo // reorgInfo is used to update the reorg handle.
sessPool *sess.Pool // sessPool is used to get the session to update the reorg handle.
distribute bool
}
func newResultConsumer(dc *ddlCtx, reorgInfo *reorgInfo, sessPool *sess.Pool, distribute bool) *resultConsumer {
return &resultConsumer{
dc: dc,
wg: &sync.WaitGroup{},
hasError: &atomic.Bool{},
reorgInfo: reorgInfo,
sessPool: sessPool,
distribute: distribute,
}
}
func (s *resultConsumer) run(scheduler backfillScheduler, start kv.Key, totalAddedCount *int64) {
s.wg.Add(1)
go func() {
reorgInfo := s.reorgInfo
err := consumeResults(scheduler, s, start, totalAddedCount)
if err != nil {
logutil.BgLogger().Warn("backfill worker handle tasks failed", zap.String("category", "ddl"),
zap.Int64("total added count", *totalAddedCount),
zap.String("start key", hex.EncodeToString(start)),
zap.String("task failed error", err.Error()))
s.err = err
} else {
logutil.BgLogger().Info("backfill workers successfully processed", zap.String("category", "ddl"),
zap.Stringer("element", reorgInfo.currElement),
zap.Int64("total added count", *totalAddedCount),
zap.String("start key", hex.EncodeToString(start)))
}
s.wg.Done()
}()
}
func (s *resultConsumer) getResult() error {
s.wg.Wait()
return s.err
}
func (s *resultConsumer) shouldAbort() bool {
return s.hasError.Load()
}
func consumeResults(scheduler backfillScheduler, consumer *resultConsumer, start kv.Key, totalAddedCount *int64) error {
keeper := newDoneTaskKeeper(start)
handledTaskCnt := 0
var firstErr error
for {
result, ok := scheduler.receiveResult()
if !ok {
return firstErr
}
err := handleOneResult(result, scheduler, consumer, keeper, totalAddedCount, handledTaskCnt)
handledTaskCnt++
if err != nil && firstErr == nil {
consumer.hasError.Store(true)
firstErr = err
}
}
}
func handleOneResult(result *backfillResult, scheduler backfillScheduler, consumer *resultConsumer,
keeper *doneTaskKeeper, totalAddedCount *int64, taskSeq int) error {
reorgInfo := consumer.reorgInfo
if result.err != nil {
logutil.BgLogger().Warn("backfill worker failed", zap.String("category", "ddl"),
zap.Int64("job ID", reorgInfo.ID),
zap.String("result next key", hex.EncodeToString(result.nextKey)),
zap.Error(result.err))
scheduler.drainTasks() // Make it quit early.
return result.err
}
if result.totalCount > 0 {
*totalAddedCount = int64(result.totalCount)
} else {
*totalAddedCount += int64(result.addedCount)
}
if !consumer.distribute {
reorgCtx := consumer.dc.getReorgCtx(reorgInfo.Job.ID)
reorgCtx.setRowCount(*totalAddedCount)
}
keeper.updateNextKey(result.taskID, result.nextKey)
if taskSeq%(scheduler.currentWorkerSize()*4) == 0 {
if !consumer.distribute {
err := consumer.dc.isReorgRunnable(reorgInfo.ID, consumer.distribute)
if err != nil {
logutil.BgLogger().Warn("backfill worker is not runnable", zap.String("category", "ddl"), zap.Error(err))
scheduler.drainTasks() // Make it quit early.
return err
}
failpoint.Inject("MockGetIndexRecordErr", func() {
// Make sure this job didn't failed because by the "Write conflict" error.
if dbterror.ErrNotOwner.Equal(err) {
time.Sleep(50 * time.Millisecond)
}
})
err = reorgInfo.UpdateReorgMeta(keeper.nextKey, consumer.sessPool)
if err != nil {
logutil.BgLogger().Warn("update reorg meta failed", zap.String("category", "ddl"),
zap.Int64("job ID", reorgInfo.ID), zap.Error(err))
}
}
// We try to adjust the worker size regularly to reduce
// the overhead of loading the DDL related global variables.
err := scheduler.adjustWorkerSize()
if err != nil {
logutil.BgLogger().Warn("cannot adjust backfill worker size", zap.String("category", "ddl"),
zap.Int64("job ID", reorgInfo.ID), zap.Error(err))
}
}
return nil
}
func getBatchTasks(t table.Table, reorgInfo *reorgInfo, kvRanges []kv.KeyRange,
taskIDAlloc *taskIDAllocator) []*reorgBackfillTask {
batchTasks := make([]*reorgBackfillTask, 0, len(kvRanges))
var prefix kv.Key
if reorgInfo.mergingTmpIdx {
prefix = t.IndexPrefix()
} else {
prefix = t.RecordPrefix()
}
// Build reorg tasks.
job := reorgInfo.Job
//nolint:forcetypeassert
phyTbl := t.(table.PhysicalTable)
jobCtx := reorgInfo.NewJobContext()
for _, keyRange := range kvRanges {
taskID := taskIDAlloc.alloc()
startKey := keyRange.StartKey
if len(startKey) == 0 {
startKey = prefix
}
endKey := keyRange.EndKey
if len(endKey) == 0 {
endKey = prefix.PrefixNext()
}
endK, err := GetRangeEndKey(jobCtx, reorgInfo.d.store, job.Priority, prefix, startKey, endKey)
if err != nil {
logutil.BgLogger().Info("get backfill range task, get reverse key failed", zap.String("category", "ddl"), zap.Error(err))
} else {
logutil.BgLogger().Info("get backfill range task, change end key", zap.String("category", "ddl"),
zap.Int("id", taskID), zap.Int64("pTbl", phyTbl.GetPhysicalID()),
zap.String("end key", hex.EncodeToString(endKey)), zap.String("current end key", hex.EncodeToString(endK)))
endKey = endK
}
task := &reorgBackfillTask{
id: taskID,
jobID: reorgInfo.Job.ID,
physicalTable: phyTbl,
priority: reorgInfo.Priority,
startKey: startKey,
endKey: endKey,
}
batchTasks = append(batchTasks, task)
}
return batchTasks
}
// sendTasks sends tasks to workers, and returns remaining kvRanges that is not handled.
func sendTasks(scheduler backfillScheduler, consumer *resultConsumer,
t table.PhysicalTable, kvRanges []kv.KeyRange, reorgInfo *reorgInfo, taskIDAlloc *taskIDAllocator) {
batchTasks := getBatchTasks(t, reorgInfo, kvRanges, taskIDAlloc)
for _, task := range batchTasks {
if consumer.shouldAbort() {
return
}
scheduler.sendTask(task)
}
}
var (
// TestCheckWorkerNumCh use for test adjust backfill worker.
TestCheckWorkerNumCh = make(chan *sync.WaitGroup)
// TestCheckWorkerNumber use for test adjust backfill worker.
TestCheckWorkerNumber = int32(variable.DefTiDBDDLReorgWorkerCount)
// TestCheckReorgTimeout is used to mock timeout when reorg data.
TestCheckReorgTimeout = int32(0)
)
func loadDDLReorgVars(ctx context.Context, sessPool *sess.Pool) error {
// Get sessionctx from context resource pool.
sCtx, err := sessPool.Get()
if err != nil {
return errors.Trace(err)
}
defer sessPool.Put(sCtx)
return ddlutil.LoadDDLReorgVars(ctx, sCtx)
}
func makeupDecodeColMap(sessCtx sessionctx.Context, dbName model.CIStr, t table.Table) (map[int64]decoder.Column, error) {
writableColInfos := make([]*model.ColumnInfo, 0, len(t.WritableCols()))
for _, col := range t.WritableCols() {
writableColInfos = append(writableColInfos, col.ColumnInfo)
}
exprCols, _, err := expression.ColumnInfos2ColumnsAndNames(sessCtx, dbName, t.Meta().Name, writableColInfos, t.Meta())
if err != nil {
return nil, err
}
mockSchema := expression.NewSchema(exprCols...)
decodeColMap := decoder.BuildFullDecodeColMap(t.WritableCols(), mockSchema)
return decodeColMap, nil
}
func setSessCtxLocation(sctx sessionctx.Context, tzLocation *model.TimeZoneLocation) error {
// It is set to SystemLocation to be compatible with nil LocationInfo.
tz := *timeutil.SystemLocation()
if sctx.GetSessionVars().TimeZone == nil {
sctx.GetSessionVars().TimeZone = &tz
} else {
*sctx.GetSessionVars().TimeZone = tz
}
if tzLocation != nil {
loc, err := tzLocation.GetLocation()
if err != nil {
return errors.Trace(err)
}
*sctx.GetSessionVars().TimeZone = *loc
}
return nil
}
var backfillTaskChanSize = 128
// SetBackfillTaskChanSizeForTest is only used for test.
func SetBackfillTaskChanSizeForTest(n int) {
backfillTaskChanSize = n
}
// writePhysicalTableRecord handles the "add index" or "modify/change column" reorganization state for a non-partitioned table or a partition.
// For a partitioned table, it should be handled partition by partition.
//
// How to "add index" or "update column value" in reorganization state?
// Concurrently process the @@tidb_ddl_reorg_worker_cnt tasks. Each task deals with a handle range of the index/row record.
// The handle range is split from PD regions now. Each worker deal with a region table key range one time.
// Each handle range by estimation, concurrent processing needs to perform after the handle range has been acquired.
// The operation flow is as follows:
// 1. Open numbers of defaultWorkers goroutines.
// 2. Split table key range from PD regions.
// 3. Send tasks to running workers by workers's task channel. Each task deals with a region key ranges.
// 4. Wait all these running tasks finished, then continue to step 3, until all tasks is done.
//
// The above operations are completed in a transaction.
// Finally, update the concurrent processing of the total number of rows, and store the completed handle value.
func (dc *ddlCtx) writePhysicalTableRecord(sessPool *sess.Pool, t table.PhysicalTable, bfWorkerType backfillerType, reorgInfo *reorgInfo) error {
job := reorgInfo.Job
totalAddedCount := job.GetRowCount()
startKey, endKey := reorgInfo.StartKey, reorgInfo.EndKey
if err := dc.isReorgRunnable(reorgInfo.Job.ID, false); err != nil {
return errors.Trace(err)
}
if startKey == nil && endKey == nil {
return nil
}
failpoint.Inject("MockCaseWhenParseFailure", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
failpoint.Return(errors.New("job.ErrCount:" + strconv.Itoa(int(job.ErrorCount)) + ", mock unknown type: ast.whenClause."))
}
})
jc := reorgInfo.NewJobContext()
sessCtx := newContext(reorgInfo.d.store)
scheduler, err := newBackfillScheduler(dc.ctx, reorgInfo, sessPool, bfWorkerType, t, sessCtx, jc)
if err != nil {
return errors.Trace(err)
}
defer scheduler.close(true)
consumer := newResultConsumer(dc, reorgInfo, sessPool, false)
consumer.run(scheduler, startKey, &totalAddedCount)
err = scheduler.setupWorkers()
if err != nil {
return errors.Trace(err)
}
taskIDAlloc := newTaskIDAllocator()
for {
kvRanges, err := splitTableRanges(t, reorgInfo.d.store, startKey, endKey, backfillTaskChanSize)
if err != nil {
return errors.Trace(err)
}
if len(kvRanges) == 0 {
break
}
logutil.BgLogger().Info("start backfill workers to reorg record", zap.String("category", "ddl"),
zap.Stringer("type", bfWorkerType),
zap.Int("workerCnt", scheduler.currentWorkerSize()),
zap.Int("regionCnt", len(kvRanges)),
zap.String("startKey", hex.EncodeToString(startKey)),
zap.String("endKey", hex.EncodeToString(endKey)))
sendTasks(scheduler, consumer, t, kvRanges, reorgInfo, taskIDAlloc)
if consumer.shouldAbort() {
break
}
startKey = kvRanges[len(kvRanges)-1].EndKey
if startKey.Cmp(endKey) >= 0 {
break
}
}
scheduler.close(false)
return consumer.getResult()
}
func injectCheckBackfillWorkerNum(curWorkerSize int, isMergeWorker bool) error {
if isMergeWorker {
return nil
}
failpoint.Inject("checkBackfillWorkerNum", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
num := int(atomic.LoadInt32(&TestCheckWorkerNumber))
if num != 0 {
if num != curWorkerSize {
failpoint.Return(errors.Errorf("expected backfill worker num: %v, actual record num: %v", num, curWorkerSize))
}
var wg sync.WaitGroup
wg.Add(1)
TestCheckWorkerNumCh <- &wg
wg.Wait()
}
}
})
return nil
}
// recordIterFunc is used for low-level record iteration.
type recordIterFunc func(h kv.Handle, rowKey kv.Key, rawRecord []byte) (more bool, err error)
func iterateSnapshotKeys(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, version uint64,
startKey kv.Key, endKey kv.Key, fn recordIterFunc) error {
isRecord := tablecodec.IsRecordKey(keyPrefix.Next())
var firstKey kv.Key
if startKey == nil {
firstKey = keyPrefix
} else {
firstKey = startKey
}
var upperBound kv.Key
if endKey == nil {
upperBound = keyPrefix.PrefixNext()
} else {
upperBound = endKey.PrefixNext()
}
ver := kv.Version{Ver: version}
snap := store.GetSnapshot(ver)
snap.SetOption(kv.Priority, priority)
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
snap.SetOption(kv.ExplicitRequestSourceType, kvutil.ExplicitTypeDDL)
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
snap.SetOption(kv.ResourceGroupName, ctx.resourceGroupName)
it, err := snap.Iter(firstKey, upperBound)
if err != nil {
return errors.Trace(err)
}
defer it.Close()
for it.Valid() {
if !it.Key().HasPrefix(keyPrefix) {
break
}
var handle kv.Handle
if isRecord {
handle, err = tablecodec.DecodeRowKey(it.Key())
if err != nil {
return errors.Trace(err)
}
}
more, err := fn(handle, it.Key(), it.Value())
if !more || err != nil {
return errors.Trace(err)
}
err = kv.NextUntil(it, util.RowKeyPrefixFilter(it.Key()))
if err != nil {
if kv.ErrNotExist.Equal(err) {
break
}
return errors.Trace(err)
}
}
return nil
}
// GetRangeEndKey gets the actual end key for the range of [startKey, endKey).
func GetRangeEndKey(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, startKey, endKey kv.Key) (kv.Key, error) {
snap := store.GetSnapshot(kv.MaxVersion)
snap.SetOption(kv.Priority, priority)
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
snap.SetOption(kv.ResourceGroupName, ctx.resourceGroupName)
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
snap.SetOption(kv.ExplicitRequestSourceType, kvutil.ExplicitTypeDDL)
it, err := snap.IterReverse(endKey, nil)
if err != nil {
return nil, errors.Trace(err)
}
defer it.Close()
if !it.Valid() || !it.Key().HasPrefix(keyPrefix) {
return startKey.Next(), nil
}
if it.Key().Cmp(startKey) < 0 {
return startKey.Next(), nil
}
return it.Key().Next(), nil
}
func mergeWarningsAndWarningsCount(partWarnings, totalWarnings map[errors.ErrorID]*terror.Error, partWarningsCount, totalWarningsCount map[errors.ErrorID]int64) (map[errors.ErrorID]*terror.Error, map[errors.ErrorID]int64) {
for _, warn := range partWarnings {
if _, ok := totalWarningsCount[warn.ID()]; ok {
totalWarningsCount[warn.ID()] += partWarningsCount[warn.ID()]
} else {
totalWarningsCount[warn.ID()] = partWarningsCount[warn.ID()]
totalWarnings[warn.ID()] = warn
}
}
return totalWarnings, totalWarningsCount
}
func logSlowOperations(elapsed time.Duration, slowMsg string, threshold uint32) {
if threshold == 0 {
threshold = atomic.LoadUint32(&variable.DDLSlowOprThreshold)
}
if elapsed >= time.Duration(threshold)*time.Millisecond {
logutil.BgLogger().Info("slow operations", zap.String("category", "ddl"), zap.Duration("takeTimes", elapsed), zap.String("msg", slowMsg))
}
}
// doneTaskKeeper keeps the done tasks and update the latest next key.
type doneTaskKeeper struct {
doneTaskNextKey map[int]kv.Key
current int
nextKey kv.Key
}
func newDoneTaskKeeper(start kv.Key) *doneTaskKeeper {
return &doneTaskKeeper{
doneTaskNextKey: make(map[int]kv.Key),
current: 0,
nextKey: start,
}
}
func (n *doneTaskKeeper) updateNextKey(doneTaskID int, next kv.Key) {
if doneTaskID == n.current {
n.current++
n.nextKey = next
for {
nKey, ok := n.doneTaskNextKey[n.current]
if !ok {
break
}
delete(n.doneTaskNextKey, n.current)
n.current++
n.nextKey = nKey
}
return
}
n.doneTaskNextKey[doneTaskID] = next
}