2474 lines
92 KiB
Go
2474 lines
92 KiB
Go
// Copyright 2017 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package core
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/pingcap/errors"
|
|
"github.com/pingcap/failpoint"
|
|
"github.com/pingcap/tidb/pkg/expression"
|
|
"github.com/pingcap/tidb/pkg/expression/aggregation"
|
|
"github.com/pingcap/tidb/pkg/kv"
|
|
"github.com/pingcap/tidb/pkg/parser/ast"
|
|
"github.com/pingcap/tidb/pkg/parser/charset"
|
|
"github.com/pingcap/tidb/pkg/parser/mysql"
|
|
"github.com/pingcap/tidb/pkg/planner/cardinality"
|
|
"github.com/pingcap/tidb/pkg/planner/core/base"
|
|
"github.com/pingcap/tidb/pkg/planner/core/cost"
|
|
"github.com/pingcap/tidb/pkg/planner/core/operator/baseimpl"
|
|
"github.com/pingcap/tidb/pkg/planner/core/operator/logicalop"
|
|
"github.com/pingcap/tidb/pkg/planner/property"
|
|
"github.com/pingcap/tidb/pkg/planner/util"
|
|
"github.com/pingcap/tidb/pkg/types"
|
|
"github.com/pingcap/tidb/pkg/util/chunk"
|
|
"github.com/pingcap/tidb/pkg/util/collate"
|
|
"github.com/pingcap/tidb/pkg/util/logutil"
|
|
"github.com/pingcap/tidb/pkg/util/paging"
|
|
"github.com/pingcap/tidb/pkg/util/plancodec"
|
|
"go.uber.org/zap"
|
|
)
|
|
|
|
func attachPlan2Task(p base.PhysicalPlan, t base.Task) base.Task {
|
|
switch v := t.(type) {
|
|
case *CopTask:
|
|
if v.indexPlanFinished {
|
|
p.SetChildren(v.tablePlan)
|
|
v.tablePlan = p
|
|
} else {
|
|
p.SetChildren(v.indexPlan)
|
|
v.indexPlan = p
|
|
}
|
|
case *RootTask:
|
|
p.SetChildren(v.GetPlan())
|
|
v.SetPlan(p)
|
|
case *MppTask:
|
|
p.SetChildren(v.p)
|
|
v.p = p
|
|
}
|
|
return t
|
|
}
|
|
|
|
// finishIndexPlan means we no longer add plan to index plan, and compute the network cost for it.
|
|
func (t *CopTask) finishIndexPlan() {
|
|
if t.indexPlanFinished {
|
|
return
|
|
}
|
|
t.indexPlanFinished = true
|
|
// index merge case is specially handled for now.
|
|
// We need a elegant way to solve the stats of index merge in this case.
|
|
if t.tablePlan != nil && t.indexPlan != nil {
|
|
ts := t.tablePlan.(*PhysicalTableScan)
|
|
originStats := ts.StatsInfo()
|
|
ts.SetStats(t.indexPlan.StatsInfo())
|
|
if originStats != nil {
|
|
// keep the original stats version
|
|
ts.StatsInfo().StatsVersion = originStats.StatsVersion
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *CopTask) getStoreType() kv.StoreType {
|
|
if t.tablePlan == nil {
|
|
return kv.TiKV
|
|
}
|
|
tp := t.tablePlan
|
|
for len(tp.Children()) > 0 {
|
|
if len(tp.Children()) > 1 {
|
|
return kv.TiFlash
|
|
}
|
|
tp = tp.Children()[0]
|
|
}
|
|
if ts, ok := tp.(*PhysicalTableScan); ok {
|
|
return ts.StoreType
|
|
}
|
|
return kv.TiKV
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalUnionScan) Attach2Task(tasks ...base.Task) base.Task {
|
|
// We need to pull the projection under unionScan upon unionScan.
|
|
// Since the projection only prunes columns, it's ok the put it upon unionScan.
|
|
if sel, ok := tasks[0].Plan().(*PhysicalSelection); ok {
|
|
if pj, ok := sel.Children()[0].(*PhysicalProjection); ok {
|
|
// Convert unionScan->selection->projection to projection->unionScan->selection.
|
|
sel.SetChildren(pj.Children()...)
|
|
p.SetChildren(sel)
|
|
p.SetStats(tasks[0].Plan().StatsInfo())
|
|
rt, _ := tasks[0].(*RootTask)
|
|
rt.SetPlan(p)
|
|
pj.SetChildren(p)
|
|
return pj.Attach2Task(tasks...)
|
|
}
|
|
}
|
|
if pj, ok := tasks[0].Plan().(*PhysicalProjection); ok {
|
|
// Convert unionScan->projection to projection->unionScan, because unionScan can't handle projection as its children.
|
|
p.SetChildren(pj.Children()...)
|
|
p.SetStats(tasks[0].Plan().StatsInfo())
|
|
rt, _ := tasks[0].(*RootTask)
|
|
rt.SetPlan(pj.Children()[0])
|
|
pj.SetChildren(p)
|
|
return pj.Attach2Task(p.BasePhysicalPlan.Attach2Task(tasks...))
|
|
}
|
|
p.SetStats(tasks[0].Plan().StatsInfo())
|
|
return p.BasePhysicalPlan.Attach2Task(tasks...)
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalApply) Attach2Task(tasks ...base.Task) base.Task {
|
|
lTask := tasks[0].ConvertToRootTask(p.SCtx())
|
|
rTask := tasks[1].ConvertToRootTask(p.SCtx())
|
|
p.SetChildren(lTask.Plan(), rTask.Plan())
|
|
p.schema = BuildPhysicalJoinSchema(p.JoinType, p)
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalIndexMergeJoin) Attach2Task(tasks ...base.Task) base.Task {
|
|
outerTask := tasks[1-p.InnerChildIdx].ConvertToRootTask(p.SCtx())
|
|
if p.InnerChildIdx == 1 {
|
|
p.SetChildren(outerTask.Plan(), p.innerPlan)
|
|
} else {
|
|
p.SetChildren(p.innerPlan, outerTask.Plan())
|
|
}
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalIndexHashJoin) Attach2Task(tasks ...base.Task) base.Task {
|
|
outerTask := tasks[1-p.InnerChildIdx].ConvertToRootTask(p.SCtx())
|
|
if p.InnerChildIdx == 1 {
|
|
p.SetChildren(outerTask.Plan(), p.innerPlan)
|
|
} else {
|
|
p.SetChildren(p.innerPlan, outerTask.Plan())
|
|
}
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalIndexJoin) Attach2Task(tasks ...base.Task) base.Task {
|
|
outerTask := tasks[1-p.InnerChildIdx].ConvertToRootTask(p.SCtx())
|
|
if p.InnerChildIdx == 1 {
|
|
p.SetChildren(outerTask.Plan(), p.innerPlan)
|
|
} else {
|
|
p.SetChildren(p.innerPlan, outerTask.Plan())
|
|
}
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
return t
|
|
}
|
|
|
|
// RowSize for cost model ver2 is simplified, always use this function to calculate row size.
|
|
func getAvgRowSize(stats *property.StatsInfo, cols []*expression.Column) (size float64) {
|
|
if stats.HistColl != nil {
|
|
size = max(cardinality.GetAvgRowSizeDataInDiskByRows(stats.HistColl, cols), 0)
|
|
} else {
|
|
// Estimate using just the type info.
|
|
for _, col := range cols {
|
|
size += max(float64(chunk.EstimateTypeWidth(col.GetStaticType())), 0)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalHashJoin) Attach2Task(tasks ...base.Task) base.Task {
|
|
if p.storeTp == kv.TiFlash {
|
|
return p.attach2TaskForTiFlash(tasks...)
|
|
}
|
|
lTask := tasks[0].ConvertToRootTask(p.SCtx())
|
|
rTask := tasks[1].ConvertToRootTask(p.SCtx())
|
|
p.SetChildren(lTask.Plan(), rTask.Plan())
|
|
task := &RootTask{}
|
|
task.SetPlan(p)
|
|
return task
|
|
}
|
|
|
|
// TiDB only require that the types fall into the same catalog but TiFlash require the type to be exactly the same, so
|
|
// need to check if the conversion is a must
|
|
func needConvert(tp *types.FieldType, rtp *types.FieldType) bool {
|
|
// all the string type are mapped to the same type in TiFlash, so
|
|
// do not need convert for string types
|
|
if types.IsString(tp.GetType()) && types.IsString(rtp.GetType()) {
|
|
return false
|
|
}
|
|
if tp.GetType() != rtp.GetType() {
|
|
return true
|
|
}
|
|
if tp.GetType() != mysql.TypeNewDecimal {
|
|
return false
|
|
}
|
|
if tp.GetDecimal() != rtp.GetDecimal() {
|
|
return true
|
|
}
|
|
// for decimal type, TiFlash have 4 different impl based on the required precision
|
|
if tp.GetFlen() >= 0 && tp.GetFlen() <= 9 && rtp.GetFlen() >= 0 && rtp.GetFlen() <= 9 {
|
|
return false
|
|
}
|
|
if tp.GetFlen() > 9 && tp.GetFlen() <= 18 && rtp.GetFlen() > 9 && rtp.GetFlen() <= 18 {
|
|
return false
|
|
}
|
|
if tp.GetFlen() > 18 && tp.GetFlen() <= 38 && rtp.GetFlen() > 18 && rtp.GetFlen() <= 38 {
|
|
return false
|
|
}
|
|
if tp.GetFlen() > 38 && tp.GetFlen() <= 65 && rtp.GetFlen() > 38 && rtp.GetFlen() <= 65 {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func negotiateCommonType(lType, rType *types.FieldType) (*types.FieldType, bool, bool) {
|
|
commonType := types.AggFieldType([]*types.FieldType{lType, rType})
|
|
if commonType.GetType() == mysql.TypeNewDecimal {
|
|
lExtend := 0
|
|
rExtend := 0
|
|
cDec := rType.GetDecimal()
|
|
if lType.GetDecimal() < rType.GetDecimal() {
|
|
lExtend = rType.GetDecimal() - lType.GetDecimal()
|
|
} else if lType.GetDecimal() > rType.GetDecimal() {
|
|
rExtend = lType.GetDecimal() - rType.GetDecimal()
|
|
cDec = lType.GetDecimal()
|
|
}
|
|
lLen, rLen := lType.GetFlen()+lExtend, rType.GetFlen()+rExtend
|
|
cLen := max(lLen, rLen)
|
|
commonType.SetDecimalUnderLimit(cDec)
|
|
commonType.SetFlenUnderLimit(cLen)
|
|
} else if needConvert(lType, commonType) || needConvert(rType, commonType) {
|
|
if mysql.IsIntegerType(commonType.GetType()) {
|
|
// If the target type is int, both TiFlash and Mysql only support cast to Int64
|
|
// so we need to promote the type to Int64
|
|
commonType.SetType(mysql.TypeLonglong)
|
|
commonType.SetFlen(mysql.MaxIntWidth)
|
|
}
|
|
}
|
|
return commonType, needConvert(lType, commonType), needConvert(rType, commonType)
|
|
}
|
|
|
|
func getProj(ctx base.PlanContext, p base.PhysicalPlan) *PhysicalProjection {
|
|
proj := PhysicalProjection{
|
|
Exprs: make([]expression.Expression, 0, len(p.Schema().Columns)),
|
|
}.Init(ctx, p.StatsInfo(), p.QueryBlockOffset())
|
|
for _, col := range p.Schema().Columns {
|
|
proj.Exprs = append(proj.Exprs, col)
|
|
}
|
|
proj.SetSchema(p.Schema().Clone())
|
|
proj.SetChildren(p)
|
|
return proj
|
|
}
|
|
|
|
func appendExpr(p *PhysicalProjection, expr expression.Expression) *expression.Column {
|
|
p.Exprs = append(p.Exprs, expr)
|
|
|
|
col := &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: expr.GetType(p.SCtx().GetExprCtx().GetEvalCtx()),
|
|
}
|
|
col.SetCoercibility(expr.Coercibility())
|
|
p.schema.Append(col)
|
|
return col
|
|
}
|
|
|
|
// TiFlash join require that partition key has exactly the same type, while TiDB only guarantee the partition key is the same catalog,
|
|
// so if the partition key type is not exactly the same, we need add a projection below the join or exchanger if exists.
|
|
func (p *PhysicalHashJoin) convertPartitionKeysIfNeed(lTask, rTask *MppTask) (*MppTask, *MppTask) {
|
|
lp := lTask.p
|
|
if _, ok := lp.(*PhysicalExchangeReceiver); ok {
|
|
lp = lp.Children()[0].Children()[0]
|
|
}
|
|
rp := rTask.p
|
|
if _, ok := rp.(*PhysicalExchangeReceiver); ok {
|
|
rp = rp.Children()[0].Children()[0]
|
|
}
|
|
// to mark if any partition key needs to convert
|
|
lMask := make([]bool, len(lTask.hashCols))
|
|
rMask := make([]bool, len(rTask.hashCols))
|
|
cTypes := make([]*types.FieldType, len(lTask.hashCols))
|
|
lChanged := false
|
|
rChanged := false
|
|
for i := range lTask.hashCols {
|
|
lKey := lTask.hashCols[i]
|
|
rKey := rTask.hashCols[i]
|
|
cType, lConvert, rConvert := negotiateCommonType(lKey.Col.RetType, rKey.Col.RetType)
|
|
if lConvert {
|
|
lMask[i] = true
|
|
cTypes[i] = cType
|
|
lChanged = true
|
|
}
|
|
if rConvert {
|
|
rMask[i] = true
|
|
cTypes[i] = cType
|
|
rChanged = true
|
|
}
|
|
}
|
|
if !lChanged && !rChanged {
|
|
return lTask, rTask
|
|
}
|
|
var lProj, rProj *PhysicalProjection
|
|
if lChanged {
|
|
lProj = getProj(p.SCtx(), lp)
|
|
lp = lProj
|
|
}
|
|
if rChanged {
|
|
rProj = getProj(p.SCtx(), rp)
|
|
rp = rProj
|
|
}
|
|
|
|
lPartKeys := make([]*property.MPPPartitionColumn, 0, len(rTask.hashCols))
|
|
rPartKeys := make([]*property.MPPPartitionColumn, 0, len(lTask.hashCols))
|
|
for i := range lTask.hashCols {
|
|
lKey := lTask.hashCols[i]
|
|
rKey := rTask.hashCols[i]
|
|
if lMask[i] {
|
|
cType := cTypes[i].Clone()
|
|
cType.SetFlag(lKey.Col.RetType.GetFlag())
|
|
lCast := expression.BuildCastFunction(p.SCtx().GetExprCtx(), lKey.Col, cType)
|
|
lKey = &property.MPPPartitionColumn{Col: appendExpr(lProj, lCast), CollateID: lKey.CollateID}
|
|
}
|
|
if rMask[i] {
|
|
cType := cTypes[i].Clone()
|
|
cType.SetFlag(rKey.Col.RetType.GetFlag())
|
|
rCast := expression.BuildCastFunction(p.SCtx().GetExprCtx(), rKey.Col, cType)
|
|
rKey = &property.MPPPartitionColumn{Col: appendExpr(rProj, rCast), CollateID: rKey.CollateID}
|
|
}
|
|
lPartKeys = append(lPartKeys, lKey)
|
|
rPartKeys = append(rPartKeys, rKey)
|
|
}
|
|
// if left or right child changes, we need to add enforcer.
|
|
if lChanged {
|
|
nlTask := lTask.Copy().(*MppTask)
|
|
nlTask.p = lProj
|
|
nlTask = nlTask.enforceExchanger(&property.PhysicalProperty{
|
|
TaskTp: property.MppTaskType,
|
|
MPPPartitionTp: property.HashType,
|
|
MPPPartitionCols: lPartKeys,
|
|
})
|
|
lTask = nlTask
|
|
}
|
|
if rChanged {
|
|
nrTask := rTask.Copy().(*MppTask)
|
|
nrTask.p = rProj
|
|
nrTask = nrTask.enforceExchanger(&property.PhysicalProperty{
|
|
TaskTp: property.MppTaskType,
|
|
MPPPartitionTp: property.HashType,
|
|
MPPPartitionCols: rPartKeys,
|
|
})
|
|
rTask = nrTask
|
|
}
|
|
return lTask, rTask
|
|
}
|
|
|
|
func (p *PhysicalHashJoin) attach2TaskForMpp(tasks ...base.Task) base.Task {
|
|
lTask, lok := tasks[0].(*MppTask)
|
|
rTask, rok := tasks[1].(*MppTask)
|
|
if !lok || !rok {
|
|
return base.InvalidTask
|
|
}
|
|
if p.mppShuffleJoin {
|
|
// protection check is case of some bugs
|
|
if len(lTask.hashCols) != len(rTask.hashCols) || len(lTask.hashCols) == 0 {
|
|
return base.InvalidTask
|
|
}
|
|
lTask, rTask = p.convertPartitionKeysIfNeed(lTask, rTask)
|
|
}
|
|
p.SetChildren(lTask.Plan(), rTask.Plan())
|
|
// outer task is the task that will pass its MPPPartitionType to the join result
|
|
// for broadcast inner join, it should be the non-broadcast side, since broadcast side is always the build side, so
|
|
// just use the probe side is ok.
|
|
// for hash inner join, both side is ok, by default, we use the probe side
|
|
// for outer join, it should always be the outer side of the join
|
|
// for semi join, it should be the left side(the same as left out join)
|
|
outerTaskIndex := 1 - p.InnerChildIdx
|
|
if p.JoinType != logicalop.InnerJoin {
|
|
if p.JoinType == logicalop.RightOuterJoin {
|
|
outerTaskIndex = 1
|
|
} else {
|
|
outerTaskIndex = 0
|
|
}
|
|
}
|
|
// can not use the task from tasks because it maybe updated.
|
|
outerTask := lTask
|
|
if outerTaskIndex == 1 {
|
|
outerTask = rTask
|
|
}
|
|
task := &MppTask{
|
|
p: p,
|
|
partTp: outerTask.partTp,
|
|
hashCols: outerTask.hashCols,
|
|
}
|
|
// Current TiFlash doesn't support receive Join executors' schema info directly from TiDB.
|
|
// Instead, it calculates Join executors' output schema using algorithm like BuildPhysicalJoinSchema which
|
|
// produces full semantic schema.
|
|
// Thus, the column prune optimization achievements will be abandoned here.
|
|
// To avoid the performance issue, add a projection here above the Join operator to prune useless columns explicitly.
|
|
// TODO(hyb): transfer Join executors' schema to TiFlash through DagRequest, and use it directly in TiFlash.
|
|
defaultSchema := BuildPhysicalJoinSchema(p.JoinType, p)
|
|
hashColArray := make([]*expression.Column, 0, len(task.hashCols))
|
|
// For task.hashCols, these columns may not be contained in pruned columns:
|
|
// select A.id from A join B on A.id = B.id; Suppose B is probe side, and it's hash inner join.
|
|
// After column prune, the output schema of A join B will be A.id only; while the task's hashCols will be B.id.
|
|
// To make matters worse, the hashCols may be used to check if extra cast projection needs to be added, then the newly
|
|
// added projection will expect B.id as input schema. So make sure hashCols are included in task.p's schema.
|
|
// TODO: planner should takes the hashCols attribute into consideration when perform column pruning; Or provide mechanism
|
|
// to constraint hashCols are always chosen inside Join's pruned schema
|
|
for _, hashCol := range task.hashCols {
|
|
hashColArray = append(hashColArray, hashCol.Col)
|
|
}
|
|
if p.schema.Len() < defaultSchema.Len() {
|
|
if p.schema.Len() > 0 {
|
|
proj := PhysicalProjection{
|
|
Exprs: expression.Column2Exprs(p.schema.Columns),
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset())
|
|
|
|
proj.SetSchema(p.Schema().Clone())
|
|
for _, hashCol := range hashColArray {
|
|
if !proj.Schema().Contains(hashCol) && defaultSchema.Contains(hashCol) {
|
|
joinCol := defaultSchema.Columns[defaultSchema.ColumnIndex(hashCol)]
|
|
proj.Exprs = append(proj.Exprs, joinCol)
|
|
proj.Schema().Append(joinCol.Clone().(*expression.Column))
|
|
}
|
|
}
|
|
attachPlan2Task(proj, task)
|
|
} else {
|
|
if len(hashColArray) == 0 {
|
|
constOne := expression.NewOne()
|
|
expr := make([]expression.Expression, 0, 1)
|
|
expr = append(expr, constOne)
|
|
proj := PhysicalProjection{
|
|
Exprs: expr,
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset())
|
|
|
|
proj.schema = expression.NewSchema(&expression.Column{
|
|
UniqueID: proj.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: constOne.GetType(p.SCtx().GetExprCtx().GetEvalCtx()),
|
|
})
|
|
attachPlan2Task(proj, task)
|
|
} else {
|
|
proj := PhysicalProjection{
|
|
Exprs: make([]expression.Expression, 0, len(hashColArray)),
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset())
|
|
|
|
clonedHashColArray := make([]*expression.Column, 0, len(task.hashCols))
|
|
for _, hashCol := range hashColArray {
|
|
if defaultSchema.Contains(hashCol) {
|
|
joinCol := defaultSchema.Columns[defaultSchema.ColumnIndex(hashCol)]
|
|
proj.Exprs = append(proj.Exprs, joinCol)
|
|
clonedHashColArray = append(clonedHashColArray, joinCol.Clone().(*expression.Column))
|
|
}
|
|
}
|
|
|
|
proj.SetSchema(expression.NewSchema(clonedHashColArray...))
|
|
attachPlan2Task(proj, task)
|
|
}
|
|
}
|
|
}
|
|
p.schema = defaultSchema
|
|
return task
|
|
}
|
|
|
|
func (p *PhysicalHashJoin) attach2TaskForTiFlash(tasks ...base.Task) base.Task {
|
|
lTask, lok := tasks[0].(*CopTask)
|
|
rTask, rok := tasks[1].(*CopTask)
|
|
if !lok || !rok {
|
|
return p.attach2TaskForMpp(tasks...)
|
|
}
|
|
p.SetChildren(lTask.Plan(), rTask.Plan())
|
|
p.schema = BuildPhysicalJoinSchema(p.JoinType, p)
|
|
if !lTask.indexPlanFinished {
|
|
lTask.finishIndexPlan()
|
|
}
|
|
if !rTask.indexPlanFinished {
|
|
rTask.finishIndexPlan()
|
|
}
|
|
|
|
task := &CopTask{
|
|
tblColHists: rTask.tblColHists,
|
|
indexPlanFinished: true,
|
|
tablePlan: p,
|
|
}
|
|
return task
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalMergeJoin) Attach2Task(tasks ...base.Task) base.Task {
|
|
lTask := tasks[0].ConvertToRootTask(p.SCtx())
|
|
rTask := tasks[1].ConvertToRootTask(p.SCtx())
|
|
p.SetChildren(lTask.Plan(), rTask.Plan())
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
return t
|
|
}
|
|
|
|
func buildIndexLookUpTask(ctx base.PlanContext, t *CopTask) *RootTask {
|
|
newTask := &RootTask{}
|
|
p := PhysicalIndexLookUpReader{
|
|
tablePlan: t.tablePlan,
|
|
indexPlan: t.indexPlan,
|
|
ExtraHandleCol: t.extraHandleCol,
|
|
CommonHandleCols: t.commonHandleCols,
|
|
expectedCnt: t.expectCnt,
|
|
keepOrder: t.keepOrder,
|
|
}.Init(ctx, t.tablePlan.QueryBlockOffset())
|
|
p.PlanPartInfo = t.physPlanPartInfo
|
|
setTableScanToTableRowIDScan(p.tablePlan)
|
|
p.SetStats(t.tablePlan.StatsInfo())
|
|
// Do not inject the extra Projection even if t.needExtraProj is set, or the schema between the phase-1 agg and
|
|
// the final agg would be broken. Please reference comments for the similar logic in
|
|
// (*copTask).convertToRootTaskImpl() for the PhysicalTableReader case.
|
|
// We need to refactor these logics.
|
|
aggPushedDown := false
|
|
switch p.tablePlan.(type) {
|
|
case *PhysicalHashAgg, *PhysicalStreamAgg:
|
|
aggPushedDown = true
|
|
}
|
|
|
|
if t.needExtraProj && !aggPushedDown {
|
|
schema := t.originSchema
|
|
proj := PhysicalProjection{Exprs: expression.Column2Exprs(schema.Columns)}.Init(ctx, p.StatsInfo(), t.tablePlan.QueryBlockOffset(), nil)
|
|
proj.SetSchema(schema)
|
|
proj.SetChildren(p)
|
|
newTask.SetPlan(proj)
|
|
} else {
|
|
newTask.SetPlan(p)
|
|
}
|
|
return newTask
|
|
}
|
|
|
|
func extractRows(p base.PhysicalPlan) float64 {
|
|
f := float64(0)
|
|
for _, c := range p.Children() {
|
|
if len(c.Children()) != 0 {
|
|
f += extractRows(c)
|
|
} else {
|
|
f += c.StatsInfo().RowCount
|
|
}
|
|
}
|
|
return f
|
|
}
|
|
|
|
// calcPagingCost calculates the cost for paging processing which may increase the seekCnt and reduce scanned rows.
|
|
func calcPagingCost(ctx base.PlanContext, indexPlan base.PhysicalPlan, expectCnt uint64) float64 {
|
|
sessVars := ctx.GetSessionVars()
|
|
indexRows := indexPlan.StatsCount()
|
|
sourceRows := extractRows(indexPlan)
|
|
// with paging, the scanned rows is always less than or equal to source rows.
|
|
if uint64(sourceRows) < expectCnt {
|
|
expectCnt = uint64(sourceRows)
|
|
}
|
|
seekCnt := paging.CalculateSeekCnt(expectCnt)
|
|
indexSelectivity := float64(1)
|
|
if sourceRows > indexRows {
|
|
indexSelectivity = indexRows / sourceRows
|
|
}
|
|
pagingCst := seekCnt*sessVars.GetSeekFactor(nil) + float64(expectCnt)*sessVars.GetCPUFactor()
|
|
pagingCst *= indexSelectivity
|
|
|
|
// we want the diff between idxCst and pagingCst here,
|
|
// however, the idxCst does not contain seekFactor, so a seekFactor needs to be removed
|
|
return math.Max(pagingCst-sessVars.GetSeekFactor(nil), 0)
|
|
}
|
|
|
|
func (t *CopTask) handleRootTaskConds(ctx base.PlanContext, newTask *RootTask) {
|
|
if len(t.rootTaskConds) > 0 {
|
|
selectivity, _, err := cardinality.Selectivity(ctx, t.tblColHists, t.rootTaskConds, nil)
|
|
if err != nil {
|
|
logutil.BgLogger().Debug("calculate selectivity failed, use selection factor", zap.Error(err))
|
|
selectivity = cost.SelectionFactor
|
|
}
|
|
sel := PhysicalSelection{Conditions: t.rootTaskConds}.Init(ctx, newTask.GetPlan().StatsInfo().Scale(selectivity), newTask.GetPlan().QueryBlockOffset())
|
|
sel.fromDataSource = true
|
|
sel.SetChildren(newTask.GetPlan())
|
|
newTask.SetPlan(sel)
|
|
}
|
|
}
|
|
|
|
// setTableScanToTableRowIDScan is to update the isChildOfIndexLookUp attribute of PhysicalTableScan child
|
|
func setTableScanToTableRowIDScan(p base.PhysicalPlan) {
|
|
if ts, ok := p.(*PhysicalTableScan); ok {
|
|
ts.SetIsChildOfIndexLookUp(true)
|
|
} else {
|
|
for _, child := range p.Children() {
|
|
setTableScanToTableRowIDScan(child)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attach2Task attach limit to different cases.
|
|
// For Normal Index Lookup
|
|
// 1: attach the limit to table side or index side of normal index lookup cop task. (normal case, old code, no more
|
|
// explanation here)
|
|
//
|
|
// For Index Merge:
|
|
// 2: attach the limit to **table** side for index merge intersection case, cause intersection will invalidate the
|
|
// fetched limit+offset rows from each partial index plan, you can not decide how many you want in advance for partial
|
|
// index path, actually. After we sink limit to table side, we still need an upper root limit to control the real limit
|
|
// count admission.
|
|
//
|
|
// 3: attach the limit to **index** side for index merge union case, because each index plan will output the fetched
|
|
// limit+offset (* N path) rows, you still need an embedded pushedLimit inside index merge reader to cut it down.
|
|
//
|
|
// 4: attach the limit to the TOP of root index merge operator if there is some root condition exists for index merge
|
|
// intersection/union case.
|
|
func (p *PhysicalLimit) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
newPartitionBy := make([]property.SortItem, 0, len(p.GetPartitionBy()))
|
|
for _, expr := range p.GetPartitionBy() {
|
|
newPartitionBy = append(newPartitionBy, expr.Clone())
|
|
}
|
|
|
|
sunk := false
|
|
if cop, ok := t.(*CopTask); ok {
|
|
suspendLimitAboveTablePlan := func() {
|
|
newCount := p.Offset + p.Count
|
|
childProfile := cop.tablePlan.StatsInfo()
|
|
// but "regionNum" is unknown since the copTask can be a double read, so we ignore it now.
|
|
stats := util.DeriveLimitStats(childProfile, float64(newCount))
|
|
pushedDownLimit := PhysicalLimit{PartitionBy: newPartitionBy, Count: newCount}.Init(p.SCtx(), stats, p.QueryBlockOffset())
|
|
pushedDownLimit.SetChildren(cop.tablePlan)
|
|
cop.tablePlan = pushedDownLimit
|
|
// Don't use clone() so that Limit and its children share the same schema. Otherwise, the virtual generated column may not be resolved right.
|
|
pushedDownLimit.SetSchema(pushedDownLimit.Children()[0].Schema())
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
}
|
|
if len(cop.idxMergePartPlans) == 0 {
|
|
// For double read which requires order being kept, the limit cannot be pushed down to the table side,
|
|
// because handles would be reordered before being sent to table scan.
|
|
if (!cop.keepOrder || !cop.indexPlanFinished || cop.indexPlan == nil) && len(cop.rootTaskConds) == 0 {
|
|
// When limit is pushed down, we should remove its offset.
|
|
newCount := p.Offset + p.Count
|
|
childProfile := cop.Plan().StatsInfo()
|
|
// Strictly speaking, for the row count of stats, we should multiply newCount with "regionNum",
|
|
// but "regionNum" is unknown since the copTask can be a double read, so we ignore it now.
|
|
stats := util.DeriveLimitStats(childProfile, float64(newCount))
|
|
pushedDownLimit := PhysicalLimit{PartitionBy: newPartitionBy, Count: newCount}.Init(p.SCtx(), stats, p.QueryBlockOffset())
|
|
cop = attachPlan2Task(pushedDownLimit, cop).(*CopTask)
|
|
// Don't use clone() so that Limit and its children share the same schema. Otherwise the virtual generated column may not be resolved right.
|
|
pushedDownLimit.SetSchema(pushedDownLimit.Children()[0].Schema())
|
|
}
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexLookUp(t)
|
|
} else if !cop.idxMergeIsIntersection {
|
|
// We only support push part of the order prop down to index merge build case.
|
|
if len(cop.rootTaskConds) == 0 {
|
|
// For double read which requires order being kept, the limit cannot be pushed down to the table side,
|
|
// because handles would be reordered before being sent to table scan.
|
|
if cop.indexPlanFinished && !cop.keepOrder {
|
|
// when the index plan is finished and index plan is not ordered, sink the limit to the index merge table side.
|
|
suspendLimitAboveTablePlan()
|
|
} else if !cop.indexPlanFinished {
|
|
// cop.indexPlanFinished = false indicates the table side is a pure table-scan, sink the limit to the index merge index side.
|
|
newCount := p.Offset + p.Count
|
|
limitChildren := make([]base.PhysicalPlan, 0, len(cop.idxMergePartPlans))
|
|
for _, partialScan := range cop.idxMergePartPlans {
|
|
childProfile := partialScan.StatsInfo()
|
|
stats := util.DeriveLimitStats(childProfile, float64(newCount))
|
|
pushedDownLimit := PhysicalLimit{PartitionBy: newPartitionBy, Count: newCount}.Init(p.SCtx(), stats, p.QueryBlockOffset())
|
|
pushedDownLimit.SetChildren(partialScan)
|
|
pushedDownLimit.SetSchema(pushedDownLimit.Children()[0].Schema())
|
|
limitChildren = append(limitChildren, pushedDownLimit)
|
|
}
|
|
cop.idxMergePartPlans = limitChildren
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexMerge(t)
|
|
} else {
|
|
// when there are some limitations, just sink the limit upon the index merge reader.
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexMerge(t)
|
|
}
|
|
} else {
|
|
// when there are some root conditions, just sink the limit upon the index merge reader.
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexMerge(t)
|
|
}
|
|
} else if cop.idxMergeIsIntersection {
|
|
// In the index merge with intersection case, only the limit can be pushed down to the index merge table side.
|
|
// Note Difference:
|
|
// IndexMerge.PushedLimit is applied before table scan fetching, limiting the indexPartialPlan rows returned (it maybe ordered if orderBy items not empty)
|
|
// TableProbeSide sink limit is applied on the top of table plan, which will quickly shut down the both fetch-back and read-back process.
|
|
if len(cop.rootTaskConds) == 0 {
|
|
if cop.indexPlanFinished {
|
|
// indicates the table side is not a pure table-scan, so we could only append the limit upon the table plan.
|
|
suspendLimitAboveTablePlan()
|
|
} else {
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexMerge(t)
|
|
}
|
|
} else {
|
|
// Otherwise, suspend the limit out of index merge reader.
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
sunk = p.sinkIntoIndexMerge(t)
|
|
}
|
|
} else {
|
|
// Whatever the remained case is, we directly convert to it to root task.
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
}
|
|
} else if mpp, ok := t.(*MppTask); ok {
|
|
newCount := p.Offset + p.Count
|
|
childProfile := mpp.Plan().StatsInfo()
|
|
stats := util.DeriveLimitStats(childProfile, float64(newCount))
|
|
pushedDownLimit := PhysicalLimit{Count: newCount, PartitionBy: newPartitionBy}.Init(p.SCtx(), stats, p.QueryBlockOffset())
|
|
mpp = attachPlan2Task(pushedDownLimit, mpp).(*MppTask)
|
|
pushedDownLimit.SetSchema(pushedDownLimit.Children()[0].Schema())
|
|
t = mpp.ConvertToRootTask(p.SCtx())
|
|
}
|
|
if sunk {
|
|
return t
|
|
}
|
|
// Skip limit with partition on the root. This is a derived topN and window function
|
|
// will take care of the filter.
|
|
if len(p.GetPartitionBy()) > 0 {
|
|
return t
|
|
}
|
|
return attachPlan2Task(p, t)
|
|
}
|
|
|
|
func (p *PhysicalLimit) sinkIntoIndexLookUp(t base.Task) bool {
|
|
root := t.(*RootTask)
|
|
reader, isDoubleRead := root.GetPlan().(*PhysicalIndexLookUpReader)
|
|
proj, isProj := root.GetPlan().(*PhysicalProjection)
|
|
if !isDoubleRead && !isProj {
|
|
return false
|
|
}
|
|
if isProj {
|
|
reader, isDoubleRead = proj.Children()[0].(*PhysicalIndexLookUpReader)
|
|
if !isDoubleRead {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// We can sink Limit into IndexLookUpReader only if tablePlan contains no Selection.
|
|
ts, isTableScan := reader.tablePlan.(*PhysicalTableScan)
|
|
if !isTableScan {
|
|
return false
|
|
}
|
|
|
|
// If this happens, some Projection Operator must be inlined into this Limit. (issues/14428)
|
|
// For example, if the original plan is `IndexLookUp(col1, col2) -> Limit(col1, col2) -> Project(col1)`,
|
|
// then after inlining the Project, it will be `IndexLookUp(col1, col2) -> Limit(col1)` here.
|
|
// If the Limit is sunk into the IndexLookUp, the IndexLookUp's schema needs to be updated as well,
|
|
// So we add an extra projection to solve the problem.
|
|
if p.Schema().Len() != reader.Schema().Len() {
|
|
extraProj := PhysicalProjection{
|
|
Exprs: expression.Column2Exprs(p.schema.Columns),
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset(), nil)
|
|
extraProj.SetSchema(p.schema)
|
|
// If the root.p is already a Projection. We left the optimization for the later Projection Elimination.
|
|
extraProj.SetChildren(root.GetPlan())
|
|
root.SetPlan(extraProj)
|
|
}
|
|
|
|
reader.PushedLimit = &PushedDownLimit{
|
|
Offset: p.Offset,
|
|
Count: p.Count,
|
|
}
|
|
originStats := ts.StatsInfo()
|
|
ts.SetStats(p.StatsInfo())
|
|
if originStats != nil {
|
|
// keep the original stats version
|
|
ts.StatsInfo().StatsVersion = originStats.StatsVersion
|
|
}
|
|
reader.SetStats(p.StatsInfo())
|
|
if isProj {
|
|
proj.SetStats(p.StatsInfo())
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (p *PhysicalLimit) sinkIntoIndexMerge(t base.Task) bool {
|
|
root := t.(*RootTask)
|
|
imReader, isIm := root.GetPlan().(*PhysicalIndexMergeReader)
|
|
proj, isProj := root.GetPlan().(*PhysicalProjection)
|
|
if !isIm && !isProj {
|
|
return false
|
|
}
|
|
if isProj {
|
|
imReader, isIm = proj.Children()[0].(*PhysicalIndexMergeReader)
|
|
if !isIm {
|
|
return false
|
|
}
|
|
}
|
|
ts, ok := imReader.tablePlan.(*PhysicalTableScan)
|
|
if !ok {
|
|
return false
|
|
}
|
|
imReader.PushedLimit = &PushedDownLimit{
|
|
Count: p.Count,
|
|
Offset: p.Offset,
|
|
}
|
|
// since ts.statsInfo.rowcount may dramatically smaller than limit.statsInfo.
|
|
// like limit: rowcount=1
|
|
// ts: rowcount=0.0025
|
|
originStats := ts.StatsInfo()
|
|
if originStats != nil {
|
|
// keep the original stats version
|
|
ts.StatsInfo().StatsVersion = originStats.StatsVersion
|
|
if originStats.RowCount < p.StatsInfo().RowCount {
|
|
ts.StatsInfo().RowCount = originStats.RowCount
|
|
}
|
|
}
|
|
needProj := p.schema.Len() != root.GetPlan().Schema().Len()
|
|
if !needProj {
|
|
for i := 0; i < p.schema.Len(); i++ {
|
|
if !p.schema.Columns[i].EqualColumn(root.GetPlan().Schema().Columns[i]) {
|
|
needProj = true
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if needProj {
|
|
extraProj := PhysicalProjection{
|
|
Exprs: expression.Column2Exprs(p.schema.Columns),
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset(), nil)
|
|
extraProj.SetSchema(p.schema)
|
|
// If the root.p is already a Projection. We left the optimization for the later Projection Elimination.
|
|
extraProj.SetChildren(root.GetPlan())
|
|
root.SetPlan(extraProj)
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalSort) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
t = attachPlan2Task(p, t)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *NominalSort) Attach2Task(tasks ...base.Task) base.Task {
|
|
if p.OnlyColumn {
|
|
return tasks[0]
|
|
}
|
|
t := tasks[0].Copy()
|
|
t = attachPlan2Task(p, t)
|
|
return t
|
|
}
|
|
|
|
func (p *PhysicalTopN) getPushedDownTopN(childPlan base.PhysicalPlan) *PhysicalTopN {
|
|
newByItems := make([]*util.ByItems, 0, len(p.ByItems))
|
|
for _, expr := range p.ByItems {
|
|
newByItems = append(newByItems, expr.Clone())
|
|
}
|
|
newPartitionBy := make([]property.SortItem, 0, len(p.GetPartitionBy()))
|
|
for _, expr := range p.GetPartitionBy() {
|
|
newPartitionBy = append(newPartitionBy, expr.Clone())
|
|
}
|
|
newCount := p.Offset + p.Count
|
|
childProfile := childPlan.StatsInfo()
|
|
// Strictly speaking, for the row count of pushed down TopN, we should multiply newCount with "regionNum",
|
|
// but "regionNum" is unknown since the copTask can be a double read, so we ignore it now.
|
|
stats := util.DeriveLimitStats(childProfile, float64(newCount))
|
|
topN := PhysicalTopN{
|
|
ByItems: newByItems,
|
|
PartitionBy: newPartitionBy,
|
|
Count: newCount,
|
|
}.Init(p.SCtx(), stats, p.QueryBlockOffset(), p.GetChildReqProps(0))
|
|
topN.SetChildren(childPlan)
|
|
return topN
|
|
}
|
|
|
|
// canPushToIndexPlan checks if this TopN can be pushed to the index side of copTask.
|
|
// It can be pushed to the index side when all columns used by ByItems are available from the index side and there's no prefix index column.
|
|
func (*PhysicalTopN) canPushToIndexPlan(indexPlan base.PhysicalPlan, byItemCols []*expression.Column) bool {
|
|
// If we call canPushToIndexPlan and there's no index plan, we should go into the index merge case.
|
|
// Index merge case is specially handled for now. So we directly return false here.
|
|
// So we directly return false.
|
|
if indexPlan == nil {
|
|
return false
|
|
}
|
|
schema := indexPlan.Schema()
|
|
for _, col := range byItemCols {
|
|
pos := schema.ColumnIndex(col)
|
|
if pos == -1 {
|
|
return false
|
|
}
|
|
if schema.Columns[pos].IsPrefix {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// canExpressionConvertedToPB checks whether each of the the expression in TopN can be converted to pb.
|
|
func (p *PhysicalTopN) canExpressionConvertedToPB(storeTp kv.StoreType) bool {
|
|
exprs := make([]expression.Expression, 0, len(p.ByItems))
|
|
for _, item := range p.ByItems {
|
|
exprs = append(exprs, item.Expr)
|
|
}
|
|
return expression.CanExprsPushDown(util.GetPushDownCtx(p.SCtx()), exprs, storeTp)
|
|
}
|
|
|
|
// containVirtualColumn checks whether TopN.ByItems contains virtual generated columns.
|
|
func (p *PhysicalTopN) containVirtualColumn(tCols []*expression.Column) bool {
|
|
tColSet := make(map[int64]struct{}, len(tCols))
|
|
for _, tCol := range tCols {
|
|
if tCol.ID > 0 && tCol.VirtualExpr != nil {
|
|
tColSet[tCol.ID] = struct{}{}
|
|
}
|
|
}
|
|
for _, by := range p.ByItems {
|
|
cols := expression.ExtractColumns(by.Expr)
|
|
for _, col := range cols {
|
|
if _, ok := tColSet[col.ID]; ok {
|
|
// A column with ID > 0 indicates that the column can be resolved by data source.
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// canPushDownToTiKV checks whether this topN can be pushed down to TiKV.
|
|
func (p *PhysicalTopN) canPushDownToTiKV(copTask *CopTask) bool {
|
|
if !p.canExpressionConvertedToPB(kv.TiKV) {
|
|
return false
|
|
}
|
|
if len(copTask.rootTaskConds) != 0 {
|
|
return false
|
|
}
|
|
if !copTask.indexPlanFinished && len(copTask.idxMergePartPlans) > 0 {
|
|
for _, partialPlan := range copTask.idxMergePartPlans {
|
|
if p.containVirtualColumn(partialPlan.Schema().Columns) {
|
|
return false
|
|
}
|
|
}
|
|
} else if p.containVirtualColumn(copTask.Plan().Schema().Columns) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// canPushDownToTiFlash checks whether this topN can be pushed down to TiFlash.
|
|
func (p *PhysicalTopN) canPushDownToTiFlash(mppTask *MppTask) bool {
|
|
if !p.canExpressionConvertedToPB(kv.TiFlash) {
|
|
return false
|
|
}
|
|
if p.containVirtualColumn(mppTask.Plan().Schema().Columns) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Attach2Task implements physical plan
|
|
func (p *PhysicalTopN) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
cols := make([]*expression.Column, 0, len(p.ByItems))
|
|
for _, item := range p.ByItems {
|
|
cols = append(cols, expression.ExtractColumns(item.Expr)...)
|
|
}
|
|
needPushDown := len(cols) > 0
|
|
if copTask, ok := t.(*CopTask); ok && needPushDown && p.canPushDownToTiKV(copTask) && len(copTask.rootTaskConds) == 0 {
|
|
// If all columns in topN are from index plan, we push it to index plan, otherwise we finish the index plan and
|
|
// push it to table plan.
|
|
var pushedDownTopN *PhysicalTopN
|
|
if !copTask.indexPlanFinished && p.canPushToIndexPlan(copTask.indexPlan, cols) {
|
|
pushedDownTopN = p.getPushedDownTopN(copTask.indexPlan)
|
|
copTask.indexPlan = pushedDownTopN
|
|
} else {
|
|
// It works for both normal index scan and index merge scan.
|
|
copTask.finishIndexPlan()
|
|
pushedDownTopN = p.getPushedDownTopN(copTask.tablePlan)
|
|
copTask.tablePlan = pushedDownTopN
|
|
}
|
|
} else if mppTask, ok := t.(*MppTask); ok && needPushDown && p.canPushDownToTiFlash(mppTask) {
|
|
pushedDownTopN := p.getPushedDownTopN(mppTask.p)
|
|
mppTask.p = pushedDownTopN
|
|
}
|
|
rootTask := t.ConvertToRootTask(p.SCtx())
|
|
// Skip TopN with partition on the root. This is a derived topN and window function
|
|
// will take care of the filter.
|
|
if len(p.GetPartitionBy()) > 0 {
|
|
return t
|
|
}
|
|
return attachPlan2Task(p, rootTask)
|
|
}
|
|
|
|
// Attach2Task implements the PhysicalPlan interface.
|
|
func (p *PhysicalExpand) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
// current expand can only be run in MPP TiFlash mode or Root Tidb mode.
|
|
// if expr inside could not be pushed down to tiFlash, it will error in converting to pb side.
|
|
if mpp, ok := t.(*MppTask); ok {
|
|
p.SetChildren(mpp.p)
|
|
mpp.p = p
|
|
return mpp
|
|
}
|
|
// For root task
|
|
// since expand should be in root side accordingly, convert to root task now.
|
|
root := t.ConvertToRootTask(p.SCtx())
|
|
t = attachPlan2Task(p, root)
|
|
if root, ok := tasks[0].(*RootTask); ok && root.IsEmpty() {
|
|
t.(*RootTask).SetEmpty(true)
|
|
}
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalProjection) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
if cop, ok := t.(*CopTask); ok {
|
|
if (len(cop.rootTaskConds) == 0 && len(cop.idxMergePartPlans) == 0) && expression.CanExprsPushDown(util.GetPushDownCtx(p.SCtx()), p.Exprs, cop.getStoreType()) {
|
|
copTask := attachPlan2Task(p, cop)
|
|
return copTask
|
|
}
|
|
} else if mpp, ok := t.(*MppTask); ok {
|
|
if expression.CanExprsPushDown(util.GetPushDownCtx(p.SCtx()), p.Exprs, kv.TiFlash) {
|
|
p.SetChildren(mpp.p)
|
|
mpp.p = p
|
|
return mpp
|
|
}
|
|
}
|
|
t = t.ConvertToRootTask(p.SCtx())
|
|
t = attachPlan2Task(p, t)
|
|
if root, ok := tasks[0].(*RootTask); ok && root.IsEmpty() {
|
|
t.(*RootTask).SetEmpty(true)
|
|
}
|
|
return t
|
|
}
|
|
|
|
func (p *PhysicalUnionAll) attach2MppTasks(tasks ...base.Task) base.Task {
|
|
t := &MppTask{p: p}
|
|
childPlans := make([]base.PhysicalPlan, 0, len(tasks))
|
|
for _, tk := range tasks {
|
|
if mpp, ok := tk.(*MppTask); ok && !tk.Invalid() {
|
|
childPlans = append(childPlans, mpp.Plan())
|
|
} else if root, ok := tk.(*RootTask); ok && root.IsEmpty() {
|
|
continue
|
|
} else {
|
|
return base.InvalidTask
|
|
}
|
|
}
|
|
if len(childPlans) == 0 {
|
|
return base.InvalidTask
|
|
}
|
|
p.SetChildren(childPlans...)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalUnionAll) Attach2Task(tasks ...base.Task) base.Task {
|
|
for _, t := range tasks {
|
|
if _, ok := t.(*MppTask); ok {
|
|
if p.TP() == plancodec.TypePartitionUnion {
|
|
// In attach2MppTasks(), will attach PhysicalUnion to mppTask directly.
|
|
// But PartitionUnion cannot pushdown to tiflash, so here disable PartitionUnion pushdown to tiflash explicitly.
|
|
// For now, return base.InvalidTask immediately, we can refine this by letting childTask of PartitionUnion convert to rootTask.
|
|
return base.InvalidTask
|
|
}
|
|
return p.attach2MppTasks(tasks...)
|
|
}
|
|
}
|
|
t := &RootTask{}
|
|
t.SetPlan(p)
|
|
childPlans := make([]base.PhysicalPlan, 0, len(tasks))
|
|
for _, task := range tasks {
|
|
task = task.ConvertToRootTask(p.SCtx())
|
|
childPlans = append(childPlans, task.Plan())
|
|
}
|
|
p.SetChildren(childPlans...)
|
|
return t
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (sel *PhysicalSelection) Attach2Task(tasks ...base.Task) base.Task {
|
|
if mppTask, _ := tasks[0].(*MppTask); mppTask != nil { // always push to mpp task.
|
|
if expression.CanExprsPushDown(util.GetPushDownCtx(sel.SCtx()), sel.Conditions, kv.TiFlash) {
|
|
return attachPlan2Task(sel, mppTask.Copy())
|
|
}
|
|
}
|
|
t := tasks[0].ConvertToRootTask(sel.SCtx())
|
|
return attachPlan2Task(sel, t)
|
|
}
|
|
|
|
// CheckAggCanPushCop checks whether the aggFuncs and groupByItems can
|
|
// be pushed down to coprocessor.
|
|
func CheckAggCanPushCop(sctx base.PlanContext, aggFuncs []*aggregation.AggFuncDesc, groupByItems []expression.Expression, storeType kv.StoreType) bool {
|
|
sc := sctx.GetSessionVars().StmtCtx
|
|
ret := true
|
|
reason := ""
|
|
pushDownCtx := util.GetPushDownCtx(sctx)
|
|
for _, aggFunc := range aggFuncs {
|
|
// if the aggFunc contain VirtualColumn or CorrelatedColumn, it can not be pushed down.
|
|
if expression.ContainVirtualColumn(aggFunc.Args) || expression.ContainCorrelatedColumn(aggFunc.Args) {
|
|
reason = "expressions of AggFunc `" + aggFunc.Name + "` contain virtual column or correlated column, which is not supported now"
|
|
ret = false
|
|
break
|
|
}
|
|
if !aggregation.CheckAggPushDown(sctx.GetExprCtx().GetEvalCtx(), aggFunc, storeType) {
|
|
reason = "AggFunc `" + aggFunc.Name + "` is not supported now"
|
|
ret = false
|
|
break
|
|
}
|
|
if !expression.CanExprsPushDownWithExtraInfo(util.GetPushDownCtx(sctx), aggFunc.Args, storeType, aggFunc.Name == ast.AggFuncSum) {
|
|
reason = "arguments of AggFunc `" + aggFunc.Name + "` contains unsupported exprs"
|
|
ret = false
|
|
break
|
|
}
|
|
orderBySize := len(aggFunc.OrderByItems)
|
|
if orderBySize > 0 {
|
|
exprs := make([]expression.Expression, 0, orderBySize)
|
|
for _, item := range aggFunc.OrderByItems {
|
|
exprs = append(exprs, item.Expr)
|
|
}
|
|
if !expression.CanExprsPushDownWithExtraInfo(util.GetPushDownCtx(sctx), exprs, storeType, false) {
|
|
reason = "arguments of AggFunc `" + aggFunc.Name + "` contains unsupported exprs in order-by clause"
|
|
ret = false
|
|
break
|
|
}
|
|
}
|
|
pb, _ := aggregation.AggFuncToPBExpr(pushDownCtx, aggFunc, storeType)
|
|
if pb == nil {
|
|
reason = "AggFunc `" + aggFunc.Name + "` can not be converted to pb expr"
|
|
ret = false
|
|
break
|
|
}
|
|
}
|
|
if ret && expression.ContainVirtualColumn(groupByItems) {
|
|
reason = "groupByItems contain virtual columns, which is not supported now"
|
|
ret = false
|
|
}
|
|
if ret && !expression.CanExprsPushDown(util.GetPushDownCtx(sctx), groupByItems, storeType) {
|
|
reason = "groupByItems contain unsupported exprs"
|
|
ret = false
|
|
}
|
|
|
|
if !ret {
|
|
storageName := storeType.Name()
|
|
if storeType == kv.UnSpecified {
|
|
storageName = "storage layer"
|
|
}
|
|
warnErr := errors.NewNoStackError("Aggregation can not be pushed to " + storageName + " because " + reason)
|
|
if sc.InExplainStmt {
|
|
sc.AppendWarning(warnErr)
|
|
} else {
|
|
sc.AppendExtraWarning(warnErr)
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// AggInfo stores the information of an Aggregation.
|
|
type AggInfo struct {
|
|
AggFuncs []*aggregation.AggFuncDesc
|
|
GroupByItems []expression.Expression
|
|
Schema *expression.Schema
|
|
}
|
|
|
|
// BuildFinalModeAggregation splits either LogicalAggregation or PhysicalAggregation to finalAgg and partial1Agg,
|
|
// returns the information of partial and final agg.
|
|
// partialIsCop means whether partial agg is a cop task. When partialIsCop is false,
|
|
// we do not set the AggMode for partialAgg cause it may be split further when
|
|
// building the aggregate executor(e.g. buildHashAgg will split the AggDesc further for parallel executing).
|
|
// firstRowFuncMap is a map between partial first_row to final first_row, will be used in RemoveUnnecessaryFirstRow
|
|
func BuildFinalModeAggregation(
|
|
sctx base.PlanContext, original *AggInfo, partialIsCop bool, isMPPTask bool) (partial, final *AggInfo, firstRowFuncMap map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc) {
|
|
ectx := sctx.GetExprCtx().GetEvalCtx()
|
|
|
|
firstRowFuncMap = make(map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc, len(original.AggFuncs))
|
|
partial = &AggInfo{
|
|
AggFuncs: make([]*aggregation.AggFuncDesc, 0, len(original.AggFuncs)),
|
|
GroupByItems: original.GroupByItems,
|
|
Schema: expression.NewSchema(),
|
|
}
|
|
partialCursor := 0
|
|
final = &AggInfo{
|
|
AggFuncs: make([]*aggregation.AggFuncDesc, len(original.AggFuncs)),
|
|
GroupByItems: make([]expression.Expression, 0, len(original.GroupByItems)),
|
|
Schema: original.Schema,
|
|
}
|
|
|
|
partialGbySchema := expression.NewSchema()
|
|
// add group by columns
|
|
for _, gbyExpr := range partial.GroupByItems {
|
|
var gbyCol *expression.Column
|
|
if col, ok := gbyExpr.(*expression.Column); ok {
|
|
gbyCol = col
|
|
} else {
|
|
gbyCol = &expression.Column{
|
|
UniqueID: sctx.GetSessionVars().AllocPlanColumnID(),
|
|
RetType: gbyExpr.GetType(ectx),
|
|
}
|
|
}
|
|
partialGbySchema.Append(gbyCol)
|
|
final.GroupByItems = append(final.GroupByItems, gbyCol)
|
|
}
|
|
|
|
// TODO: Refactor the way of constructing aggregation functions.
|
|
// This for loop is ugly, but I do not find a proper way to reconstruct
|
|
// it right away.
|
|
|
|
// group_concat is special when pushing down, it cannot take the two phase execution if no distinct but with orderBy, and other cases are also different:
|
|
// for example: group_concat([distinct] expr0, expr1[, order by expr2] separator ‘,’)
|
|
// no distinct, no orderBy: can two phase
|
|
// [final agg] group_concat(col#1,’,’)
|
|
// [part agg] group_concat(expr0, expr1,’,’) -> col#1
|
|
// no distinct, orderBy: only one phase
|
|
// distinct, no orderBy: can two phase
|
|
// [final agg] group_concat(distinct col#0, col#1,’,’)
|
|
// [part agg] group by expr0 ->col#0, expr1 -> col#1
|
|
// distinct, orderBy: can two phase
|
|
// [final agg] group_concat(distinct col#0, col#1, order by col#2,’,’)
|
|
// [part agg] group by expr0 ->col#0, expr1 -> col#1; agg function: firstrow(expr2)-> col#2
|
|
|
|
for i, aggFunc := range original.AggFuncs {
|
|
finalAggFunc := &aggregation.AggFuncDesc{HasDistinct: false}
|
|
finalAggFunc.Name = aggFunc.Name
|
|
finalAggFunc.OrderByItems = aggFunc.OrderByItems
|
|
args := make([]expression.Expression, 0, len(aggFunc.Args))
|
|
if aggFunc.HasDistinct {
|
|
/*
|
|
eg: SELECT COUNT(DISTINCT a), SUM(b) FROM t GROUP BY c
|
|
|
|
change from
|
|
[root] group by: c, funcs:count(distinct a), funcs:sum(b)
|
|
to
|
|
[root] group by: c, funcs:count(distinct a), funcs:sum(b)
|
|
[cop]: group by: c, a
|
|
*/
|
|
// onlyAddFirstRow means if the distinctArg does not occur in group by items,
|
|
// it should be replaced with a firstrow() agg function, needed for the order by items of group_concat()
|
|
getDistinctExpr := func(distinctArg expression.Expression, onlyAddFirstRow bool) (ret expression.Expression) {
|
|
// 1. add all args to partial.GroupByItems
|
|
foundInGroupBy := false
|
|
for j, gbyExpr := range partial.GroupByItems {
|
|
if gbyExpr.Equal(ectx, distinctArg) && gbyExpr.GetType(ectx).Equal(distinctArg.GetType(ectx)) {
|
|
// if the two expressions exactly the same in terms of data types and collation, then can avoid it.
|
|
foundInGroupBy = true
|
|
ret = partialGbySchema.Columns[j]
|
|
break
|
|
}
|
|
}
|
|
if !foundInGroupBy {
|
|
var gbyCol *expression.Column
|
|
if col, ok := distinctArg.(*expression.Column); ok {
|
|
gbyCol = col
|
|
} else {
|
|
gbyCol = &expression.Column{
|
|
UniqueID: sctx.GetSessionVars().AllocPlanColumnID(),
|
|
RetType: distinctArg.GetType(ectx),
|
|
}
|
|
}
|
|
// 2. add group by items if needed
|
|
if !onlyAddFirstRow {
|
|
partial.GroupByItems = append(partial.GroupByItems, distinctArg)
|
|
partialGbySchema.Append(gbyCol)
|
|
ret = gbyCol
|
|
}
|
|
// 3. add firstrow() if needed
|
|
if !partialIsCop || onlyAddFirstRow {
|
|
// if partial is a cop task, firstrow function is redundant since group by items are outputted
|
|
// by group by schema, and final functions use group by schema as their arguments.
|
|
// if partial agg is not cop, we must append firstrow function & schema, to output the group by
|
|
// items.
|
|
// maybe we can unify them sometime.
|
|
// only add firstrow for order by items of group_concat()
|
|
firstRow, err := aggregation.NewAggFuncDesc(sctx.GetExprCtx(), ast.AggFuncFirstRow, []expression.Expression{distinctArg}, false)
|
|
if err != nil {
|
|
panic("NewAggFuncDesc FirstRow meets error: " + err.Error())
|
|
}
|
|
partial.AggFuncs = append(partial.AggFuncs, firstRow)
|
|
newCol, _ := gbyCol.Clone().(*expression.Column)
|
|
newCol.RetType = firstRow.RetTp
|
|
partial.Schema.Append(newCol)
|
|
if onlyAddFirstRow {
|
|
ret = newCol
|
|
}
|
|
partialCursor++
|
|
}
|
|
}
|
|
return ret
|
|
}
|
|
|
|
for j, distinctArg := range aggFunc.Args {
|
|
// the last arg of ast.AggFuncGroupConcat is the separator, so just put it into the final agg
|
|
if aggFunc.Name == ast.AggFuncGroupConcat && j+1 == len(aggFunc.Args) {
|
|
args = append(args, distinctArg)
|
|
continue
|
|
}
|
|
args = append(args, getDistinctExpr(distinctArg, false))
|
|
}
|
|
|
|
byItems := make([]*util.ByItems, 0, len(aggFunc.OrderByItems))
|
|
for _, byItem := range aggFunc.OrderByItems {
|
|
byItems = append(byItems, &util.ByItems{Expr: getDistinctExpr(byItem.Expr, true), Desc: byItem.Desc})
|
|
}
|
|
|
|
if aggFunc.HasDistinct && isMPPTask && aggFunc.GroupingID > 0 {
|
|
// keep the groupingID as it was, otherwise the new split final aggregate's ganna lost its groupingID info.
|
|
finalAggFunc.GroupingID = aggFunc.GroupingID
|
|
}
|
|
|
|
finalAggFunc.OrderByItems = byItems
|
|
finalAggFunc.HasDistinct = aggFunc.HasDistinct
|
|
// In logical optimize phase, the Agg->PartitionUnion->TableReader may become
|
|
// Agg1->PartitionUnion->Agg2->TableReader, and the Agg2 is a partial aggregation.
|
|
// So in the push down here, we need to add a new if-condition check:
|
|
// If the original agg mode is partial already, the finalAggFunc's mode become Partial2.
|
|
if aggFunc.Mode == aggregation.CompleteMode {
|
|
finalAggFunc.Mode = aggregation.CompleteMode
|
|
} else if aggFunc.Mode == aggregation.Partial1Mode || aggFunc.Mode == aggregation.Partial2Mode {
|
|
finalAggFunc.Mode = aggregation.Partial2Mode
|
|
}
|
|
} else {
|
|
if aggFunc.Name == ast.AggFuncGroupConcat && len(aggFunc.OrderByItems) > 0 {
|
|
// group_concat can only run in one phase if it has order by items but without distinct property
|
|
partial = nil
|
|
final = original
|
|
return
|
|
}
|
|
if aggregation.NeedCount(finalAggFunc.Name) {
|
|
// only Avg and Count need count
|
|
if isMPPTask && finalAggFunc.Name == ast.AggFuncCount {
|
|
// For MPP base.Task, the final count() is changed to sum().
|
|
// Note: MPP mode does not run avg() directly, instead, avg() -> sum()/(case when count() = 0 then 1 else count() end),
|
|
// so we do not process it here.
|
|
finalAggFunc.Name = ast.AggFuncSum
|
|
} else {
|
|
// avg branch
|
|
ft := types.NewFieldType(mysql.TypeLonglong)
|
|
ft.SetFlen(21)
|
|
ft.SetCharset(charset.CharsetBin)
|
|
ft.SetCollate(charset.CollationBin)
|
|
partial.Schema.Append(&expression.Column{
|
|
UniqueID: sctx.GetSessionVars().AllocPlanColumnID(),
|
|
RetType: ft,
|
|
})
|
|
args = append(args, partial.Schema.Columns[partialCursor])
|
|
partialCursor++
|
|
}
|
|
}
|
|
if finalAggFunc.Name == ast.AggFuncApproxCountDistinct {
|
|
ft := types.NewFieldType(mysql.TypeString)
|
|
ft.SetCharset(charset.CharsetBin)
|
|
ft.SetCollate(charset.CollationBin)
|
|
ft.AddFlag(mysql.NotNullFlag)
|
|
partial.Schema.Append(&expression.Column{
|
|
UniqueID: sctx.GetSessionVars().AllocPlanColumnID(),
|
|
RetType: ft,
|
|
})
|
|
args = append(args, partial.Schema.Columns[partialCursor])
|
|
partialCursor++
|
|
}
|
|
if aggregation.NeedValue(finalAggFunc.Name) {
|
|
partial.Schema.Append(&expression.Column{
|
|
UniqueID: sctx.GetSessionVars().AllocPlanColumnID(),
|
|
RetType: original.Schema.Columns[i].GetType(ectx),
|
|
})
|
|
args = append(args, partial.Schema.Columns[partialCursor])
|
|
partialCursor++
|
|
}
|
|
if aggFunc.Name == ast.AggFuncAvg {
|
|
cntAgg := aggFunc.Clone()
|
|
cntAgg.Name = ast.AggFuncCount
|
|
err := cntAgg.TypeInfer(sctx.GetExprCtx())
|
|
if err != nil { // must not happen
|
|
partial = nil
|
|
final = original
|
|
return
|
|
}
|
|
partial.Schema.Columns[partialCursor-2].RetType = cntAgg.RetTp
|
|
// we must call deep clone in this case, to avoid sharing the arguments.
|
|
sumAgg := aggFunc.Clone()
|
|
sumAgg.Name = ast.AggFuncSum
|
|
sumAgg.TypeInfer4AvgSum(sumAgg.RetTp)
|
|
partial.Schema.Columns[partialCursor-1].RetType = sumAgg.RetTp
|
|
partial.AggFuncs = append(partial.AggFuncs, cntAgg, sumAgg)
|
|
} else if aggFunc.Name == ast.AggFuncApproxCountDistinct || aggFunc.Name == ast.AggFuncGroupConcat {
|
|
newAggFunc := aggFunc.Clone()
|
|
newAggFunc.Name = aggFunc.Name
|
|
newAggFunc.RetTp = partial.Schema.Columns[partialCursor-1].GetType(ectx)
|
|
partial.AggFuncs = append(partial.AggFuncs, newAggFunc)
|
|
if aggFunc.Name == ast.AggFuncGroupConcat {
|
|
// append the last separator arg
|
|
args = append(args, aggFunc.Args[len(aggFunc.Args)-1])
|
|
}
|
|
} else {
|
|
// other agg desc just split into two parts
|
|
partialFuncDesc := aggFunc.Clone()
|
|
partial.AggFuncs = append(partial.AggFuncs, partialFuncDesc)
|
|
if aggFunc.Name == ast.AggFuncFirstRow {
|
|
firstRowFuncMap[partialFuncDesc] = finalAggFunc
|
|
}
|
|
}
|
|
|
|
// In logical optimize phase, the Agg->PartitionUnion->TableReader may become
|
|
// Agg1->PartitionUnion->Agg2->TableReader, and the Agg2 is a partial aggregation.
|
|
// So in the push down here, we need to add a new if-condition check:
|
|
// If the original agg mode is partial already, the finalAggFunc's mode become Partial2.
|
|
if aggFunc.Mode == aggregation.CompleteMode {
|
|
finalAggFunc.Mode = aggregation.FinalMode
|
|
} else if aggFunc.Mode == aggregation.Partial1Mode || aggFunc.Mode == aggregation.Partial2Mode {
|
|
finalAggFunc.Mode = aggregation.Partial2Mode
|
|
}
|
|
}
|
|
|
|
finalAggFunc.Args = args
|
|
finalAggFunc.RetTp = aggFunc.RetTp
|
|
final.AggFuncs[i] = finalAggFunc
|
|
}
|
|
partial.Schema.Append(partialGbySchema.Columns...)
|
|
if partialIsCop {
|
|
for _, f := range partial.AggFuncs {
|
|
f.Mode = aggregation.Partial1Mode
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// convertAvgForMPP converts avg(arg) to sum(arg)/(case when count(arg)=0 then 1 else count(arg) end), in detail:
|
|
// 1.rewrite avg() in the final aggregation to count() and sum(), and reconstruct its schema.
|
|
// 2.replace avg() with sum(arg)/(case when count(arg)=0 then 1 else count(arg) end) and reuse the original schema of the final aggregation.
|
|
// If there is no avg, nothing is changed and return nil.
|
|
func (p *basePhysicalAgg) convertAvgForMPP() *PhysicalProjection {
|
|
newSchema := expression.NewSchema()
|
|
newSchema.Keys = p.schema.Keys
|
|
newSchema.UniqueKeys = p.schema.UniqueKeys
|
|
newAggFuncs := make([]*aggregation.AggFuncDesc, 0, 2*len(p.AggFuncs))
|
|
exprs := make([]expression.Expression, 0, 2*len(p.schema.Columns))
|
|
// add agg functions schema
|
|
for i, aggFunc := range p.AggFuncs {
|
|
if aggFunc.Name == ast.AggFuncAvg {
|
|
// inset a count(column)
|
|
avgCount := aggFunc.Clone()
|
|
avgCount.Name = ast.AggFuncCount
|
|
err := avgCount.TypeInfer(p.SCtx().GetExprCtx())
|
|
if err != nil { // must not happen
|
|
return nil
|
|
}
|
|
newAggFuncs = append(newAggFuncs, avgCount)
|
|
avgCountCol := &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: avgCount.RetTp,
|
|
}
|
|
newSchema.Append(avgCountCol)
|
|
// insert a sum(column)
|
|
avgSum := aggFunc.Clone()
|
|
avgSum.Name = ast.AggFuncSum
|
|
avgSum.TypeInfer4AvgSum(avgSum.RetTp)
|
|
newAggFuncs = append(newAggFuncs, avgSum)
|
|
avgSumCol := &expression.Column{
|
|
UniqueID: p.schema.Columns[i].UniqueID,
|
|
RetType: avgSum.RetTp,
|
|
}
|
|
newSchema.Append(avgSumCol)
|
|
// avgSumCol/(case when avgCountCol=0 then 1 else avgCountCol end)
|
|
eq := expression.NewFunctionInternal(p.SCtx().GetExprCtx(), ast.EQ, types.NewFieldType(mysql.TypeTiny), avgCountCol, expression.NewZero())
|
|
caseWhen := expression.NewFunctionInternal(p.SCtx().GetExprCtx(), ast.Case, avgCountCol.RetType, eq, expression.NewOne(), avgCountCol)
|
|
divide := expression.NewFunctionInternal(p.SCtx().GetExprCtx(), ast.Div, avgSumCol.RetType, avgSumCol, caseWhen)
|
|
divide.(*expression.ScalarFunction).RetType = p.schema.Columns[i].RetType
|
|
exprs = append(exprs, divide)
|
|
} else {
|
|
// other non-avg agg use the old schema as it did.
|
|
newAggFuncs = append(newAggFuncs, aggFunc)
|
|
newSchema.Append(p.schema.Columns[i])
|
|
exprs = append(exprs, p.schema.Columns[i])
|
|
}
|
|
}
|
|
// no avgs
|
|
// for final agg, always add project due to in-compatibility between TiDB and TiFlash
|
|
if len(p.schema.Columns) == len(newSchema.Columns) && !p.IsFinalAgg() {
|
|
return nil
|
|
}
|
|
// add remaining columns to exprs
|
|
for i := len(p.AggFuncs); i < len(p.schema.Columns); i++ {
|
|
exprs = append(exprs, p.schema.Columns[i])
|
|
}
|
|
proj := PhysicalProjection{
|
|
Exprs: exprs,
|
|
CalculateNoDelay: false,
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset(), p.GetChildReqProps(0).CloneEssentialFields())
|
|
proj.SetSchema(p.schema)
|
|
|
|
p.AggFuncs = newAggFuncs
|
|
p.schema = newSchema
|
|
|
|
return proj
|
|
}
|
|
|
|
func (p *basePhysicalAgg) newPartialAggregate(copTaskType kv.StoreType, isMPPTask bool) (partial, final base.PhysicalPlan) {
|
|
// Check if this aggregation can push down.
|
|
if !CheckAggCanPushCop(p.SCtx(), p.AggFuncs, p.GroupByItems, copTaskType) {
|
|
return nil, p.Self
|
|
}
|
|
partialPref, finalPref, firstRowFuncMap := BuildFinalModeAggregation(p.SCtx(), &AggInfo{
|
|
AggFuncs: p.AggFuncs,
|
|
GroupByItems: p.GroupByItems,
|
|
Schema: p.Schema().Clone(),
|
|
}, true, isMPPTask)
|
|
if partialPref == nil {
|
|
return nil, p.Self
|
|
}
|
|
if p.TP() == plancodec.TypeStreamAgg && len(partialPref.GroupByItems) != len(finalPref.GroupByItems) {
|
|
return nil, p.Self
|
|
}
|
|
// Remove unnecessary FirstRow.
|
|
partialPref.AggFuncs = RemoveUnnecessaryFirstRow(p.SCtx(),
|
|
finalPref.GroupByItems, partialPref.AggFuncs, partialPref.GroupByItems, partialPref.Schema, firstRowFuncMap)
|
|
if copTaskType == kv.TiDB {
|
|
// For partial agg of TiDB cop task, since TiDB coprocessor reuse the TiDB executor,
|
|
// and TiDB aggregation executor won't output the group by value,
|
|
// so we need add `firstrow` aggregation function to output the group by value.
|
|
aggFuncs, err := genFirstRowAggForGroupBy(p.SCtx(), partialPref.GroupByItems)
|
|
if err != nil {
|
|
return nil, p.Self
|
|
}
|
|
partialPref.AggFuncs = append(partialPref.AggFuncs, aggFuncs...)
|
|
}
|
|
p.AggFuncs = partialPref.AggFuncs
|
|
p.GroupByItems = partialPref.GroupByItems
|
|
p.schema = partialPref.Schema
|
|
partialAgg := p.Self
|
|
// Create physical "final" aggregation.
|
|
prop := &property.PhysicalProperty{ExpectedCnt: math.MaxFloat64}
|
|
if p.TP() == plancodec.TypeStreamAgg {
|
|
finalAgg := basePhysicalAgg{
|
|
AggFuncs: finalPref.AggFuncs,
|
|
GroupByItems: finalPref.GroupByItems,
|
|
MppRunMode: p.MppRunMode,
|
|
}.initForStream(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset(), prop)
|
|
finalAgg.schema = finalPref.Schema
|
|
return partialAgg, finalAgg
|
|
}
|
|
|
|
finalAgg := basePhysicalAgg{
|
|
AggFuncs: finalPref.AggFuncs,
|
|
GroupByItems: finalPref.GroupByItems,
|
|
MppRunMode: p.MppRunMode,
|
|
}.initForHash(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset(), prop)
|
|
finalAgg.schema = finalPref.Schema
|
|
// partialAgg and finalAgg use the same ref of stats
|
|
return partialAgg, finalAgg
|
|
}
|
|
|
|
func (p *basePhysicalAgg) scale3StageForDistinctAgg() (bool, expression.GroupingSets) {
|
|
if p.canUse3Stage4SingleDistinctAgg() {
|
|
return true, nil
|
|
}
|
|
return p.canUse3Stage4MultiDistinctAgg()
|
|
}
|
|
|
|
// canUse3Stage4MultiDistinctAgg returns true if this agg can use 3 stage for multi distinct aggregation
|
|
func (p *basePhysicalAgg) canUse3Stage4MultiDistinctAgg() (can bool, gss expression.GroupingSets) {
|
|
if !p.SCtx().GetSessionVars().Enable3StageDistinctAgg || !p.SCtx().GetSessionVars().Enable3StageMultiDistinctAgg || len(p.GroupByItems) > 0 {
|
|
return false, nil
|
|
}
|
|
defer func() {
|
|
// some clean work.
|
|
if !can {
|
|
for _, fun := range p.AggFuncs {
|
|
fun.GroupingID = 0
|
|
}
|
|
}
|
|
}()
|
|
// groupingSets is alias of []GroupingSet, the below equal to = make([]GroupingSet, 0, 2)
|
|
groupingSets := make(expression.GroupingSets, 0, 2)
|
|
for _, fun := range p.AggFuncs {
|
|
if fun.HasDistinct {
|
|
if fun.Name != ast.AggFuncCount {
|
|
// now only for multi count(distinct x)
|
|
return false, nil
|
|
}
|
|
for _, arg := range fun.Args {
|
|
// bail out when args are not simple column, see GitHub issue #35417
|
|
if _, ok := arg.(*expression.Column); !ok {
|
|
return false, nil
|
|
}
|
|
}
|
|
// here it's a valid count distinct agg with normal column args, collecting its distinct expr.
|
|
groupingSets = append(groupingSets, expression.GroupingSet{fun.Args})
|
|
// groupingID now is the offset of target grouping in GroupingSets.
|
|
// todo: it may be changed after grouping set merge in the future.
|
|
fun.GroupingID = len(groupingSets)
|
|
} else if len(fun.Args) > 1 {
|
|
return false, nil
|
|
}
|
|
// banned group_concat(x order by y)
|
|
if len(fun.OrderByItems) > 0 || fun.Mode != aggregation.CompleteMode {
|
|
return false, nil
|
|
}
|
|
}
|
|
compressed := groupingSets.Merge()
|
|
if len(compressed) != len(groupingSets) {
|
|
p.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("Some grouping sets should be merged"))
|
|
// todo arenatlx: some grouping set should be merged which is not supported by now temporarily.
|
|
return false, nil
|
|
}
|
|
if groupingSets.NeedCloneColumn() {
|
|
// todo: column clone haven't implemented.
|
|
return false, nil
|
|
}
|
|
if len(groupingSets) > 1 {
|
|
// fill the grouping ID for normal agg.
|
|
for _, fun := range p.AggFuncs {
|
|
if fun.GroupingID == 0 {
|
|
// the grouping ID hasn't set. find the targeting grouping set.
|
|
groupingSetOffset := groupingSets.TargetOne(fun.Args)
|
|
if groupingSetOffset == -1 {
|
|
// todo: if we couldn't find a existed current valid group layout, we need to copy the column out from being filled with null value.
|
|
p.SCtx().GetSessionVars().StmtCtx.AppendWarning(errors.NewNoStackErrorf("couldn't find a proper group set for normal agg"))
|
|
return false, nil
|
|
}
|
|
// starting with 1
|
|
fun.GroupingID = groupingSetOffset + 1
|
|
}
|
|
}
|
|
return true, groupingSets
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
// canUse3Stage4SingleDistinctAgg returns true if this agg can use 3 stage for distinct aggregation
|
|
func (p *basePhysicalAgg) canUse3Stage4SingleDistinctAgg() bool {
|
|
num := 0
|
|
if !p.SCtx().GetSessionVars().Enable3StageDistinctAgg || len(p.GroupByItems) > 0 {
|
|
return false
|
|
}
|
|
for _, fun := range p.AggFuncs {
|
|
if fun.HasDistinct {
|
|
num++
|
|
if num > 1 || fun.Name != ast.AggFuncCount {
|
|
return false
|
|
}
|
|
for _, arg := range fun.Args {
|
|
// bail out when args are not simple column, see GitHub issue #35417
|
|
if _, ok := arg.(*expression.Column); !ok {
|
|
return false
|
|
}
|
|
}
|
|
} else if len(fun.Args) > 1 {
|
|
return false
|
|
}
|
|
|
|
if len(fun.OrderByItems) > 0 || fun.Mode != aggregation.CompleteMode {
|
|
return false
|
|
}
|
|
}
|
|
return num == 1
|
|
}
|
|
|
|
func genFirstRowAggForGroupBy(ctx base.PlanContext, groupByItems []expression.Expression) ([]*aggregation.AggFuncDesc, error) {
|
|
aggFuncs := make([]*aggregation.AggFuncDesc, 0, len(groupByItems))
|
|
for _, groupBy := range groupByItems {
|
|
agg, err := aggregation.NewAggFuncDesc(ctx.GetExprCtx(), ast.AggFuncFirstRow, []expression.Expression{groupBy}, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
aggFuncs = append(aggFuncs, agg)
|
|
}
|
|
return aggFuncs, nil
|
|
}
|
|
|
|
// RemoveUnnecessaryFirstRow removes unnecessary FirstRow of the aggregation. This function can be
|
|
// used for both LogicalAggregation and PhysicalAggregation.
|
|
// When the select column is same with the group by key, the column can be removed and gets value from the group by key.
|
|
// e.g
|
|
// select a, count(b) from t group by a;
|
|
// The schema is [firstrow(a), count(b), a]. The column firstrow(a) is unnecessary.
|
|
// Can optimize the schema to [count(b), a] , and change the index to get value.
|
|
func RemoveUnnecessaryFirstRow(
|
|
sctx base.PlanContext,
|
|
finalGbyItems []expression.Expression,
|
|
partialAggFuncs []*aggregation.AggFuncDesc,
|
|
partialGbyItems []expression.Expression,
|
|
partialSchema *expression.Schema,
|
|
firstRowFuncMap map[*aggregation.AggFuncDesc]*aggregation.AggFuncDesc) []*aggregation.AggFuncDesc {
|
|
partialCursor := 0
|
|
newAggFuncs := make([]*aggregation.AggFuncDesc, 0, len(partialAggFuncs))
|
|
for _, aggFunc := range partialAggFuncs {
|
|
if aggFunc.Name == ast.AggFuncFirstRow {
|
|
canOptimize := false
|
|
for j, gbyExpr := range partialGbyItems {
|
|
if j >= len(finalGbyItems) {
|
|
// after distinct push, len(partialGbyItems) may larger than len(finalGbyItems)
|
|
// for example,
|
|
// select /*+ HASH_AGG() */ a, count(distinct a) from t;
|
|
// will generate to,
|
|
// HashAgg root funcs:count(distinct a), funcs:firstrow(a)"
|
|
// HashAgg cop group by:a, funcs:firstrow(a)->Column#6"
|
|
// the firstrow in root task can not be removed.
|
|
break
|
|
}
|
|
// Skip if it's a constant.
|
|
// For SELECT DISTINCT SQRT(1) FROM t.
|
|
// We shouldn't remove the firstrow(SQRT(1)).
|
|
if _, ok := gbyExpr.(*expression.Constant); ok {
|
|
continue
|
|
}
|
|
if gbyExpr.Equal(sctx.GetExprCtx().GetEvalCtx(), aggFunc.Args[0]) {
|
|
canOptimize = true
|
|
firstRowFuncMap[aggFunc].Args[0] = finalGbyItems[j]
|
|
break
|
|
}
|
|
}
|
|
if canOptimize {
|
|
partialSchema.Columns = append(partialSchema.Columns[:partialCursor], partialSchema.Columns[partialCursor+1:]...)
|
|
continue
|
|
}
|
|
}
|
|
partialCursor += computePartialCursorOffset(aggFunc.Name)
|
|
newAggFuncs = append(newAggFuncs, aggFunc)
|
|
}
|
|
return newAggFuncs
|
|
}
|
|
|
|
func computePartialCursorOffset(name string) int {
|
|
offset := 0
|
|
if aggregation.NeedCount(name) {
|
|
offset++
|
|
}
|
|
if aggregation.NeedValue(name) {
|
|
offset++
|
|
}
|
|
if name == ast.AggFuncApproxCountDistinct {
|
|
offset++
|
|
}
|
|
return offset
|
|
}
|
|
|
|
// Attach2Task implements PhysicalPlan interface.
|
|
func (p *PhysicalStreamAgg) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
if cop, ok := t.(*CopTask); ok {
|
|
// We should not push agg down across
|
|
// 1. double read, since the data of second read is ordered by handle instead of index. The `extraHandleCol` is added
|
|
// if the double read needs to keep order. So we just use it to decided
|
|
// whether the following plan is double read with order reserved.
|
|
// 2. the case that there's filters should be calculated on TiDB side.
|
|
// 3. the case of index merge
|
|
if (cop.indexPlan != nil && cop.tablePlan != nil && cop.keepOrder) || len(cop.rootTaskConds) > 0 || len(cop.idxMergePartPlans) > 0 {
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(p, t)
|
|
} else {
|
|
storeType := cop.getStoreType()
|
|
// TiFlash doesn't support Stream Aggregation
|
|
if storeType == kv.TiFlash && len(p.GroupByItems) > 0 {
|
|
return base.InvalidTask
|
|
}
|
|
partialAgg, finalAgg := p.newPartialAggregate(storeType, false)
|
|
if partialAgg != nil {
|
|
if cop.tablePlan != nil {
|
|
cop.finishIndexPlan()
|
|
partialAgg.SetChildren(cop.tablePlan)
|
|
cop.tablePlan = partialAgg
|
|
// If needExtraProj is true, a projection will be created above the PhysicalIndexLookUpReader to make sure
|
|
// the schema is the same as the original DataSource schema.
|
|
// However, we pushed down the agg here, the partial agg was placed on the top of tablePlan, and the final
|
|
// agg will be placed above the PhysicalIndexLookUpReader, and the schema will be set correctly for them.
|
|
// If we add the projection again, the projection will be between the PhysicalIndexLookUpReader and
|
|
// the partial agg, and the schema will be broken.
|
|
cop.needExtraProj = false
|
|
} else {
|
|
partialAgg.SetChildren(cop.indexPlan)
|
|
cop.indexPlan = partialAgg
|
|
}
|
|
}
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(finalAgg, t)
|
|
}
|
|
} else if mpp, ok := t.(*MppTask); ok {
|
|
t = mpp.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(p, t)
|
|
} else {
|
|
attachPlan2Task(p, t)
|
|
}
|
|
return t
|
|
}
|
|
|
|
// cpuCostDivisor computes the concurrency to which we would amortize CPU cost
|
|
// for hash aggregation.
|
|
func (p *PhysicalHashAgg) cpuCostDivisor(hasDistinct bool) (divisor, con float64) {
|
|
if hasDistinct {
|
|
return 0, 0
|
|
}
|
|
sessionVars := p.SCtx().GetSessionVars()
|
|
finalCon, partialCon := sessionVars.HashAggFinalConcurrency(), sessionVars.HashAggPartialConcurrency()
|
|
// According to `ValidateSetSystemVar`, `finalCon` and `partialCon` cannot be less than or equal to 0.
|
|
if finalCon == 1 && partialCon == 1 {
|
|
return 0, 0
|
|
}
|
|
// It is tricky to decide which concurrency we should use to amortize CPU cost. Since cost of hash
|
|
// aggregation is tend to be under-estimated as explained in `attach2Task`, we choose the smaller
|
|
// concurrecy to make some compensation.
|
|
return math.Min(float64(finalCon), float64(partialCon)), float64(finalCon + partialCon)
|
|
}
|
|
|
|
func (p *PhysicalHashAgg) attach2TaskForMpp1Phase(mpp *MppTask) base.Task {
|
|
// 1-phase agg: when the partition columns can be satisfied, where the plan does not need to enforce Exchange
|
|
// only push down the original agg
|
|
proj := p.convertAvgForMPP()
|
|
attachPlan2Task(p.Self, mpp)
|
|
if proj != nil {
|
|
attachPlan2Task(proj, mpp)
|
|
}
|
|
return mpp
|
|
}
|
|
|
|
// scaleStats4GroupingSets scale the derived stats because the lower source has been expanded.
|
|
//
|
|
// parent OP <- logicalAgg <- children OP (derived stats)
|
|
// |
|
|
// v
|
|
// parent OP <- physicalAgg <- children OP (stats used)
|
|
// |
|
|
// +----------+----------+----------+
|
|
// Final Mid Partial Expand
|
|
//
|
|
// physical agg stats is reasonable from the whole, because expand operator is designed to facilitate
|
|
// the Mid and Partial Agg, which means when leaving the Final, its output rowcount could be exactly
|
|
// the same as what it derived(estimated) before entering physical optimization phase.
|
|
//
|
|
// From the cost model correctness, for these inserted sub-agg and even expand operator, we should
|
|
// recompute the stats for them particularly.
|
|
//
|
|
// for example: grouping sets {<a>},{<b>}, group by items {a,b,c,groupingID}
|
|
// after expand:
|
|
//
|
|
// a, b, c, groupingID
|
|
// ... null c 1 ---+
|
|
// ... null c 1 +------- replica group 1
|
|
// ... null c 1 ---+
|
|
// null ... c 2 ---+
|
|
// null ... c 2 +------- replica group 2
|
|
// null ... c 2 ---+
|
|
//
|
|
// since null value is seen the same when grouping data (groupingID in one replica is always the same):
|
|
// - so the num of group in replica 1 is equal to NDV(a,c)
|
|
// - so the num of group in replica 2 is equal to NDV(b,c)
|
|
//
|
|
// in a summary, the total num of group of all replica is equal to = Σ:NDV(each-grouping-set-cols, normal-group-cols)
|
|
func (p *PhysicalHashAgg) scaleStats4GroupingSets(groupingSets expression.GroupingSets, groupingIDCol *expression.Column,
|
|
childSchema *expression.Schema, childStats *property.StatsInfo) {
|
|
idSets := groupingSets.AllSetsColIDs()
|
|
normalGbyCols := make([]*expression.Column, 0, len(p.GroupByItems))
|
|
for _, gbyExpr := range p.GroupByItems {
|
|
cols := expression.ExtractColumns(gbyExpr)
|
|
for _, col := range cols {
|
|
if !idSets.Has(int(col.UniqueID)) && col.UniqueID != groupingIDCol.UniqueID {
|
|
normalGbyCols = append(normalGbyCols, col)
|
|
}
|
|
}
|
|
}
|
|
sumNDV := float64(0)
|
|
for _, groupingSet := range groupingSets {
|
|
// for every grouping set, pick its cols out, and combine with normal group cols to get the ndv.
|
|
groupingSetCols := groupingSet.ExtractCols()
|
|
groupingSetCols = append(groupingSetCols, normalGbyCols...)
|
|
ndv, _ := cardinality.EstimateColsNDVWithMatchedLen(groupingSetCols, childSchema, childStats)
|
|
sumNDV += ndv
|
|
}
|
|
// After group operator, all same rows are grouped into one row, that means all
|
|
// change the sub-agg's stats
|
|
if p.StatsInfo() != nil {
|
|
// equivalence to a new cloned one. (cause finalAgg and partialAgg may share a same copy of stats)
|
|
cpStats := p.StatsInfo().Scale(1)
|
|
cpStats.RowCount = sumNDV
|
|
// We cannot estimate the ColNDVs for every output, so we use a conservative strategy.
|
|
for k := range cpStats.ColNDVs {
|
|
cpStats.ColNDVs[k] = sumNDV
|
|
}
|
|
// for old groupNDV, if it's containing one more grouping set cols, just plus the NDV where the col is excluded.
|
|
// for example: old grouping NDV(b,c), where b is in grouping sets {<a>},{<b>}. so when countering the new NDV:
|
|
// cases:
|
|
// new grouping NDV(b,c) := old NDV(b,c) + NDV(null, c) = old NDV(b,c) + DNV(c).
|
|
// new grouping NDV(a,b,c) := old NDV(a,b,c) + NDV(null,b,c) + NDV(a,null,c) = old NDV(a,b,c) + NDV(b,c) + NDV(a,c)
|
|
allGroupingSetsIDs := groupingSets.AllSetsColIDs()
|
|
for _, oneGNDV := range cpStats.GroupNDVs {
|
|
newGNDV := oneGNDV.NDV
|
|
intersectionIDs := make([]int64, 0, len(oneGNDV.Cols))
|
|
for i, id := range oneGNDV.Cols {
|
|
if allGroupingSetsIDs.Has(int(id)) {
|
|
// when meet an id in grouping sets, skip it (cause its null) and append the rest ids to count the incrementNDV.
|
|
beforeLen := len(intersectionIDs)
|
|
intersectionIDs = append(intersectionIDs, oneGNDV.Cols[i:]...)
|
|
incrementNDV, _ := cardinality.EstimateColsDNVWithMatchedLenFromUniqueIDs(intersectionIDs, childSchema, childStats)
|
|
newGNDV += incrementNDV
|
|
// restore the before intersectionIDs slice.
|
|
intersectionIDs = intersectionIDs[:beforeLen]
|
|
}
|
|
// insert ids one by one.
|
|
intersectionIDs = append(intersectionIDs, id)
|
|
}
|
|
oneGNDV.NDV = newGNDV
|
|
}
|
|
p.SetStats(cpStats)
|
|
}
|
|
}
|
|
|
|
// adjust3StagePhaseAgg generate 3 stage aggregation for single/multi count distinct if applicable.
|
|
//
|
|
// select count(distinct a), count(b) from foo
|
|
//
|
|
// will generate plan:
|
|
//
|
|
// HashAgg sum(#1), sum(#2) -> final agg
|
|
// +- Exchange Passthrough
|
|
// +- HashAgg count(distinct a) #1, sum(#3) #2 -> middle agg
|
|
// +- Exchange HashPartition by a
|
|
// +- HashAgg count(b) #3, group by a -> partial agg
|
|
// +- TableScan foo
|
|
//
|
|
// select count(distinct a), count(distinct b), count(c) from foo
|
|
//
|
|
// will generate plan:
|
|
//
|
|
// HashAgg sum(#1), sum(#2), sum(#3) -> final agg
|
|
// +- Exchange Passthrough
|
|
// +- HashAgg count(distinct a) #1, count(distinct b) #2, sum(#4) #3 -> middle agg
|
|
// +- Exchange HashPartition by a,b,groupingID
|
|
// +- HashAgg count(c) #4, group by a,b,groupingID -> partial agg
|
|
// +- Expand {<a>}, {<b>} -> expand
|
|
// +- TableScan foo
|
|
func (p *PhysicalHashAgg) adjust3StagePhaseAgg(partialAgg, finalAgg base.PhysicalPlan, canUse3StageAgg bool,
|
|
groupingSets expression.GroupingSets, mpp *MppTask) (final, mid, part, proj4Part base.PhysicalPlan, _ error) {
|
|
ectx := p.SCtx().GetExprCtx().GetEvalCtx()
|
|
|
|
if !(partialAgg != nil && canUse3StageAgg) {
|
|
// quick path: return the original finalAgg and partiAgg.
|
|
return finalAgg, nil, partialAgg, nil, nil
|
|
}
|
|
if len(groupingSets) == 0 {
|
|
// single distinct agg mode.
|
|
clonedAgg, err := finalAgg.Clone(p.SCtx())
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
|
|
// step1: adjust middle agg.
|
|
middleHashAgg := clonedAgg.(*PhysicalHashAgg)
|
|
distinctPos := 0
|
|
middleSchema := expression.NewSchema()
|
|
schemaMap := make(map[int64]*expression.Column, len(middleHashAgg.AggFuncs))
|
|
for i, fun := range middleHashAgg.AggFuncs {
|
|
col := &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: fun.RetTp,
|
|
}
|
|
if fun.HasDistinct {
|
|
distinctPos = i
|
|
fun.Mode = aggregation.Partial1Mode
|
|
} else {
|
|
fun.Mode = aggregation.Partial2Mode
|
|
originalCol := fun.Args[0].(*expression.Column)
|
|
// mapping the current partial output column with the agg origin arg column. (final agg arg should use this one)
|
|
schemaMap[originalCol.UniqueID] = col
|
|
}
|
|
middleSchema.Append(col)
|
|
}
|
|
middleHashAgg.schema = middleSchema
|
|
|
|
// step2: adjust final agg.
|
|
finalHashAgg := finalAgg.(*PhysicalHashAgg)
|
|
finalAggDescs := make([]*aggregation.AggFuncDesc, 0, len(finalHashAgg.AggFuncs))
|
|
for i, fun := range finalHashAgg.AggFuncs {
|
|
newArgs := make([]expression.Expression, 0, 1)
|
|
if distinctPos == i {
|
|
// change count(distinct) to sum()
|
|
fun.Name = ast.AggFuncSum
|
|
fun.HasDistinct = false
|
|
newArgs = append(newArgs, middleSchema.Columns[i])
|
|
} else {
|
|
for _, arg := range fun.Args {
|
|
newCol, err := arg.RemapColumn(schemaMap)
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
newArgs = append(newArgs, newCol)
|
|
}
|
|
}
|
|
fun.Mode = aggregation.FinalMode
|
|
fun.Args = newArgs
|
|
finalAggDescs = append(finalAggDescs, fun)
|
|
}
|
|
finalHashAgg.AggFuncs = finalAggDescs
|
|
// partialAgg is im-mutated from args.
|
|
return finalHashAgg, middleHashAgg, partialAgg, nil, nil
|
|
}
|
|
// multi distinct agg mode, having grouping sets.
|
|
// set the default expression to constant 1 for the convenience to choose default group set data.
|
|
var groupingIDCol expression.Expression
|
|
// enforce Expand operator above the children.
|
|
// physical plan is enumerated without children from itself, use mpp subtree instead p.children.
|
|
// scale(len(groupingSets)) will change the NDV, while Expand doesn't change the NDV and groupNDV.
|
|
stats := mpp.p.StatsInfo().Scale(float64(1))
|
|
stats.RowCount = stats.RowCount * float64(len(groupingSets))
|
|
physicalExpand := PhysicalExpand{
|
|
GroupingSets: groupingSets,
|
|
}.Init(p.SCtx(), stats, mpp.p.QueryBlockOffset())
|
|
// generate a new column as groupingID to identify which this row is targeting for.
|
|
tp := types.NewFieldType(mysql.TypeLonglong)
|
|
tp.SetFlag(mysql.UnsignedFlag | mysql.NotNullFlag)
|
|
groupingIDCol = &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: tp,
|
|
}
|
|
// append the physical expand op with groupingID column.
|
|
physicalExpand.SetSchema(mpp.p.Schema().Clone())
|
|
physicalExpand.schema.Append(groupingIDCol.(*expression.Column))
|
|
physicalExpand.GroupingIDCol = groupingIDCol.(*expression.Column)
|
|
// attach PhysicalExpand to mpp
|
|
attachPlan2Task(physicalExpand, mpp)
|
|
|
|
// having group sets
|
|
clonedAgg, err := finalAgg.Clone(p.SCtx())
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
cloneHashAgg := clonedAgg.(*PhysicalHashAgg)
|
|
// Clone(), it will share same base-plan elements from the finalAgg, including id,tp,stats. Make a new one here.
|
|
cloneHashAgg.Plan = baseimpl.NewBasePlan(cloneHashAgg.SCtx(), cloneHashAgg.TP(), cloneHashAgg.QueryBlockOffset())
|
|
cloneHashAgg.SetStats(finalAgg.StatsInfo()) // reuse the final agg stats here.
|
|
|
|
// step1: adjust partial agg, for normal agg here, adjust it to target for specified group data.
|
|
// Since we may substitute the first arg of normal agg with case-when expression here, append a
|
|
// customized proj here rather than depending on postOptimize to insert a blunt one for us.
|
|
//
|
|
// proj4Partial output all the base col from lower op + caseWhen proj cols.
|
|
proj4Partial := new(PhysicalProjection).Init(p.SCtx(), mpp.p.StatsInfo(), mpp.p.QueryBlockOffset())
|
|
for _, col := range mpp.p.Schema().Columns {
|
|
proj4Partial.Exprs = append(proj4Partial.Exprs, col)
|
|
}
|
|
proj4Partial.SetSchema(mpp.p.Schema().Clone())
|
|
|
|
partialHashAgg := partialAgg.(*PhysicalHashAgg)
|
|
partialHashAgg.GroupByItems = append(partialHashAgg.GroupByItems, groupingIDCol)
|
|
partialHashAgg.schema.Append(groupingIDCol.(*expression.Column))
|
|
// it will create a new stats for partial agg.
|
|
partialHashAgg.scaleStats4GroupingSets(groupingSets, groupingIDCol.(*expression.Column), proj4Partial.Schema(), proj4Partial.StatsInfo())
|
|
for _, fun := range partialHashAgg.AggFuncs {
|
|
if !fun.HasDistinct {
|
|
// for normal agg phase1, we should also modify them to target for specified group data.
|
|
// Expr = (case when groupingID = targeted_groupingID then arg else null end)
|
|
eqExpr := expression.NewFunctionInternal(p.SCtx().GetExprCtx(), ast.EQ, types.NewFieldType(mysql.TypeTiny), groupingIDCol, expression.NewUInt64Const(fun.GroupingID))
|
|
caseWhen := expression.NewFunctionInternal(p.SCtx().GetExprCtx(), ast.Case, fun.Args[0].GetType(ectx), eqExpr, fun.Args[0], expression.NewNull())
|
|
caseWhenProjCol := &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: fun.Args[0].GetType(ectx),
|
|
}
|
|
proj4Partial.Exprs = append(proj4Partial.Exprs, caseWhen)
|
|
proj4Partial.Schema().Append(caseWhenProjCol)
|
|
fun.Args[0] = caseWhenProjCol
|
|
}
|
|
}
|
|
|
|
// step2: adjust middle agg
|
|
// middleHashAgg shared the same stats with the final agg does.
|
|
middleHashAgg := cloneHashAgg
|
|
middleSchema := expression.NewSchema()
|
|
schemaMap := make(map[int64]*expression.Column, len(middleHashAgg.AggFuncs))
|
|
for _, fun := range middleHashAgg.AggFuncs {
|
|
col := &expression.Column{
|
|
UniqueID: p.SCtx().GetSessionVars().AllocPlanColumnID(),
|
|
RetType: fun.RetTp,
|
|
}
|
|
if fun.HasDistinct {
|
|
// let count distinct agg aggregate on whole-scope data rather using case-when expr to target on specified group. (agg null strict attribute)
|
|
fun.Mode = aggregation.Partial1Mode
|
|
} else {
|
|
fun.Mode = aggregation.Partial2Mode
|
|
originalCol := fun.Args[0].(*expression.Column)
|
|
// record the origin column unique id down before change it to be case when expr.
|
|
// mapping the current partial output column with the agg origin arg column. (final agg arg should use this one)
|
|
schemaMap[originalCol.UniqueID] = col
|
|
}
|
|
middleSchema.Append(col)
|
|
}
|
|
middleHashAgg.schema = middleSchema
|
|
|
|
// step3: adjust final agg
|
|
finalHashAgg := finalAgg.(*PhysicalHashAgg)
|
|
finalAggDescs := make([]*aggregation.AggFuncDesc, 0, len(finalHashAgg.AggFuncs))
|
|
for i, fun := range finalHashAgg.AggFuncs {
|
|
newArgs := make([]expression.Expression, 0, 1)
|
|
if fun.HasDistinct {
|
|
// change count(distinct) agg to sum()
|
|
fun.Name = ast.AggFuncSum
|
|
fun.HasDistinct = false
|
|
// count(distinct a,b) -> become a single partial result col.
|
|
newArgs = append(newArgs, middleSchema.Columns[i])
|
|
} else {
|
|
// remap final normal agg args to be output schema of middle normal agg.
|
|
for _, arg := range fun.Args {
|
|
newCol, err := arg.RemapColumn(schemaMap)
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
newArgs = append(newArgs, newCol)
|
|
}
|
|
}
|
|
fun.Mode = aggregation.FinalMode
|
|
fun.Args = newArgs
|
|
fun.GroupingID = 0
|
|
finalAggDescs = append(finalAggDescs, fun)
|
|
}
|
|
finalHashAgg.AggFuncs = finalAggDescs
|
|
return finalHashAgg, middleHashAgg, partialHashAgg, proj4Partial, nil
|
|
}
|
|
|
|
func (p *PhysicalHashAgg) attach2TaskForMpp(tasks ...base.Task) base.Task {
|
|
ectx := p.SCtx().GetExprCtx().GetEvalCtx()
|
|
|
|
t := tasks[0].Copy()
|
|
mpp, ok := t.(*MppTask)
|
|
if !ok {
|
|
return base.InvalidTask
|
|
}
|
|
switch p.MppRunMode {
|
|
case Mpp1Phase:
|
|
// 1-phase agg: when the partition columns can be satisfied, where the plan does not need to enforce Exchange
|
|
// only push down the original agg
|
|
proj := p.convertAvgForMPP()
|
|
attachPlan2Task(p, mpp)
|
|
if proj != nil {
|
|
attachPlan2Task(proj, mpp)
|
|
}
|
|
return mpp
|
|
case Mpp2Phase:
|
|
// TODO: when partition property is matched by sub-plan, we actually needn't do extra an exchange and final agg.
|
|
proj := p.convertAvgForMPP()
|
|
partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, true)
|
|
if partialAgg == nil {
|
|
return base.InvalidTask
|
|
}
|
|
attachPlan2Task(partialAgg, mpp)
|
|
partitionCols := p.MppPartitionCols
|
|
if len(partitionCols) == 0 {
|
|
items := finalAgg.(*PhysicalHashAgg).GroupByItems
|
|
partitionCols = make([]*property.MPPPartitionColumn, 0, len(items))
|
|
for _, expr := range items {
|
|
col, ok := expr.(*expression.Column)
|
|
if !ok {
|
|
return base.InvalidTask
|
|
}
|
|
partitionCols = append(partitionCols, &property.MPPPartitionColumn{
|
|
Col: col,
|
|
CollateID: property.GetCollateIDByNameForPartition(col.GetType(ectx).GetCollate()),
|
|
})
|
|
}
|
|
}
|
|
if partialHashAgg, ok := partialAgg.(*PhysicalHashAgg); ok && len(partitionCols) != 0 {
|
|
partialHashAgg.tiflashPreAggMode = p.SCtx().GetSessionVars().TiFlashPreAggMode
|
|
}
|
|
prop := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.HashType, MPPPartitionCols: partitionCols}
|
|
newMpp := mpp.enforceExchangerImpl(prop)
|
|
if newMpp.Invalid() {
|
|
return newMpp
|
|
}
|
|
attachPlan2Task(finalAgg, newMpp)
|
|
// TODO: how to set 2-phase cost?
|
|
if proj != nil {
|
|
attachPlan2Task(proj, newMpp)
|
|
}
|
|
return newMpp
|
|
case MppTiDB:
|
|
partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, false)
|
|
if partialAgg != nil {
|
|
attachPlan2Task(partialAgg, mpp)
|
|
}
|
|
t = mpp.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(finalAgg, t)
|
|
return t
|
|
case MppScalar:
|
|
prop := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.SinglePartitionType}
|
|
if !mpp.needEnforceExchanger(prop) {
|
|
// On the one hand: when the low layer already satisfied the single partition layout, just do the all agg computation in the single node.
|
|
return p.attach2TaskForMpp1Phase(mpp)
|
|
}
|
|
// On the other hand: try to split the mppScalar agg into multi phases agg **down** to multi nodes since data already distributed across nodes.
|
|
// we have to check it before the content of p has been modified
|
|
canUse3StageAgg, groupingSets := p.scale3StageForDistinctAgg()
|
|
proj := p.convertAvgForMPP()
|
|
partialAgg, finalAgg := p.newPartialAggregate(kv.TiFlash, true)
|
|
if finalAgg == nil {
|
|
return base.InvalidTask
|
|
}
|
|
|
|
final, middle, partial, proj4Partial, err := p.adjust3StagePhaseAgg(partialAgg, finalAgg, canUse3StageAgg, groupingSets, mpp)
|
|
if err != nil {
|
|
return base.InvalidTask
|
|
}
|
|
|
|
// partial agg proj would be null if one scalar agg cannot run in two-phase mode
|
|
if proj4Partial != nil {
|
|
attachPlan2Task(proj4Partial, mpp)
|
|
}
|
|
|
|
// partial agg would be null if one scalar agg cannot run in two-phase mode
|
|
if partial != nil {
|
|
attachPlan2Task(partial, mpp)
|
|
}
|
|
|
|
if middle != nil && canUse3StageAgg {
|
|
items := partial.(*PhysicalHashAgg).GroupByItems
|
|
partitionCols := make([]*property.MPPPartitionColumn, 0, len(items))
|
|
for _, expr := range items {
|
|
col, ok := expr.(*expression.Column)
|
|
if !ok {
|
|
continue
|
|
}
|
|
partitionCols = append(partitionCols, &property.MPPPartitionColumn{
|
|
Col: col,
|
|
CollateID: property.GetCollateIDByNameForPartition(col.GetType(ectx).GetCollate()),
|
|
})
|
|
}
|
|
|
|
exProp := &property.PhysicalProperty{TaskTp: property.MppTaskType, ExpectedCnt: math.MaxFloat64, MPPPartitionTp: property.HashType, MPPPartitionCols: partitionCols}
|
|
newMpp := mpp.enforceExchanger(exProp)
|
|
attachPlan2Task(middle, newMpp)
|
|
mpp = newMpp
|
|
if partialHashAgg, ok := partial.(*PhysicalHashAgg); ok && len(partitionCols) != 0 {
|
|
partialHashAgg.tiflashPreAggMode = p.SCtx().GetSessionVars().TiFlashPreAggMode
|
|
}
|
|
}
|
|
|
|
// prop here still be the first generated single-partition requirement.
|
|
newMpp := mpp.enforceExchanger(prop)
|
|
attachPlan2Task(final, newMpp)
|
|
if proj == nil {
|
|
proj = PhysicalProjection{
|
|
Exprs: make([]expression.Expression, 0, len(p.Schema().Columns)),
|
|
}.Init(p.SCtx(), p.StatsInfo(), p.QueryBlockOffset())
|
|
for _, col := range p.Schema().Columns {
|
|
proj.Exprs = append(proj.Exprs, col)
|
|
}
|
|
proj.SetSchema(p.schema)
|
|
}
|
|
attachPlan2Task(proj, newMpp)
|
|
return newMpp
|
|
default:
|
|
return base.InvalidTask
|
|
}
|
|
}
|
|
|
|
// Attach2Task implements the PhysicalPlan interface.
|
|
func (p *PhysicalHashAgg) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
if cop, ok := t.(*CopTask); ok {
|
|
if len(cop.rootTaskConds) == 0 && len(cop.idxMergePartPlans) == 0 {
|
|
copTaskType := cop.getStoreType()
|
|
partialAgg, finalAgg := p.newPartialAggregate(copTaskType, false)
|
|
if partialAgg != nil {
|
|
if cop.tablePlan != nil {
|
|
cop.finishIndexPlan()
|
|
partialAgg.SetChildren(cop.tablePlan)
|
|
cop.tablePlan = partialAgg
|
|
// If needExtraProj is true, a projection will be created above the PhysicalIndexLookUpReader to make sure
|
|
// the schema is the same as the original DataSource schema.
|
|
// However, we pushed down the agg here, the partial agg was placed on the top of tablePlan, and the final
|
|
// agg will be placed above the PhysicalIndexLookUpReader, and the schema will be set correctly for them.
|
|
// If we add the projection again, the projection will be between the PhysicalIndexLookUpReader and
|
|
// the partial agg, and the schema will be broken.
|
|
cop.needExtraProj = false
|
|
} else {
|
|
partialAgg.SetChildren(cop.indexPlan)
|
|
cop.indexPlan = partialAgg
|
|
}
|
|
}
|
|
// In `newPartialAggregate`, we are using stats of final aggregation as stats
|
|
// of `partialAgg`, so the network cost of transferring result rows of `partialAgg`
|
|
// to TiDB is normally under-estimated for hash aggregation, since the group-by
|
|
// column may be independent of the column used for region distribution, so a closer
|
|
// estimation of network cost for hash aggregation may multiply the number of
|
|
// regions involved in the `partialAgg`, which is unknown however.
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(finalAgg, t)
|
|
} else {
|
|
t = cop.ConvertToRootTask(p.SCtx())
|
|
attachPlan2Task(p, t)
|
|
}
|
|
} else if _, ok := t.(*MppTask); ok {
|
|
return p.attach2TaskForMpp(tasks...)
|
|
} else {
|
|
attachPlan2Task(p, t)
|
|
}
|
|
return t
|
|
}
|
|
|
|
func (p *PhysicalWindow) attach2TaskForMPP(mpp *MppTask) base.Task {
|
|
// FIXME: currently, tiflash's join has different schema with TiDB,
|
|
// so we have to rebuild the schema of join and operators which may inherit schema from join.
|
|
// for window, we take the sub-plan's schema, and the schema generated by windowDescs.
|
|
columns := p.Schema().Clone().Columns[len(p.Schema().Columns)-len(p.WindowFuncDescs):]
|
|
p.schema = expression.MergeSchema(mpp.Plan().Schema(), expression.NewSchema(columns...))
|
|
|
|
failpoint.Inject("CheckMPPWindowSchemaLength", func() {
|
|
if len(p.Schema().Columns) != len(mpp.Plan().Schema().Columns)+len(p.WindowFuncDescs) {
|
|
panic("mpp physical window has incorrect schema length")
|
|
}
|
|
})
|
|
|
|
return attachPlan2Task(p, mpp)
|
|
}
|
|
|
|
// Attach2Task implements the PhysicalPlan interface.
|
|
func (p *PhysicalWindow) Attach2Task(tasks ...base.Task) base.Task {
|
|
if mpp, ok := tasks[0].Copy().(*MppTask); ok && p.storeTp == kv.TiFlash {
|
|
return p.attach2TaskForMPP(mpp)
|
|
}
|
|
t := tasks[0].ConvertToRootTask(p.SCtx())
|
|
return attachPlan2Task(p.Self, t)
|
|
}
|
|
|
|
// Attach2Task implements the PhysicalPlan interface.
|
|
func (p *PhysicalCTEStorage) Attach2Task(tasks ...base.Task) base.Task {
|
|
t := tasks[0].Copy()
|
|
if mpp, ok := t.(*MppTask); ok {
|
|
p.SetChildren(t.Plan())
|
|
return &MppTask{
|
|
p: p,
|
|
partTp: mpp.partTp,
|
|
hashCols: mpp.hashCols,
|
|
tblColHists: mpp.tblColHists,
|
|
}
|
|
}
|
|
t.ConvertToRootTask(p.SCtx())
|
|
p.SetChildren(t.Plan())
|
|
ta := &RootTask{}
|
|
ta.SetPlan(p)
|
|
return ta
|
|
}
|
|
|
|
// Attach2Task implements the PhysicalPlan interface.
|
|
func (p *PhysicalSequence) Attach2Task(tasks ...base.Task) base.Task {
|
|
for _, t := range tasks {
|
|
_, isMpp := t.(*MppTask)
|
|
if !isMpp {
|
|
return tasks[len(tasks)-1]
|
|
}
|
|
}
|
|
|
|
lastTask := tasks[len(tasks)-1].(*MppTask)
|
|
|
|
children := make([]base.PhysicalPlan, 0, len(tasks))
|
|
for _, t := range tasks {
|
|
children = append(children, t.Plan())
|
|
}
|
|
|
|
p.SetChildren(children...)
|
|
|
|
mppTask := &MppTask{
|
|
p: p,
|
|
partTp: lastTask.partTp,
|
|
hashCols: lastTask.hashCols,
|
|
tblColHists: lastTask.tblColHists,
|
|
}
|
|
return mppTask
|
|
}
|
|
|
|
func collectPartitionInfosFromMPPPlan(p *PhysicalTableReader, mppPlan base.PhysicalPlan) {
|
|
switch x := mppPlan.(type) {
|
|
case *PhysicalTableScan:
|
|
p.TableScanAndPartitionInfos = append(p.TableScanAndPartitionInfos, tableScanAndPartitionInfo{x, x.PlanPartInfo})
|
|
default:
|
|
for _, ch := range mppPlan.Children() {
|
|
collectPartitionInfosFromMPPPlan(p, ch)
|
|
}
|
|
}
|
|
}
|
|
|
|
func collectRowSizeFromMPPPlan(mppPlan base.PhysicalPlan) (rowSize float64) {
|
|
if mppPlan != nil && mppPlan.StatsInfo() != nil && mppPlan.StatsInfo().HistColl != nil {
|
|
return cardinality.GetAvgRowSize(mppPlan.SCtx(), mppPlan.StatsInfo().HistColl, mppPlan.Schema().Columns, false, false)
|
|
}
|
|
return 1 // use 1 as lower-bound for safety
|
|
}
|
|
|
|
func accumulateNetSeekCost4MPP(p base.PhysicalPlan) (cost float64) {
|
|
if ts, ok := p.(*PhysicalTableScan); ok {
|
|
return float64(len(ts.Ranges)) * float64(len(ts.Columns)) * ts.SCtx().GetSessionVars().GetSeekFactor(ts.Table)
|
|
}
|
|
for _, c := range p.Children() {
|
|
cost += accumulateNetSeekCost4MPP(c)
|
|
}
|
|
return
|
|
}
|
|
|
|
func tryExpandVirtualColumn(p base.PhysicalPlan) {
|
|
if ts, ok := p.(*PhysicalTableScan); ok {
|
|
ts.Columns = ExpandVirtualColumn(ts.Columns, ts.schema, ts.Table.Columns)
|
|
return
|
|
}
|
|
for _, child := range p.Children() {
|
|
tryExpandVirtualColumn(child)
|
|
}
|
|
}
|
|
|
|
func (t *MppTask) needEnforceExchanger(prop *property.PhysicalProperty) bool {
|
|
switch prop.MPPPartitionTp {
|
|
case property.AnyType:
|
|
return false
|
|
case property.BroadcastType:
|
|
return true
|
|
case property.SinglePartitionType:
|
|
return t.partTp != property.SinglePartitionType
|
|
default:
|
|
if t.partTp != property.HashType {
|
|
return true
|
|
}
|
|
// TODO: consider equalivant class
|
|
// TODO: `prop.IsSubsetOf` is enough, instead of equal.
|
|
// for example, if already partitioned by hash(B,C), then same (A,B,C) must distribute on a same node.
|
|
if len(prop.MPPPartitionCols) != len(t.hashCols) {
|
|
return true
|
|
}
|
|
for i, col := range prop.MPPPartitionCols {
|
|
if !col.Equal(t.hashCols[i]) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
}
|
|
|
|
func (t *MppTask) enforceExchanger(prop *property.PhysicalProperty) *MppTask {
|
|
if !t.needEnforceExchanger(prop) {
|
|
return t
|
|
}
|
|
return t.Copy().(*MppTask).enforceExchangerImpl(prop)
|
|
}
|
|
|
|
func (t *MppTask) enforceExchangerImpl(prop *property.PhysicalProperty) *MppTask {
|
|
if collate.NewCollationEnabled() && !t.p.SCtx().GetSessionVars().HashExchangeWithNewCollation && prop.MPPPartitionTp == property.HashType {
|
|
for _, col := range prop.MPPPartitionCols {
|
|
if types.IsString(col.Col.RetType.GetType()) {
|
|
t.p.SCtx().GetSessionVars().RaiseWarningWhenMPPEnforced("MPP mode may be blocked because when `new_collation_enabled` is true, HashJoin or HashAgg with string key is not supported now.")
|
|
return &MppTask{}
|
|
}
|
|
}
|
|
}
|
|
ctx := t.p.SCtx()
|
|
sender := PhysicalExchangeSender{
|
|
ExchangeType: prop.MPPPartitionTp.ToExchangeType(),
|
|
HashCols: prop.MPPPartitionCols,
|
|
}.Init(ctx, t.p.StatsInfo())
|
|
|
|
if ctx.GetSessionVars().ChooseMppVersion() >= kv.MppVersionV1 {
|
|
sender.CompressionMode = ctx.GetSessionVars().ChooseMppExchangeCompressionMode()
|
|
}
|
|
|
|
sender.SetChildren(t.p)
|
|
receiver := PhysicalExchangeReceiver{}.Init(ctx, t.p.StatsInfo())
|
|
receiver.SetChildren(sender)
|
|
return &MppTask{
|
|
p: receiver,
|
|
partTp: prop.MPPPartitionTp,
|
|
hashCols: prop.MPPPartitionCols,
|
|
}
|
|
}
|