Files
tidb/ddl/backfilling.go

1504 lines
48 KiB
Go

// Copyright 2020 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ddl
import (
"context"
"encoding/hex"
"fmt"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/ddl/ingest"
ddlutil "github.com/pingcap/tidb/ddl/util"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/store/copr"
"github.com/pingcap/tidb/store/driver/backoff"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util"
"github.com/pingcap/tidb/util/dbterror"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/mathutil"
decoder "github.com/pingcap/tidb/util/rowDecoder"
"github.com/pingcap/tidb/util/timeutil"
"github.com/pingcap/tidb/util/topsql"
"github.com/tikv/client-go/v2/oracle"
"github.com/tikv/client-go/v2/tikv"
"go.uber.org/zap"
)
type backfillerType byte
const (
typeAddIndexWorker backfillerType = 0
typeUpdateColumnWorker backfillerType = 1
typeCleanUpIndexWorker backfillerType = 2
typeAddIndexMergeTmpWorker backfillerType = 3
// InstanceLease is the instance lease.
InstanceLease = 1 * time.Minute
updateInstanceLease = 25 * time.Second
genTaskBatch = 4096
minGenTaskBatch = 1024
minDistTaskCnt = 16
retrySQLTimes = 3
retrySQLInterval = 500 * time.Millisecond
)
func (bT backfillerType) String() string {
switch bT {
case typeAddIndexWorker:
return "add index"
case typeUpdateColumnWorker:
return "update column"
case typeCleanUpIndexWorker:
return "clean up index"
case typeAddIndexMergeTmpWorker:
return "merge temporary index"
default:
return "unknown"
}
}
// BackfillJob is for a tidb_ddl_backfill table's record.
type BackfillJob struct {
ID int64
JobID int64
EleID int64
EleKey []byte
Tp backfillerType
State model.JobState
StoreID int64
InstanceID string
InstanceLease types.Time
// range info
CurrKey []byte
StartKey []byte
EndKey []byte
StartTS uint64
FinishTS uint64
RowCount int64
Meta *model.BackfillMeta
}
// AbbrStr returns the BackfillJob's info without the Meta info.
func (bj *BackfillJob) AbbrStr() string {
return fmt.Sprintf("ID:%d, JobID:%d, EleID:%d, Type:%s, State:%s, InstanceID:%s, InstanceLease:%s",
bj.ID, bj.JobID, bj.EleID, bj.Tp, bj.State, bj.InstanceID, bj.InstanceLease)
}
// GetOracleTimeWithStartTS returns the current time with txn's startTS.
func GetOracleTimeWithStartTS(se *session) (time.Time, error) {
txn, err := se.Txn(true)
if err != nil {
return time.Time{}, err
}
return oracle.GetTimeFromTS(txn.StartTS()).UTC(), nil
}
// GetOracleTime returns the current time from TS.
func GetOracleTime(store kv.Storage) (time.Time, error) {
currentVer, err := store.CurrentVersion(kv.GlobalTxnScope)
if err != nil {
return time.Time{}, errors.Trace(err)
}
return oracle.GetTimeFromTS(currentVer.Ver).UTC(), nil
}
// GetLeaseGoTime returns a types.Time by adding a lease.
func GetLeaseGoTime(currTime time.Time, lease time.Duration) types.Time {
leaseTime := currTime.Add(lease)
return types.NewTime(types.FromGoTime(leaseTime.In(time.UTC)), mysql.TypeTimestamp, types.MaxFsp)
}
// By now the DDL jobs that need backfilling include:
// 1: add-index
// 2: modify-column-type
// 3: clean-up global index
//
// They all have a write reorganization state to back fill data into the rows existed.
// Backfilling is time consuming, to accelerate this process, TiDB has built some sub
// workers to do this in the DDL owner node.
//
// DDL owner thread (also see comments before runReorgJob func)
// ^
// | (reorgCtx.doneCh)
// |
// worker master
// ^ (waitTaskResults)
// |
// |
// v (sendRangeTask)
// +--------------------+---------+---------+------------------+--------------+
// | | | | |
// backfillworker1 backfillworker2 backfillworker3 backfillworker4 ...
//
// The worker master is responsible for scaling the backfilling workers according to the
// system variable "tidb_ddl_reorg_worker_cnt". Essentially, reorg job is mainly based
// on the [start, end] range of the table to backfill data. We did not do it all at once,
// there were several ddl rounds.
//
// [start1---end1 start2---end2 start3---end3 start4---end4 ... ... ]
// | | | | | | | |
// +-------+ +-------+ +-------+ +-------+ ... ...
// | | | |
// bfworker1 bfworker2 bfworker3 bfworker4 ... ...
// | | | | | |
// +---------------- (round1)----------------+ +--(round2)--+
//
// The main range [start, end] will be split into small ranges.
// Each small range corresponds to a region and it will be delivered to a backfillworker.
// Each worker can only be assigned with one range at one round, those remaining ranges
// will be cached until all the backfill workers have had their previous range jobs done.
//
// [ region start --------------------- region end ]
// |
// v
// [ batch ] [ batch ] [ batch ] [ batch ] ...
// | | | |
// v v v v
// (a kv txn) -> -> ->
//
// For a single range, backfill worker doesn't backfill all the data in one kv transaction.
// Instead, it is divided into batches, each time a kv transaction completes the backfilling
// of a partial batch.
type backfillCtx struct {
*ddlCtx
reorgTp model.ReorgType
sessCtx sessionctx.Context
schemaName string
table table.Table
batchCnt int
}
func newBackfillCtx(ctx *ddlCtx, sessCtx sessionctx.Context, reorgTp model.ReorgType,
schemaName string, tbl table.Table) *backfillCtx {
return &backfillCtx{
ddlCtx: ctx,
sessCtx: sessCtx,
reorgTp: reorgTp,
schemaName: schemaName,
table: tbl,
batchCnt: int(variable.GetDDLReorgBatchSize()),
}
}
type backfiller interface {
BackfillDataInTxn(handleRange reorgBackfillTask) (taskCtx backfillTaskContext, errInTxn error)
AddMetricInfo(float64)
GetTask() (*BackfillJob, error)
UpdateTask(bfJob *BackfillJob) error
FinishTask(bfJob *BackfillJob) error
GetCtx() *backfillCtx
String() string
}
type backfillResult struct {
taskID int
addedCount int
scanCount int
nextKey kv.Key
err error
}
// backfillTaskContext is the context of the batch adding indices or updating column values.
// After finishing the batch adding indices or updating column values, result in backfillTaskContext will be merged into backfillResult.
type backfillTaskContext struct {
nextKey kv.Key
done bool
addedCount int
scanCount int
warnings map[errors.ErrorID]*terror.Error
warningsCount map[errors.ErrorID]int64
}
type reorgBackfillTask struct {
bfJob *BackfillJob
physicalTable table.PhysicalTable
// TODO: Remove the following fields after remove the function of run.
id int
physicalTableID int64
startKey kv.Key
endKey kv.Key
endInclude bool
jobID int64
sqlQuery string
priority int
}
func (r *reorgBackfillTask) getJobID() int64 {
jobID := r.jobID
if r.bfJob != nil {
jobID = r.bfJob.JobID
}
return jobID
}
func (r *reorgBackfillTask) excludedEndKey() kv.Key {
if r.endInclude {
return r.endKey.Next()
}
return r.endKey
}
func (r *reorgBackfillTask) String() string {
physicalID := strconv.FormatInt(r.physicalTableID, 10)
startKey := hex.EncodeToString(r.startKey)
endKey := hex.EncodeToString(r.endKey)
rangeStr := "taskID_" + strconv.Itoa(r.id) + "_physicalTableID_" + physicalID + "_" + "[" + startKey + "," + endKey
if r.endInclude {
return rangeStr + "]"
}
return rangeStr + ")"
}
// mergeBackfillCtxToResult merge partial result in taskCtx into result.
func mergeBackfillCtxToResult(taskCtx *backfillTaskContext, result *backfillResult) {
result.nextKey = taskCtx.nextKey
result.addedCount += taskCtx.addedCount
result.scanCount += taskCtx.scanCount
}
type backfillWorker struct {
id int
backfiller
taskCh chan *reorgBackfillTask
resultCh chan *backfillResult
ctx context.Context
cancel func()
}
func newBackfillWorker(ctx context.Context, id int, bf backfiller) *backfillWorker {
bfCtx, cancel := context.WithCancel(ctx)
return &backfillWorker{
backfiller: bf,
id: id,
taskCh: make(chan *reorgBackfillTask, 1),
resultCh: make(chan *backfillResult, 1),
ctx: bfCtx,
cancel: cancel,
}
}
func (w *backfillWorker) updateLease(execID string, bfJob *BackfillJob, nextKey kv.Key) error {
leaseTime, err := GetOracleTime(w.GetCtx().store)
if err != nil {
return err
}
bfJob.CurrKey = nextKey
bfJob.InstanceID = execID
bfJob.InstanceLease = GetLeaseGoTime(leaseTime, InstanceLease)
return w.backfiller.UpdateTask(bfJob)
}
func (w *backfillWorker) finishJob(bfJob *BackfillJob) error {
bfJob.State = model.JobStateDone
return w.backfiller.FinishTask(bfJob)
}
func (w *backfillWorker) String() string {
if w.backfiller == nil {
return fmt.Sprintf("worker %d", w.id)
}
return fmt.Sprintf("worker %d, tp %s", w.id, w.backfiller.String())
}
func (w *backfillWorker) Close() {
if w.cancel != nil {
w.cancel()
w.cancel = nil
}
}
func closeBackfillWorkers(workers []*backfillWorker) {
for _, worker := range workers {
worker.Close()
}
}
// ResultCounterForTest is used for test.
var ResultCounterForTest *atomic.Int32
// handleBackfillTask backfills range [task.startHandle, task.endHandle) handle's index to table.
func (w *backfillWorker) handleBackfillTask(d *ddlCtx, task *reorgBackfillTask, bf backfiller) *backfillResult {
handleRange := *task
result := &backfillResult{
taskID: task.id,
err: nil,
addedCount: 0,
nextKey: handleRange.startKey,
}
batchStartTime := time.Now()
lastLogCount := 0
lastLogTime := time.Now()
startTime := lastLogTime
jobID := task.getJobID()
rc := d.getReorgCtx(jobID)
for {
// Give job chance to be canceled, if we not check it here,
// if there is panic in bf.BackfillDataInTxn we will never cancel the job.
// Because reorgRecordTask may run a long time,
// we should check whether this ddl job is still runnable.
err := d.isReorgRunnable(jobID)
if err != nil {
result.err = err
return result
}
taskCtx, err := bf.BackfillDataInTxn(handleRange)
if err != nil {
result.err = err
return result
}
bf.AddMetricInfo(float64(taskCtx.addedCount))
mergeBackfillCtxToResult(&taskCtx, result)
// Although `handleRange` is for data in one region, but back fill worker still split it into many
// small reorg batch size slices and reorg them in many different kv txn.
// If a task failed, it may contained some committed small kv txn which has already finished the
// small range reorganization.
// In the next round of reorganization, the target handle range may overlap with last committed
// small ranges. This will cause the `redo` action in reorganization.
// So for added count and warnings collection, it is recommended to collect the statistics in every
// successfully committed small ranges rather than fetching it in the total result.
rc.increaseRowCount(int64(taskCtx.addedCount))
rc.mergeWarnings(taskCtx.warnings, taskCtx.warningsCount)
if num := result.scanCount - lastLogCount; num >= 90000 {
lastLogCount = result.scanCount
logutil.BgLogger().Info("[ddl] backfill worker back fill index",
zap.Int("addedCount", result.addedCount), zap.Int("scanCount", result.scanCount),
zap.String("next key", hex.EncodeToString(taskCtx.nextKey)),
zap.Float64("speed(rows/s)", float64(num)/time.Since(lastLogTime).Seconds()))
lastLogTime = time.Now()
}
handleRange.startKey = taskCtx.nextKey
if taskCtx.done {
break
}
if task.bfJob != nil {
// TODO: Adjust the updating lease frequency by batch processing time carefully.
if time.Since(batchStartTime) < updateInstanceLease {
continue
}
batchStartTime = time.Now()
if err := w.updateLease(w.GetCtx().uuid, task.bfJob, result.nextKey); err != nil {
logutil.BgLogger().Info("[ddl] backfill worker handle task, update lease failed", zap.Stringer("worker", w),
zap.Stringer("task", task), zap.String("backfill job", task.bfJob.AbbrStr()), zap.Error(err))
result.err = err
return result
}
}
}
logutil.BgLogger().Info("[ddl] backfill worker finish task",
zap.Stringer("worker", w),
zap.Stringer("task", task),
zap.Int("added count", result.addedCount),
zap.Int("scan count", result.scanCount),
zap.String("next key", hex.EncodeToString(result.nextKey)),
zap.String("take time", time.Since(startTime).String()))
if ResultCounterForTest != nil && result.err == nil {
ResultCounterForTest.Add(1)
}
return result
}
func (w *backfillWorker) run(d *ddlCtx, bf backfiller, job *model.Job) {
logutil.BgLogger().Info("[ddl] backfill worker start", zap.Stringer("worker", w))
var curTaskID int
defer util.Recover(metrics.LabelDDL, "backfillWorker.run", func() {
w.resultCh <- &backfillResult{taskID: curTaskID, err: dbterror.ErrReorgPanic}
}, false)
for {
if util.HasCancelled(w.ctx) {
logutil.BgLogger().Info("[ddl] backfill worker exit on context done",
zap.Stringer("worker", w), zap.Int("workerID", w.id))
return
}
task, more := <-w.taskCh
if !more {
logutil.BgLogger().Info("[ddl] backfill worker exit",
zap.Stringer("worker", w), zap.Int("workerID", w.id))
return
}
curTaskID = task.id
d.setDDLLabelForTopSQL(job.ID, job.Query)
logutil.BgLogger().Debug("[ddl] backfill worker got task", zap.Int("workerID", w.id), zap.String("task", task.String()))
failpoint.Inject("mockBackfillRunErr", func() {
if w.id == 0 {
result := &backfillResult{taskID: task.id, addedCount: 0, nextKey: nil, err: errors.Errorf("mock backfill error")}
w.resultCh <- result
failpoint.Continue()
}
})
failpoint.Inject("mockHighLoadForAddIndex", func() {
sqlPrefixes := []string{"alter"}
topsql.MockHighCPULoad(job.Query, sqlPrefixes, 5)
})
failpoint.Inject("mockBackfillSlow", func() {
time.Sleep(100 * time.Millisecond)
})
// Change the batch size dynamically.
w.GetCtx().batchCnt = int(variable.GetDDLReorgBatchSize())
result := w.handleBackfillTask(d, task, bf)
w.resultCh <- result
if result.err != nil {
logutil.BgLogger().Info("[ddl] backfill worker exit on error",
zap.Stringer("worker", w), zap.Int("workerID", w.id), zap.Error(result.err))
return
}
}
}
// splitTableRanges uses PD region's key ranges to split the backfilling table key range space,
// to speed up backfilling data in table with disperse handle.
// The `t` should be a non-partitioned table or a partition.
func splitTableRanges(t table.PhysicalTable, store kv.Storage, startKey, endKey kv.Key, limit int) ([]kv.KeyRange, error) {
logutil.BgLogger().Info("[ddl] split table range from PD",
zap.Int64("physicalTableID", t.GetPhysicalID()),
zap.String("start key", hex.EncodeToString(startKey)),
zap.String("end key", hex.EncodeToString(endKey)))
kvRange := kv.KeyRange{StartKey: startKey, EndKey: endKey}
s, ok := store.(tikv.Storage)
if !ok {
// Only support split ranges in tikv.Storage now.
return []kv.KeyRange{kvRange}, nil
}
maxSleep := 10000 // ms
bo := backoff.NewBackofferWithVars(context.Background(), maxSleep, nil)
rc := copr.NewRegionCache(s.GetRegionCache())
ranges, err := rc.SplitRegionRanges(bo, []kv.KeyRange{kvRange}, limit)
if err != nil {
return nil, errors.Trace(err)
}
if len(ranges) == 0 {
errMsg := fmt.Sprintf("cannot find region in range [%s, %s]", startKey.String(), endKey.String())
return nil, errors.Trace(dbterror.ErrInvalidSplitRegionRanges.GenWithStackByArgs(errMsg))
}
return ranges, nil
}
func waitTaskResults(scheduler *backfillScheduler, batchTasks []*reorgBackfillTask,
totalAddedCount *int64) (kv.Key, int64, error) {
var (
firstErr error
addedCount int64
)
keeper := newDoneTaskKeeper(batchTasks[0].startKey)
taskSize := len(batchTasks)
for i := 0; i < taskSize; i++ {
result := <-scheduler.resultCh
if result.err != nil {
if firstErr == nil {
firstErr = result.err
}
logutil.BgLogger().Warn("[ddl] backfill worker failed",
zap.String("result next key", hex.EncodeToString(result.nextKey)),
zap.Error(result.err))
// Drain tasks.
cnt := drainTasks(scheduler.taskCh)
// We need to wait all the tasks to finish before closing it
// to prevent send on closed channel error.
taskSize -= cnt
continue
}
*totalAddedCount += int64(result.addedCount)
addedCount += int64(result.addedCount)
keeper.updateNextKey(result.taskID, result.nextKey)
if i%scheduler.workerSize()*4 == 0 {
// We try to adjust the worker size regularly to reduce
// the overhead of loading the DDL related global variables.
err := scheduler.adjustWorkerSize()
if err != nil {
logutil.BgLogger().Warn("[ddl] cannot adjust backfill worker size", zap.Error(err))
}
}
}
return keeper.nextKey, addedCount, errors.Trace(firstErr)
}
func drainTasks(taskCh chan *reorgBackfillTask) int {
cnt := 0
for len(taskCh) > 0 {
<-taskCh
cnt++
}
return cnt
}
// sendTasksAndWait sends tasks to workers, and waits for all the running workers to return results,
// there are taskCnt running workers.
func (dc *ddlCtx) sendTasksAndWait(scheduler *backfillScheduler, totalAddedCount *int64,
batchTasks []*reorgBackfillTask) error {
reorgInfo := scheduler.reorgInfo
for _, task := range batchTasks {
if scheduler.copReqSenderPool != nil {
scheduler.copReqSenderPool.sendTask(task)
}
scheduler.taskCh <- task
}
startKey := batchTasks[0].startKey
startTime := time.Now()
nextKey, taskAddedCount, err := waitTaskResults(scheduler, batchTasks, totalAddedCount)
elapsedTime := time.Since(startTime)
if err == nil {
err = dc.isReorgRunnable(reorgInfo.Job.ID)
}
// Update the reorg handle that has been processed.
err1 := reorgInfo.UpdateReorgMeta(nextKey, scheduler.sessPool)
if err != nil {
metrics.BatchAddIdxHistogram.WithLabelValues(metrics.LblError).Observe(elapsedTime.Seconds())
logutil.BgLogger().Warn("[ddl] backfill worker handle batch tasks failed",
zap.Int64("total added count", *totalAddedCount),
zap.String("start key", hex.EncodeToString(startKey)),
zap.String("next key", hex.EncodeToString(nextKey)),
zap.Int64("batch added count", taskAddedCount),
zap.String("task failed error", err.Error()),
zap.String("take time", elapsedTime.String()),
zap.NamedError("updateHandleError", err1))
failpoint.Inject("MockGetIndexRecordErr", func() {
// Make sure this job didn't failed because by the "Write conflict" error.
if dbterror.ErrNotOwner.Equal(err) {
time.Sleep(50 * time.Millisecond)
}
})
return errors.Trace(err)
}
// nextHandle will be updated periodically in runReorgJob, so no need to update it here.
dc.getReorgCtx(reorgInfo.Job.ID).setNextKey(nextKey)
metrics.BatchAddIdxHistogram.WithLabelValues(metrics.LblOK).Observe(elapsedTime.Seconds())
logutil.BgLogger().Info("[ddl] backfill workers successfully processed batch",
zap.Stringer("element", reorgInfo.currElement),
zap.Int64("total added count", *totalAddedCount),
zap.String("start key", hex.EncodeToString(startKey)),
zap.String("next key", hex.EncodeToString(nextKey)),
zap.Int64("batch added count", taskAddedCount),
zap.String("take time", elapsedTime.String()),
zap.NamedError("updateHandleError", err1))
return nil
}
func getBatchTasks(t table.Table, reorgInfo *reorgInfo, kvRanges []kv.KeyRange, batch int) []*reorgBackfillTask {
batchTasks := make([]*reorgBackfillTask, 0, batch)
physicalTableID := reorgInfo.PhysicalTableID
var prefix kv.Key
if reorgInfo.mergingTmpIdx {
prefix = t.IndexPrefix()
} else {
prefix = t.RecordPrefix()
}
// Build reorg tasks.
job := reorgInfo.Job
jobCtx := reorgInfo.d.jobContext(reorgInfo.Job.ID)
for i, keyRange := range kvRanges {
startKey := keyRange.StartKey
endKey := keyRange.EndKey
endK, err := getRangeEndKey(jobCtx, reorgInfo.d.store, job.Priority, prefix, keyRange.StartKey, endKey)
if err != nil {
logutil.BgLogger().Info("[ddl] get backfill range task, get reverse key failed", zap.Error(err))
} else {
logutil.BgLogger().Info("[ddl] get backfill range task, change end key",
zap.String("end key", hex.EncodeToString(endKey)), zap.String("current end key", hex.EncodeToString(endK)))
endKey = endK
}
if len(startKey) == 0 {
startKey = prefix
}
if len(endKey) == 0 {
endKey = prefix.PrefixNext()
}
//nolint:forcetypeassert
phyTbl := t.(table.PhysicalTable)
task := &reorgBackfillTask{
id: i,
jobID: reorgInfo.Job.ID,
physicalTableID: physicalTableID,
physicalTable: phyTbl,
priority: reorgInfo.Priority,
startKey: startKey,
endKey: endKey,
// If the boundaries overlap, we should ignore the preceding endKey.
endInclude: endK.Cmp(keyRange.EndKey) != 0 || i == len(kvRanges)-1}
batchTasks = append(batchTasks, task)
if len(batchTasks) >= batch {
break
}
}
return batchTasks
}
// handleRangeTasks sends tasks to workers, and returns remaining kvRanges that is not handled.
func (dc *ddlCtx) handleRangeTasks(scheduler *backfillScheduler, t table.Table,
totalAddedCount *int64, kvRanges []kv.KeyRange) ([]kv.KeyRange, error) {
batchTasks := getBatchTasks(t, scheduler.reorgInfo, kvRanges, backfillTaskChanSize)
if len(batchTasks) == 0 {
return nil, nil
}
// Wait tasks finish.
err := dc.sendTasksAndWait(scheduler, totalAddedCount, batchTasks)
if err != nil {
return nil, errors.Trace(err)
}
if len(batchTasks) < len(kvRanges) {
// There are kvRanges not handled.
remains := kvRanges[len(batchTasks):]
return remains, nil
}
return nil, nil
}
var (
// TestCheckWorkerNumCh use for test adjust backfill worker.
TestCheckWorkerNumCh = make(chan *sync.WaitGroup)
// TestCheckWorkerNumber use for test adjust backfill worker.
TestCheckWorkerNumber = int32(1)
// TestCheckReorgTimeout is used to mock timeout when reorg data.
TestCheckReorgTimeout = int32(0)
)
func loadDDLReorgVars(ctx context.Context, sessPool *sessionPool) error {
// Get sessionctx from context resource pool.
sCtx, err := sessPool.get()
if err != nil {
return errors.Trace(err)
}
defer sessPool.put(sCtx)
return ddlutil.LoadDDLReorgVars(ctx, sCtx)
}
func makeupDecodeColMap(sessCtx sessionctx.Context, dbName model.CIStr, t table.Table) (map[int64]decoder.Column, error) {
writableColInfos := make([]*model.ColumnInfo, 0, len(t.WritableCols()))
for _, col := range t.WritableCols() {
writableColInfos = append(writableColInfos, col.ColumnInfo)
}
exprCols, _, err := expression.ColumnInfos2ColumnsAndNames(sessCtx, dbName, t.Meta().Name, writableColInfos, t.Meta())
if err != nil {
return nil, err
}
mockSchema := expression.NewSchema(exprCols...)
decodeColMap := decoder.BuildFullDecodeColMap(t.WritableCols(), mockSchema)
return decodeColMap, nil
}
func setSessCtxLocation(sctx sessionctx.Context, info *reorgInfo) error {
// It is set to SystemLocation to be compatible with nil LocationInfo.
*sctx.GetSessionVars().TimeZone = *timeutil.SystemLocation()
if info.ReorgMeta.Location != nil {
loc, err := info.ReorgMeta.Location.GetLocation()
if err != nil {
return errors.Trace(err)
}
*sctx.GetSessionVars().TimeZone = *loc
}
return nil
}
type backfillScheduler struct {
ctx context.Context
reorgInfo *reorgInfo
sessPool *sessionPool
tp backfillerType
tbl table.PhysicalTable
decodeColMap map[int64]decoder.Column
jobCtx *JobContext
workers []*backfillWorker
maxSize int
taskCh chan *reorgBackfillTask
resultCh chan *backfillResult
copReqSenderPool *copReqSenderPool // for add index in ingest way.
}
const backfillTaskChanSize = 1024
func newBackfillScheduler(ctx context.Context, info *reorgInfo, sessPool *sessionPool,
tp backfillerType, tbl table.PhysicalTable, decColMap map[int64]decoder.Column,
jobCtx *JobContext) *backfillScheduler {
return &backfillScheduler{
ctx: ctx,
reorgInfo: info,
sessPool: sessPool,
tp: tp,
tbl: tbl,
decodeColMap: decColMap,
jobCtx: jobCtx,
workers: make([]*backfillWorker, 0, variable.GetDDLReorgWorkerCounter()),
taskCh: make(chan *reorgBackfillTask, backfillTaskChanSize),
resultCh: make(chan *backfillResult, backfillTaskChanSize),
}
}
func (b *backfillScheduler) newSessCtx() (sessionctx.Context, error) {
reorgInfo := b.reorgInfo
sessCtx := newContext(reorgInfo.d.store)
sessCtx.GetSessionVars().StmtCtx.IsDDLJobInQueue = true
// Set the row encode format version.
rowFormat := variable.GetDDLReorgRowFormat()
sessCtx.GetSessionVars().RowEncoder.Enable = rowFormat != variable.DefTiDBRowFormatV1
// Simulate the sql mode environment in the worker sessionCtx.
sqlMode := reorgInfo.ReorgMeta.SQLMode
sessCtx.GetSessionVars().SQLMode = sqlMode
if err := setSessCtxLocation(sessCtx, reorgInfo); err != nil {
return nil, errors.Trace(err)
}
sessCtx.GetSessionVars().StmtCtx.BadNullAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.TruncateAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.OverflowAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.AllowInvalidDate = sqlMode.HasAllowInvalidDatesMode()
sessCtx.GetSessionVars().StmtCtx.DividedByZeroAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.IgnoreZeroInDate = !sqlMode.HasStrictMode() || sqlMode.HasAllowInvalidDatesMode()
sessCtx.GetSessionVars().StmtCtx.NoZeroDate = sqlMode.HasStrictMode()
return sessCtx, nil
}
func (b *backfillScheduler) setMaxWorkerSize(maxSize int) {
b.maxSize = maxSize
}
func (b *backfillScheduler) workerSize() int {
return len(b.workers)
}
func (b *backfillScheduler) adjustWorkerSize() error {
b.initCopReqSenderPool()
reorgInfo := b.reorgInfo
job := reorgInfo.Job
jc := b.jobCtx
if err := loadDDLReorgVars(b.ctx, b.sessPool); err != nil {
logutil.BgLogger().Error("[ddl] load DDL reorganization variable failed", zap.Error(err))
}
workerCnt := int(variable.GetDDLReorgWorkerCounter())
if b.copReqSenderPool != nil {
workerCnt = mathutil.Min(workerCnt/2+1, b.maxSize)
} else {
workerCnt = mathutil.Min(workerCnt, b.maxSize)
}
// Increase the worker.
for i := len(b.workers); i < workerCnt; i++ {
sessCtx, err := b.newSessCtx()
if err != nil {
return err
}
var (
runner *backfillWorker
worker backfiller
)
switch b.tp {
case typeAddIndexWorker:
backfillCtx := newBackfillCtx(reorgInfo.d, sessCtx, reorgInfo.ReorgMeta.ReorgTp, job.SchemaName, b.tbl)
idxWorker, err := newAddIndexWorker(b.decodeColMap, i, b.tbl, backfillCtx,
jc, job.ID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey)
if err != nil {
if b.canSkipError(err) {
continue
}
return err
}
idxWorker.copReqSenderPool = b.copReqSenderPool
runner = newBackfillWorker(jc.ddlJobCtx, i, idxWorker)
worker = idxWorker
case typeAddIndexMergeTmpWorker:
backfillCtx := newBackfillCtx(reorgInfo.d, sessCtx, reorgInfo.ReorgMeta.ReorgTp, job.SchemaName, b.tbl)
tmpIdxWorker := newMergeTempIndexWorker(backfillCtx, i, b.tbl, reorgInfo.currElement.ID, jc)
runner = newBackfillWorker(jc.ddlJobCtx, i, tmpIdxWorker)
worker = tmpIdxWorker
case typeUpdateColumnWorker:
// Setting InCreateOrAlterStmt tells the difference between SELECT casting and ALTER COLUMN casting.
sessCtx.GetSessionVars().StmtCtx.InCreateOrAlterStmt = true
updateWorker := newUpdateColumnWorker(sessCtx, b.tbl, b.decodeColMap, reorgInfo, jc)
runner = newBackfillWorker(jc.ddlJobCtx, i, updateWorker)
worker = updateWorker
case typeCleanUpIndexWorker:
idxWorker := newCleanUpIndexWorker(sessCtx, b.tbl, b.decodeColMap, reorgInfo, jc)
runner = newBackfillWorker(jc.ddlJobCtx, i, idxWorker)
worker = idxWorker
default:
return errors.New("unknown backfill type")
}
runner.taskCh = b.taskCh
runner.resultCh = b.resultCh
b.workers = append(b.workers, runner)
go runner.run(reorgInfo.d, worker, job)
}
// Decrease the worker.
if len(b.workers) > workerCnt {
workers := b.workers[workerCnt:]
b.workers = b.workers[:workerCnt]
closeBackfillWorkers(workers)
}
if b.copReqSenderPool != nil {
b.copReqSenderPool.adjustSize(len(b.workers))
}
return injectCheckBackfillWorkerNum(len(b.workers), b.tp == typeAddIndexMergeTmpWorker)
}
func (b *backfillScheduler) initCopReqSenderPool() {
if b.tp != typeAddIndexWorker || b.reorgInfo.Job.ReorgMeta.ReorgTp != model.ReorgTypeLitMerge ||
b.copReqSenderPool != nil || len(b.workers) > 0 {
return
}
indexInfo := model.FindIndexInfoByID(b.tbl.Meta().Indices, b.reorgInfo.currElement.ID)
if indexInfo == nil {
logutil.BgLogger().Warn("[ddl-ingest] cannot init cop request sender",
zap.Int64("table ID", b.tbl.Meta().ID), zap.Int64("index ID", b.reorgInfo.currElement.ID))
return
}
sessCtx, err := b.newSessCtx()
if err != nil {
logutil.BgLogger().Warn("[ddl-ingest] cannot init cop request sender", zap.Error(err))
return
}
copCtx, err := newCopContext(b.tbl.Meta(), indexInfo, sessCtx)
if err != nil {
logutil.BgLogger().Warn("[ddl-ingest] cannot init cop request sender", zap.Error(err))
return
}
b.copReqSenderPool = newCopReqSenderPool(b.ctx, copCtx, sessCtx.GetStore())
}
func (b *backfillScheduler) canSkipError(err error) bool {
if len(b.workers) > 0 {
// The error can be skipped because the rest workers can handle the tasks.
return true
}
logutil.BgLogger().Warn("[ddl] create add index backfill worker failed",
zap.Int("current worker count", len(b.workers)),
zap.Int64("job ID", b.reorgInfo.ID), zap.Error(err))
return false
}
func (b *backfillScheduler) Close() {
if b.copReqSenderPool != nil {
b.copReqSenderPool.close()
}
closeBackfillWorkers(b.workers)
close(b.taskCh)
close(b.resultCh)
}
// writePhysicalTableRecord handles the "add index" or "modify/change column" reorganization state for a non-partitioned table or a partition.
// For a partitioned table, it should be handled partition by partition.
//
// How to "add index" or "update column value" in reorganization state?
// Concurrently process the @@tidb_ddl_reorg_worker_cnt tasks. Each task deals with a handle range of the index/row record.
// The handle range is split from PD regions now. Each worker deal with a region table key range one time.
// Each handle range by estimation, concurrent processing needs to perform after the handle range has been acquired.
// The operation flow is as follows:
// 1. Open numbers of defaultWorkers goroutines.
// 2. Split table key range from PD regions.
// 3. Send tasks to running workers by workers's task channel. Each task deals with a region key ranges.
// 4. Wait all these running tasks finished, then continue to step 3, until all tasks is done.
//
// The above operations are completed in a transaction.
// Finally, update the concurrent processing of the total number of rows, and store the completed handle value.
func (dc *ddlCtx) writePhysicalTableRecord(sessPool *sessionPool, t table.PhysicalTable, bfWorkerType backfillerType, reorgInfo *reorgInfo) error {
job := reorgInfo.Job
totalAddedCount := job.GetRowCount()
startKey, endKey := reorgInfo.StartKey, reorgInfo.EndKey
sessCtx := newContext(reorgInfo.d.store)
decodeColMap, err := makeupDecodeColMap(sessCtx, reorgInfo.dbInfo.Name, t)
if err != nil {
return errors.Trace(err)
}
if err := dc.isReorgRunnable(reorgInfo.Job.ID); err != nil {
return errors.Trace(err)
}
if startKey == nil && endKey == nil {
return nil
}
failpoint.Inject("MockCaseWhenParseFailure", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
failpoint.Return(errors.New("job.ErrCount:" + strconv.Itoa(int(job.ErrorCount)) + ", mock unknown type: ast.whenClause."))
}
})
jc := dc.jobContext(job.ID)
scheduler := newBackfillScheduler(dc.ctx, reorgInfo, sessPool, bfWorkerType, t, decodeColMap, jc)
defer scheduler.Close()
var ingestBeCtx *ingest.BackendContext
if bfWorkerType == typeAddIndexWorker && job.ReorgMeta.ReorgTp == model.ReorgTypeLitMerge {
if bc, ok := ingest.LitBackCtxMgr.Load(job.ID); ok {
ingestBeCtx = bc
} else {
return errors.New(ingest.LitErrGetBackendFail)
}
}
for {
kvRanges, err := splitTableRanges(t, reorgInfo.d.store, startKey, endKey, backfillTaskChanSize)
if err != nil {
return errors.Trace(err)
}
scheduler.setMaxWorkerSize(len(kvRanges))
err = scheduler.adjustWorkerSize()
if err != nil {
return errors.Trace(err)
}
logutil.BgLogger().Info("[ddl] start backfill workers to reorg record",
zap.Stringer("type", bfWorkerType),
zap.Int("workerCnt", scheduler.workerSize()),
zap.Int("regionCnt", len(kvRanges)),
zap.String("startKey", hex.EncodeToString(startKey)),
zap.String("endKey", hex.EncodeToString(endKey)))
if ingestBeCtx != nil {
err := ingestBeCtx.Flush(reorgInfo.currElement.ID)
if err != nil {
return errors.Trace(err)
}
}
remains, err := dc.handleRangeTasks(scheduler, t, &totalAddedCount, kvRanges)
if err != nil {
return errors.Trace(err)
}
if len(remains) == 0 {
if ingestBeCtx != nil {
ingestBeCtx.EngMgr.ResetWorkers(ingestBeCtx, job.ID, reorgInfo.currElement.ID)
}
break
}
startKey = remains[0].StartKey
}
return nil
}
func injectCheckBackfillWorkerNum(curWorkerSize int, isMergeWorker bool) error {
if isMergeWorker {
return nil
}
failpoint.Inject("checkBackfillWorkerNum", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
num := int(atomic.LoadInt32(&TestCheckWorkerNumber))
if num != 0 {
if num != curWorkerSize {
failpoint.Return(errors.Errorf("expected backfill worker num: %v, actual record num: %v", num, curWorkerSize))
}
var wg sync.WaitGroup
wg.Add(1)
TestCheckWorkerNumCh <- &wg
wg.Wait()
}
}
})
return nil
}
func addBatchBackfillJobs(sess *session, bfWorkerType backfillerType, reorgInfo *reorgInfo, notDistTask bool,
batchTasks []*reorgBackfillTask, bJobs []*BackfillJob, isUnique bool, id *int64) error {
bJobs = bJobs[:0]
instanceID := ""
if notDistTask {
instanceID = reorgInfo.d.uuid
}
// TODO: Adjust the number of ranges(region) for each task.
for _, task := range batchTasks {
bm := &model.BackfillMeta{
PhysicalTableID: reorgInfo.PhysicalTableID,
IsUnique: isUnique,
EndInclude: task.endInclude,
ReorgTp: reorgInfo.Job.ReorgMeta.ReorgTp,
SQLMode: reorgInfo.ReorgMeta.SQLMode,
Location: reorgInfo.ReorgMeta.Location,
JobMeta: &model.JobMeta{
SchemaID: reorgInfo.Job.SchemaID,
TableID: reorgInfo.Job.TableID,
Query: reorgInfo.Job.Query,
},
}
bj := &BackfillJob{
ID: *id,
JobID: reorgInfo.Job.ID,
EleID: reorgInfo.currElement.ID,
EleKey: reorgInfo.currElement.TypeKey,
Tp: bfWorkerType,
State: model.JobStateNone,
InstanceID: instanceID,
CurrKey: task.startKey,
StartKey: task.startKey,
EndKey: task.endKey,
Meta: bm,
}
*id++
bJobs = append(bJobs, bj)
}
if err := AddBackfillJobs(sess, bJobs); err != nil {
return errors.Trace(err)
}
return nil
}
func (*ddlCtx) splitTableToBackfillJobs(sess *session, reorgInfo *reorgInfo, pTbl table.PhysicalTable, isUnique bool,
bfWorkerType backfillerType, startKey kv.Key, currBackfillJobID int64) error {
endKey := reorgInfo.EndKey
isFirstOps := true
bJobs := make([]*BackfillJob, 0, genTaskBatch)
for {
kvRanges, err := splitTableRanges(pTbl, reorgInfo.d.store, startKey, endKey, genTaskBatch)
if err != nil {
return errors.Trace(err)
}
batchTasks := getBatchTasks(pTbl, reorgInfo, kvRanges, genTaskBatch)
if len(batchTasks) == 0 {
break
}
notNeedDistProcess := isFirstOps && (len(kvRanges) < minDistTaskCnt)
if err = addBatchBackfillJobs(sess, bfWorkerType, reorgInfo, notNeedDistProcess, batchTasks, bJobs, isUnique, &currBackfillJobID); err != nil {
return errors.Trace(err)
}
isFirstOps = false
remains := kvRanges[len(batchTasks):]
// TODO: After adding backfillCh do asyncNotify(dc.backfillJobCh).
logutil.BgLogger().Info("[ddl] split backfill jobs to the backfill table",
zap.Int("batchTasksCnt", len(batchTasks)),
zap.Int("totalRegionCnt", len(kvRanges)),
zap.Int("remainRegionCnt", len(remains)),
zap.String("startHandle", hex.EncodeToString(startKey)),
zap.String("endHandle", hex.EncodeToString(endKey)))
if len(remains) == 0 {
break
}
for {
bJobCnt, err := checkBackfillJobCount(sess, reorgInfo.Job.ID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey)
if err != nil {
return errors.Trace(err)
}
if bJobCnt < minGenTaskBatch {
break
}
time.Sleep(retrySQLInterval)
}
startKey = remains[0].StartKey
}
return nil
}
func (dc *ddlCtx) controlWritePhysicalTableRecord(sess *session, t table.PhysicalTable, bfWorkerType backfillerType, reorgInfo *reorgInfo) error {
startKey, endKey := reorgInfo.StartKey, reorgInfo.EndKey
if startKey == nil && endKey == nil {
return nil
}
if err := dc.isReorgRunnable(reorgInfo.Job.ID); err != nil {
return errors.Trace(err)
}
currBackfillJobID := int64(1)
err := checkAndHandleInterruptedBackfillJobs(sess, reorgInfo.Job.ID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey)
if err != nil {
return errors.Trace(err)
}
maxBfJob, err := GetMaxBackfillJob(sess, reorgInfo.Job.ID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey)
if err != nil {
return errors.Trace(err)
}
if maxBfJob != nil {
startKey = maxBfJob.EndKey
currBackfillJobID = maxBfJob.ID + 1
}
var isUnique bool
if bfWorkerType == typeAddIndexWorker {
idxInfo := model.FindIndexInfoByID(t.Meta().Indices, reorgInfo.currElement.ID)
isUnique = idxInfo.Unique
}
err = dc.splitTableToBackfillJobs(sess, reorgInfo, t, isUnique, bfWorkerType, startKey, currBackfillJobID)
if err != nil {
return errors.Trace(err)
}
var backfillJobFinished bool
jobID := reorgInfo.Job.ID
ticker := time.NewTicker(300 * time.Millisecond)
defer ticker.Stop()
for {
if err := dc.isReorgRunnable(reorgInfo.Job.ID); err != nil {
return errors.Trace(err)
}
select {
case <-ticker.C:
if !backfillJobFinished {
err := checkAndHandleInterruptedBackfillJobs(sess, jobID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey)
if err != nil {
logutil.BgLogger().Warn("[ddl] finish interrupted backfill jobs", zap.Int64("job ID", jobID), zap.Error(err))
return errors.Trace(err)
}
bfJob, err := getBackfillJobWithRetry(sess, BackfillTable, jobID, reorgInfo.currElement.ID, reorgInfo.currElement.TypeKey, false)
if err != nil {
logutil.BgLogger().Info("[ddl] getBackfillJobWithRetry failed", zap.Int64("job ID", jobID), zap.Error(err))
return errors.Trace(err)
}
if bfJob == nil {
backfillJobFinished = true
logutil.BgLogger().Info("[ddl] finish backfill jobs", zap.Int64("job ID", jobID))
}
}
if backfillJobFinished {
// TODO: Consider whether these backfill jobs are always out of sync.
isSynced, err := checkJobIsSynced(sess, jobID)
if err != nil {
logutil.BgLogger().Warn("[ddl] checkJobIsSynced failed", zap.Int64("job ID", jobID), zap.Error(err))
return errors.Trace(err)
}
if isSynced {
logutil.BgLogger().Info("[ddl] sync backfill jobs", zap.Int64("job ID", jobID))
return nil
}
}
case <-dc.ctx.Done():
return dc.ctx.Err()
}
}
}
func checkJobIsSynced(sess *session, jobID int64) (bool, error) {
var err error
var unsyncedInstanceIDs []string
for i := 0; i < retrySQLTimes; i++ {
unsyncedInstanceIDs, err = getUnsyncedInstanceIDs(sess, jobID, "check_backfill_history_job_sync")
if err == nil && len(unsyncedInstanceIDs) == 0 {
return true, nil
}
logutil.BgLogger().Info("[ddl] checkJobIsSynced failed",
zap.Strings("unsyncedInstanceIDs", unsyncedInstanceIDs), zap.Int("tryTimes", i), zap.Error(err))
time.Sleep(retrySQLInterval)
}
return false, errors.Trace(err)
}
func checkAndHandleInterruptedBackfillJobs(sess *session, jobID, currEleID int64, currEleKey []byte) (err error) {
var bJobs []*BackfillJob
for i := 0; i < retrySQLTimes; i++ {
bJobs, err = GetInterruptedBackfillJobsForOneEle(sess, jobID, currEleID, currEleKey)
if err == nil {
break
}
logutil.BgLogger().Info("[ddl] getInterruptedBackfillJobsForOneEle failed", zap.Error(err))
time.Sleep(retrySQLInterval)
}
if err != nil {
return errors.Trace(err)
}
if len(bJobs) == 0 {
return nil
}
for i := 0; i < retrySQLTimes; i++ {
err = MoveBackfillJobsToHistoryTable(sess, bJobs[0])
if err == nil {
return errors.Errorf(bJobs[0].Meta.ErrMsg)
}
logutil.BgLogger().Info("[ddl] MoveBackfillJobsToHistoryTable failed", zap.Error(err))
time.Sleep(retrySQLInterval)
}
return errors.Trace(err)
}
func checkBackfillJobCount(sess *session, jobID, currEleID int64, currEleKey []byte) (backfillJobCnt int, err error) {
err = checkAndHandleInterruptedBackfillJobs(sess, jobID, currEleID, currEleKey)
if err != nil {
return 0, errors.Trace(err)
}
backfillJobCnt, err = GetBackfillJobCount(sess, BackfillTable, fmt.Sprintf("ddl_job_id = %d and ele_id = %d and ele_key = '%s'",
jobID, currEleID, currEleKey), "check_backfill_job_count")
if err != nil {
return 0, errors.Trace(err)
}
return backfillJobCnt, nil
}
func getBackfillJobWithRetry(sess *session, tableName string, jobID, currEleID int64, currEleKey []byte, isDesc bool) (*BackfillJob, error) {
var err error
var bJobs []*BackfillJob
descStr := ""
if isDesc {
descStr = "order by id desc"
}
for i := 0; i < retrySQLTimes; i++ {
bJobs, err = GetBackfillJobs(sess, tableName, fmt.Sprintf("ddl_job_id = %d and ele_id = %d and ele_key = '%s' %s limit 1",
jobID, currEleID, currEleKey, descStr), "check_backfill_job_state")
if err != nil {
logutil.BgLogger().Warn("[ddl] GetBackfillJobs failed", zap.Error(err))
continue
}
if len(bJobs) != 0 {
return bJobs[0], nil
}
break
}
return nil, errors.Trace(err)
}
// GetMaxBackfillJob gets the max backfill job in BackfillTable and BackfillHistoryTable.
func GetMaxBackfillJob(sess *session, jobID, currEleID int64, currEleKey []byte) (*BackfillJob, error) {
bfJob, err := getBackfillJobWithRetry(sess, BackfillTable, jobID, currEleID, currEleKey, true)
if err != nil {
return nil, errors.Trace(err)
}
hJob, err := getBackfillJobWithRetry(sess, BackfillHistoryTable, jobID, currEleID, currEleKey, true)
if err != nil {
return nil, errors.Trace(err)
}
if bfJob == nil {
return hJob, nil
}
if hJob == nil {
return bfJob, nil
}
if bfJob.ID > hJob.ID {
return bfJob, nil
}
return hJob, nil
}
// MoveBackfillJobsToHistoryTable moves backfill table jobs to the backfill history table.
func MoveBackfillJobsToHistoryTable(sctx sessionctx.Context, bfJob *BackfillJob) error {
s, ok := sctx.(*session)
if !ok {
return errors.Errorf("sess ctx:%#v convert session failed", sctx)
}
return s.runInTxn(func(se *session) error {
// TODO: Consider batch by batch update backfill jobs and insert backfill history jobs.
bJobs, err := GetBackfillJobs(se, BackfillTable, fmt.Sprintf("ddl_job_id = %d and ele_id = %d and ele_key = '%s'",
bfJob.JobID, bfJob.EleID, bfJob.EleKey), "update_backfill_job")
if err != nil {
return errors.Trace(err)
}
if len(bJobs) == 0 {
return nil
}
txn, err := se.txn()
if err != nil {
return errors.Trace(err)
}
startTS := txn.StartTS()
err = RemoveBackfillJob(se, true, bJobs[0])
if err == nil {
for _, bj := range bJobs {
bj.State = model.JobStateCancelled
bj.FinishTS = startTS
}
err = AddBackfillHistoryJob(se, bJobs)
}
logutil.BgLogger().Info("[ddl] move backfill jobs to history table", zap.Int("job count", len(bJobs)))
return errors.Trace(err)
})
}
// recordIterFunc is used for low-level record iteration.
type recordIterFunc func(h kv.Handle, rowKey kv.Key, rawRecord []byte) (more bool, err error)
func iterateSnapshotKeys(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, version uint64,
startKey kv.Key, endKey kv.Key, fn recordIterFunc) error {
isRecord := tablecodec.IsRecordKey(keyPrefix.Next())
var firstKey kv.Key
if startKey == nil {
firstKey = keyPrefix
} else {
firstKey = startKey
}
var upperBound kv.Key
if endKey == nil {
upperBound = keyPrefix.PrefixNext()
} else {
upperBound = endKey.PrefixNext()
}
ver := kv.Version{Ver: version}
snap := store.GetSnapshot(ver)
snap.SetOption(kv.Priority, priority)
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
it, err := snap.Iter(firstKey, upperBound)
if err != nil {
return errors.Trace(err)
}
defer it.Close()
for it.Valid() {
if !it.Key().HasPrefix(keyPrefix) {
break
}
var handle kv.Handle
if isRecord {
handle, err = tablecodec.DecodeRowKey(it.Key())
if err != nil {
return errors.Trace(err)
}
}
more, err := fn(handle, it.Key(), it.Value())
if !more || err != nil {
return errors.Trace(err)
}
err = kv.NextUntil(it, util.RowKeyPrefixFilter(it.Key()))
if err != nil {
if kv.ErrNotExist.Equal(err) {
break
}
return errors.Trace(err)
}
}
return nil
}
// getRegionEndKey gets the actual end key for the range of [startKey, endKey].
func getRangeEndKey(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, startKey, endKey kv.Key) (kv.Key, error) {
snap := store.GetSnapshot(kv.MaxVersion)
snap.SetOption(kv.Priority, priority)
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
it, err := snap.IterReverse(endKey.Next())
if err != nil {
return nil, errors.Trace(err)
}
defer it.Close()
if !it.Valid() || !it.Key().HasPrefix(keyPrefix) {
return startKey, nil
}
if it.Key().Cmp(startKey) < 0 {
return startKey, nil
}
return it.Key(), nil
}
func mergeWarningsAndWarningsCount(partWarnings, totalWarnings map[errors.ErrorID]*terror.Error, partWarningsCount, totalWarningsCount map[errors.ErrorID]int64) (map[errors.ErrorID]*terror.Error, map[errors.ErrorID]int64) {
for _, warn := range partWarnings {
if _, ok := totalWarningsCount[warn.ID()]; ok {
totalWarningsCount[warn.ID()] += partWarningsCount[warn.ID()]
} else {
totalWarningsCount[warn.ID()] = partWarningsCount[warn.ID()]
totalWarnings[warn.ID()] = warn
}
}
return totalWarnings, totalWarningsCount
}
func logSlowOperations(elapsed time.Duration, slowMsg string, threshold uint32) {
if threshold == 0 {
threshold = atomic.LoadUint32(&variable.DDLSlowOprThreshold)
}
if elapsed >= time.Duration(threshold)*time.Millisecond {
logutil.BgLogger().Info("[ddl] slow operations", zap.Duration("takeTimes", elapsed), zap.String("msg", slowMsg))
}
}
// doneTaskKeeper keeps the done tasks and update the latest next key.
type doneTaskKeeper struct {
doneTaskNextKey map[int]kv.Key
current int
nextKey kv.Key
}
func newDoneTaskKeeper(start kv.Key) *doneTaskKeeper {
return &doneTaskKeeper{
doneTaskNextKey: make(map[int]kv.Key),
current: 0,
nextKey: start,
}
}
func (n *doneTaskKeeper) updateNextKey(doneTaskID int, next kv.Key) {
if doneTaskID == n.current {
n.current++
n.nextKey = next
for {
if nKey, ok := n.doneTaskNextKey[n.current]; ok {
delete(n.doneTaskNextKey, n.current)
n.current++
n.nextKey = nKey
} else {
break
}
}
return
}
n.doneTaskNextKey[doneTaskID] = next
}