Files
tidb/pkg/util/codec/codec.go

1933 lines
56 KiB
Go

// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package codec
import (
"bytes"
"encoding/binary"
"fmt"
"hash"
"io"
"time"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/parser/terror"
"github.com/pingcap/tidb/pkg/planner/cascades/base"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/collate"
"github.com/pingcap/tidb/pkg/util/hack"
"github.com/pingcap/tidb/pkg/util/intest"
"github.com/pingcap/tidb/pkg/util/logutil"
"github.com/pingcap/tidb/pkg/util/size"
"go.uber.org/zap"
)
// First byte in the encoded value which specifies the encoding type.
const (
NilFlag byte = 0
bytesFlag byte = 1
compactBytesFlag byte = 2
intFlag byte = 3
uintFlag byte = 4
floatFlag byte = 5
decimalFlag byte = 6
durationFlag byte = 7
varintFlag byte = 8
uvarintFlag byte = 9
jsonFlag byte = 10
vectorFloat32Flag byte = 20
maxFlag byte = 250
)
// IntHandleFlag is only used to encode int handle key.
const IntHandleFlag = intFlag
const (
sizeUint64 = unsafe.Sizeof(uint64(0))
sizeUint8 = unsafe.Sizeof(uint8(0))
sizeUint32 = unsafe.Sizeof(uint32(0))
sizeFloat64 = unsafe.Sizeof(float64(0))
)
func preRealloc(b []byte, vals []types.Datum, comparable1 bool) []byte {
var size int
for i := range vals {
switch vals[i].Kind() {
case types.KindInt64, types.KindUint64, types.KindMysqlEnum, types.KindMysqlSet, types.KindMysqlBit, types.KindBinaryLiteral:
size += sizeInt(comparable1)
case types.KindString, types.KindBytes:
size += sizeBytes(vals[i].GetBytes(), comparable1)
case types.KindMysqlTime, types.KindMysqlDuration, types.KindFloat32, types.KindFloat64:
size += 9
case types.KindNull, types.KindMinNotNull, types.KindMaxValue:
size++
case types.KindMysqlJSON:
size += 2 + len(vals[i].GetBytes())
case types.KindVectorFloat32:
size += 1 + vals[i].GetVectorFloat32().SerializedSize()
case types.KindMysqlDecimal:
size += 1 + types.MyDecimalStructSize
default:
return b
}
}
return reallocBytes(b, size)
}
// encode will encode a datum and append it to a byte slice. If comparable1 is true, the encoded bytes can be sorted as it's original order.
// If hash is true, the encoded bytes can be checked equal as it's original value.
func encode(loc *time.Location, b []byte, vals []types.Datum, comparable1 bool) (_ []byte, err error) {
b = preRealloc(b, vals, comparable1)
for i, length := 0, len(vals); i < length; i++ {
switch vals[i].Kind() {
case types.KindInt64:
b = encodeSignedInt(b, vals[i].GetInt64(), comparable1)
case types.KindUint64:
b = encodeUnsignedInt(b, vals[i].GetUint64(), comparable1)
case types.KindFloat32, types.KindFloat64:
b = append(b, floatFlag)
b = EncodeFloat(b, vals[i].GetFloat64())
case types.KindString:
b = encodeString(b, vals[i], comparable1)
case types.KindBytes:
b = encodeBytes(b, vals[i].GetBytes(), comparable1)
case types.KindMysqlTime:
b = append(b, uintFlag)
b, err = EncodeMySQLTime(loc, vals[i].GetMysqlTime(), mysql.TypeUnspecified, b)
if err != nil {
return b, err
}
case types.KindMysqlDuration:
// duration may have negative value, so we cannot use String to encode directly.
b = append(b, durationFlag)
b = EncodeInt(b, int64(vals[i].GetMysqlDuration().Duration))
case types.KindMysqlDecimal:
b = append(b, decimalFlag)
b, err = EncodeDecimal(b, vals[i].GetMysqlDecimal(), vals[i].Length(), vals[i].Frac())
case types.KindMysqlEnum:
b = encodeUnsignedInt(b, vals[i].GetMysqlEnum().Value, comparable1)
case types.KindMysqlSet:
b = encodeUnsignedInt(b, vals[i].GetMysqlSet().Value, comparable1)
case types.KindMysqlBit, types.KindBinaryLiteral:
// We don't need to handle errors here since the literal is ensured to be able to store in uint64 in convertToMysqlBit.
var val uint64
val, err = vals[i].GetBinaryLiteral().ToInt(types.StrictContext)
terror.Log(errors.Trace(err))
b = encodeUnsignedInt(b, val, comparable1)
case types.KindMysqlJSON:
b = append(b, jsonFlag)
j := vals[i].GetMysqlJSON()
b = append(b, j.TypeCode)
b = append(b, j.Value...)
case types.KindVectorFloat32:
// Always do a small deser + ser for sanity check
b = append(b, vectorFloat32Flag)
v := vals[i].GetVectorFloat32()
b = v.SerializeTo(b)
case types.KindNull:
b = append(b, NilFlag)
case types.KindMinNotNull:
b = append(b, bytesFlag)
case types.KindMaxValue:
b = append(b, maxFlag)
default:
return b, errors.Errorf("unsupport encode type %d", vals[i].Kind())
}
}
return b, errors.Trace(err)
}
// EstimateValueSize uses to estimate the value size of the encoded values.
func EstimateValueSize(typeCtx types.Context, val types.Datum) (int, error) {
l := 0
switch val.Kind() {
case types.KindInt64:
l = valueSizeOfSignedInt(val.GetInt64())
case types.KindUint64:
l = valueSizeOfUnsignedInt(val.GetUint64())
case types.KindFloat32, types.KindFloat64, types.KindMysqlTime, types.KindMysqlDuration:
l = 9
case types.KindString, types.KindBytes:
l = valueSizeOfBytes(val.GetBytes())
case types.KindMysqlDecimal:
var err error
l, err = valueSizeOfDecimal(val.GetMysqlDecimal(), val.Length(), val.Frac())
if err != nil {
return 0, err
}
l = l + 1
case types.KindMysqlEnum:
l = valueSizeOfUnsignedInt(val.GetMysqlEnum().Value)
case types.KindMysqlSet:
l = valueSizeOfUnsignedInt(val.GetMysqlSet().Value)
case types.KindMysqlBit, types.KindBinaryLiteral:
val, err := val.GetBinaryLiteral().ToInt(typeCtx)
terror.Log(errors.Trace(err))
l = valueSizeOfUnsignedInt(val)
case types.KindMysqlJSON:
l = 2 + len(val.GetMysqlJSON().Value)
case types.KindVectorFloat32:
v := val.GetVectorFloat32()
l = 1 + v.SerializedSize()
case types.KindNull, types.KindMinNotNull, types.KindMaxValue:
l = 1
default:
return l, errors.Errorf("unsupported encode type %d", val.Kind())
}
return l, nil
}
// EncodeMySQLTime encodes datum of `KindMysqlTime` to []byte.
func EncodeMySQLTime(loc *time.Location, t types.Time, tp byte, b []byte) (_ []byte, err error) {
// Encoding timestamp need to consider timezone. If it's not in UTC, transform to UTC first.
// This is compatible with `PBToExpr > convertTime`, and coprocessor assumes the passed timestamp is in UTC as well.
if tp == mysql.TypeUnspecified {
tp = t.Type()
}
if tp == mysql.TypeTimestamp && loc != time.UTC {
err = t.ConvertTimeZone(loc, time.UTC)
if err != nil {
return nil, err
}
}
var v uint64
v, err = t.ToPackedUint()
if err != nil {
return nil, err
}
b = EncodeUint(b, v)
return b, nil
}
func encodeString(b []byte, val types.Datum, comparable1 bool) []byte {
if collate.NewCollationEnabled() && comparable1 {
return encodeBytes(b, collate.GetCollator(val.Collation()).ImmutableKey(val.GetString()), true)
}
return encodeBytes(b, val.GetBytes(), comparable1)
}
func encodeBytes(b []byte, v []byte, comparable1 bool) []byte {
if comparable1 {
b = append(b, bytesFlag)
b = EncodeBytes(b, v)
} else {
b = append(b, compactBytesFlag)
b = EncodeCompactBytes(b, v)
}
return b
}
func valueSizeOfBytes(v []byte) int {
return valueSizeOfSignedInt(int64(len(v))) + len(v)
}
func sizeBytes(v []byte, comparable1 bool) int {
if comparable1 {
reallocSize := (len(v)/encGroupSize + 1) * (encGroupSize + 1)
return 1 + reallocSize
}
reallocSize := binary.MaxVarintLen64 + len(v)
return 1 + reallocSize
}
func encodeSignedInt(b []byte, v int64, comparable1 bool) []byte {
if comparable1 {
b = append(b, intFlag)
b = EncodeInt(b, v)
} else {
b = append(b, varintFlag)
b = EncodeVarint(b, v)
}
return b
}
func valueSizeOfSignedInt(v int64) int {
if v < 0 {
v = 0 - v - 1
}
// flag occupy 1 bit and at lease 1 bit.
size := 2
v = v >> 6
for v > 0 {
size++
v = v >> 7
}
return size
}
func encodeUnsignedInt(b []byte, v uint64, comparable1 bool) []byte {
if comparable1 {
b = append(b, uintFlag)
b = EncodeUint(b, v)
} else {
b = append(b, uvarintFlag)
b = EncodeUvarint(b, v)
}
return b
}
func valueSizeOfUnsignedInt(v uint64) int {
// flag occupy 1 bit and at lease 1 bit.
size := 2
v = v >> 7
for v > 0 {
size++
v = v >> 7
}
return size
}
func sizeInt(comparable1 bool) int {
if comparable1 {
return 9
}
return 1 + binary.MaxVarintLen64
}
// EncodeKey appends the encoded values to byte slice b, returns the appended
// slice. It guarantees the encoded value is in ascending order for comparison.
// For decimal type, datum must set datum's length and frac.
func EncodeKey(loc *time.Location, b []byte, v ...types.Datum) ([]byte, error) {
return encode(loc, b, v, true)
}
// EncodeValue appends the encoded values to byte slice b, returning the appended
// slice. It does not guarantee the order for comparison.
func EncodeValue(loc *time.Location, b []byte, v ...types.Datum) ([]byte, error) {
return encode(loc, b, v, false)
}
func encodeHashChunkRowIdx(typeCtx types.Context, row chunk.Row, tp *types.FieldType, idx int) (flag byte, b []byte, err error) {
if row.IsNull(idx) {
flag = NilFlag
return
}
switch tp.GetType() {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear:
flag = uvarintFlag
if !mysql.HasUnsignedFlag(tp.GetFlag()) && row.GetInt64(idx) < 0 {
flag = varintFlag
}
b = row.GetRaw(idx)
case mysql.TypeFloat:
flag = floatFlag
f := float64(row.GetFloat32(idx))
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
if f == 0 {
f = 0
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&f)), unsafe.Sizeof(f))
case mysql.TypeDouble:
flag = floatFlag
f := row.GetFloat64(idx)
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
if f == 0 {
f = 0
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&f)), unsafe.Sizeof(f))
case mysql.TypeVarchar, mysql.TypeVarString, mysql.TypeString, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
flag = compactBytesFlag
b = row.GetBytes(idx)
b = ConvertByCollation(b, tp)
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
flag = uintFlag
t := row.GetTime(idx)
var v uint64
v, err = t.ToPackedUint()
if err != nil {
return
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), unsafe.Sizeof(v))
case mysql.TypeDuration:
flag = durationFlag
// duration may have negative value, so we cannot use String to encode directly.
b = row.GetRaw(idx)
case mysql.TypeNewDecimal:
flag = decimalFlag
// If hash is true, we only consider the original value of this decimal and ignore it's precision.
dec := row.GetMyDecimal(idx)
b, err = dec.ToHashKey()
if err != nil {
return
}
case mysql.TypeEnum:
if mysql.HasEnumSetAsIntFlag(tp.GetFlag()) {
flag = uvarintFlag
v := row.GetEnum(idx).Value
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)
} else {
flag = compactBytesFlag
v := row.GetEnum(idx).Value
str := ""
if enum, err := types.ParseEnumValue(tp.GetElems(), v); err == nil {
// str will be empty string if v out of definition of enum.
str = enum.Name
}
b = ConvertByCollation(hack.Slice(str), tp)
}
case mysql.TypeSet:
flag = compactBytesFlag
s, err := types.ParseSetValue(tp.GetElems(), row.GetSet(idx).Value)
if err != nil {
return 0, nil, err
}
b = ConvertByCollation(hack.Slice(s.Name), tp)
case mysql.TypeBit:
// We don't need to handle errors here since the literal is ensured to be able to store in uint64 in convertToMysqlBit.
flag = uvarintFlag
v, err1 := types.BinaryLiteral(row.GetBytes(idx)).ToInt(typeCtx)
terror.Log(errors.Trace(err1))
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), unsafe.Sizeof(v))
case mysql.TypeJSON:
flag = jsonFlag
json := row.GetJSON(idx)
b = json.HashValue(b)
case mysql.TypeTiDBVectorFloat32:
flag = vectorFloat32Flag
v := row.GetVectorFloat32(idx)
b = v.SerializeTo(nil)
default:
return 0, nil, errors.Errorf("unsupport column type for encode %d", tp.GetType())
}
return
}
// SerializeMode is for some special cases during serialize key
type SerializeMode int
const (
// Normal means serialize in the normal way
Normal SerializeMode = iota
// NeedSignFlag when serialize integer column, if the join key is <signed, signed> or <unsigned, unsigned>,
// the unsigned flag can be ignored, if the join key is <unsigned, signed> or <signed, unsigned>
// the unsigned flag can not be ignored, if the unsigned flag can not be ignored, the key can not be inlined
NeedSignFlag
// KeepVarColumnLength when serialize var-length column, whether record the column length or not. If the join key only contains one var-length
// column, and the key is not inlined, then no need to record the column length, otherwise, always need to record the column length
KeepVarColumnLength
)
func preAllocForSerializedKeyBuffer(
buildKeyIndexs []int,
chk *chunk.Chunk,
tps []*types.FieldType,
usedRows []int,
filterVector []bool,
nullVector []bool,
serializeModes []SerializeMode,
serializedKeys [][]byte,
serializedKeyLens []int,
serializedKeysBuffer []byte) ([]byte, error) {
for i, idx := range buildKeyIndexs {
column := chk.Column(idx)
canSkip := func(index int) bool {
if column.IsNull(index) {
nullVector[index] = true
}
return (filterVector != nil && !filterVector[index]) || (nullVector != nil && nullVector[index])
}
switch tps[i].GetType() {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear:
flagByteNum := int(0)
if serializeModes[i] == NeedSignFlag {
flagByteNum = int(size.SizeOfByte)
}
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += flagByteNum + 8
}
case mysql.TypeFloat, mysql.TypeDouble:
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += int(sizeFloat64)
}
case mysql.TypeVarchar, mysql.TypeVarString, mysql.TypeString, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
collator := collate.GetCollator(tps[i].GetCollate())
sizeByteNum := int(0)
if serializeModes[i] == KeepVarColumnLength {
sizeByteNum = int(sizeUint32)
}
for j, physicalRowIndex := range usedRows {
if canSkip(physicalRowIndex) {
continue
}
strLen := collator.MaxKeyLen(string(hack.String(column.GetBytes(physicalRowIndex))))
serializedKeyLens[j] += sizeByteNum + strLen
}
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += int(sizeUint64)
}
case mysql.TypeDuration:
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += 8
}
case mysql.TypeNewDecimal:
sizeByteNum := int(0)
if serializeModes[i] == KeepVarColumnLength {
sizeByteNum = int(sizeUint32)
}
ds := column.Decimals()
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
size, err := ds[physicalRowindex].HashKeySize()
if err != nil {
return serializedKeysBuffer, err
}
serializedKeyLens[j] += size + sizeByteNum
}
case mysql.TypeEnum:
if mysql.HasEnumSetAsIntFlag(tps[i].GetFlag()) {
elemLen := 0
if serializeModes[i] == NeedSignFlag {
elemLen += int(size.SizeOfByte)
}
elemLen += int(sizeUint64)
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += elemLen
}
} else {
sizeByteNum := int64(0)
if serializeModes[i] == KeepVarColumnLength {
sizeByteNum = int64(sizeUint32)
}
collator := collate.GetCollator(tps[i].GetCollate())
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
v := column.GetEnum(physicalRowindex).Value
str := ""
if enum, err := types.ParseEnumValue(tps[i].GetElems(), v); err == nil {
str = enum.Name
}
serializedKeyLens[j] += int(sizeByteNum) + collator.MaxKeyLen(str)
}
}
case mysql.TypeSet:
sizeByteNum := int64(0)
if serializeModes[i] == KeepVarColumnLength {
sizeByteNum = int64(sizeUint32)
}
collator := collate.GetCollator(tps[i].GetCollate())
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
s, err := types.ParseSetValue(tps[i].GetElems(), column.GetSet(physicalRowindex).Value)
if err != nil {
return serializedKeysBuffer, err
}
serializedKeyLens[j] += int(sizeByteNum) + collator.MaxKeyLen(s.Name)
}
case mysql.TypeBit:
signFlagLen := 0
if serializeModes[i] == NeedSignFlag {
signFlagLen = int(size.SizeOfByte)
}
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += signFlagLen + int(sizeUint64)
}
case mysql.TypeJSON:
sizeByteNum := 0
if serializeModes[i] == KeepVarColumnLength {
sizeByteNum = int(sizeUint32)
}
for j, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
serializedKeyLens[j] += sizeByteNum + int(column.GetJSON(physicalRowindex).CalculateHashValueSize())
}
case mysql.TypeNull:
default:
return serializedKeysBuffer, errors.Errorf("unsupport column type for pre-alloc %d", tps[i].GetType())
}
}
totalMemUsage := 0
for _, usage := range serializedKeyLens {
totalMemUsage += usage
}
if cap(serializedKeysBuffer) < totalMemUsage {
serializedKeysBuffer = make([]byte, totalMemUsage)
} else {
serializedKeysBuffer = serializedKeysBuffer[:totalMemUsage]
}
start := 0
for i := range serializedKeys {
rowLen := serializedKeyLens[i]
serializedKeys[i] = serializedKeysBuffer[start : start : start+rowLen]
start += rowLen
}
return serializedKeysBuffer, nil
}
func serializeKeysImpl(
typeCtx types.Context,
chk *chunk.Chunk,
tps []*types.FieldType,
buildKeyIndexs []int,
usedRows []int,
filterVector []bool,
nullVector []bool,
serializeModes []SerializeMode,
serializedKeys [][]byte) error {
canSkip := func(index int) bool {
return (filterVector != nil && !filterVector[index]) || (nullVector != nil && nullVector[index])
}
for i, idx := range buildKeyIndexs {
column := chk.Column(idx)
serializeMode := serializeModes[i]
tp := tps[i]
switch tp.GetType() {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear:
i64s := column.Int64s()
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
if serializeMode == NeedSignFlag {
if !mysql.HasUnsignedFlag(tp.GetFlag()) && i64s[physicalRowindex] < 0 {
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], intFlag)
} else {
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], uintFlag)
}
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], column.GetRaw(physicalRowindex)...)
}
case mysql.TypeFloat:
f32s := column.Float32s()
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
d := float64(f32s[physicalRowindex])
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
if d == 0 {
d = 0
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&d)), sizeFloat64)...)
}
case mysql.TypeDouble:
f64s := column.Float64s()
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
f := f64s[physicalRowindex]
if f == 0 {
f = 0
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&f)), sizeFloat64)...)
}
case mysql.TypeVarchar, mysql.TypeVarString, mysql.TypeString, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
collator := collate.GetCollator(tp.GetCollate())
for logicalRowIndex, physicalRowIndex := range usedRows {
if canSkip(physicalRowIndex) {
continue
}
data := collator.ImmutableKey(string(hack.String(column.GetBytes(physicalRowIndex))))
size := uint32(len(data))
if serializeMode == KeepVarColumnLength {
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&size)), sizeUint32)...)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], data...)
}
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
ts := column.Times()
for logicalRowIndex, physicalRowIndex := range usedRows {
if canSkip(physicalRowIndex) {
continue
}
v, err := ts[physicalRowIndex].ToPackedUint()
if err != nil {
return err
}
// don't need to check serializeMode since date/datetime/timestamp must be compared with date/datetime/timestamp, so the serializeMode must be normal
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)...)
}
case mysql.TypeDuration:
for logicalRowIndex, physicalRowIndex := range usedRows {
if canSkip(physicalRowIndex) {
continue
}
// don't need to check serializeMode since duration must be compared with duration, so the serializeMode must be normal
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], column.GetRaw(physicalRowIndex)...)
}
case mysql.TypeNewDecimal:
ds := column.Decimals()
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
b, err := ds[physicalRowindex].ToHashKey()
if err != nil {
return err
}
if serializeMode == KeepVarColumnLength {
// for decimal, the size must be less than uint8.MAX, so use uint8 here
size := uint8(len(b))
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&size)), sizeUint8)...)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], b...)
}
case mysql.TypeEnum:
if mysql.HasEnumSetAsIntFlag(tp.GetFlag()) {
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
v := column.GetEnum(physicalRowindex).Value
// check serializeMode here because enum maybe compare to integer type directly
if serializeMode == NeedSignFlag {
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], uintFlag)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)...)
}
} else {
collator := collate.GetCollator(tp.GetCollate())
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
v := column.GetEnum(physicalRowindex).Value
str := ""
if enum, err := types.ParseEnumValue(tp.GetElems(), v); err == nil {
str = enum.Name
}
b := collator.ImmutableKey(str)
if serializeMode == KeepVarColumnLength {
// for enum, the size must be less than uint32.MAX, so use uint32 here
size := uint32(len(b))
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&size)), sizeUint32)...)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], b...)
}
}
case mysql.TypeSet:
collator := collate.GetCollator(tp.GetCollate())
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
s, err := types.ParseSetValue(tp.GetElems(), column.GetSet(physicalRowindex).Value)
if err != nil {
return err
}
b := collator.ImmutableKey(s.Name)
if serializeMode == KeepVarColumnLength {
// for enum, the size must be less than uint32.MAX, so use uint32 here
size := uint32(len(b))
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&size)), sizeUint32)...)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], b...)
}
case mysql.TypeBit:
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
v, err1 := types.BinaryLiteral(column.GetBytes(physicalRowindex)).ToInt(typeCtx)
terror.Log(errors.Trace(err1))
// check serializeMode here because bit maybe compare to integer type directly
if serializeMode == NeedSignFlag {
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], uintFlag)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)...)
}
case mysql.TypeJSON:
jsonHashBuffer := make([]byte, 0)
for logicalRowIndex, physicalRowindex := range usedRows {
if canSkip(physicalRowindex) {
continue
}
jsonHashBuffer = jsonHashBuffer[:0]
jsonHashBuffer = column.GetJSON(physicalRowindex).HashValue(jsonHashBuffer)
if serializeMode == KeepVarColumnLength {
size := uint32(len(jsonHashBuffer))
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], unsafe.Slice((*byte)(unsafe.Pointer(&size)), sizeUint32)...)
}
serializedKeys[logicalRowIndex] = append(serializedKeys[logicalRowIndex], jsonHashBuffer...)
}
case mysql.TypeNull:
default:
return errors.Errorf("unsupport column type for encode %d", tp.GetType())
}
}
return nil
}
// SerializeKeys is used in join
func SerializeKeys(
typeCtx types.Context,
chk *chunk.Chunk,
tps []*types.FieldType,
buildKeyIndexs []int,
usedRows []int,
filterVector []bool,
nullVector []bool,
serializeModes []SerializeMode,
serializedKeys [][]byte,
serializedKeyLens []int,
serializedKeysBuffer []byte) ([]byte, error) {
serializedKeysBuffer, err := preAllocForSerializedKeyBuffer(
buildKeyIndexs,
chk,
tps,
usedRows,
filterVector,
nullVector,
serializeModes,
serializedKeys,
serializedKeyLens,
serializedKeysBuffer)
if err != nil {
return serializedKeysBuffer, err
}
var serializedKeyVectorBufferCapsForTest []int
if intest.InTest {
serializedKeyVectorBufferCapsForTest = make([]int, len(serializedKeys))
for i := range serializedKeys {
serializedKeyVectorBufferCapsForTest[i] = cap(serializedKeys[i])
}
}
err = serializeKeysImpl(
typeCtx,
chk,
tps,
buildKeyIndexs,
usedRows,
filterVector,
nullVector,
serializeModes,
serializedKeys)
if err != nil {
return serializedKeysBuffer, err
}
if intest.InTest {
for i := range serializedKeys {
if serializedKeyVectorBufferCapsForTest[i] < cap(serializedKeys[i]) {
panic(fmt.Sprintf("Before: %d, After: %d", serializedKeyVectorBufferCapsForTest[i], cap(serializedKeys[i])))
}
}
}
return serializedKeysBuffer, nil
}
// HashChunkColumns writes the encoded value of each row's column, which of index `colIdx`, to h.
func HashChunkColumns(typeCtx types.Context, h []hash.Hash64, chk *chunk.Chunk, tp *types.FieldType, colIdx int, buf []byte, isNull []bool) (err error) {
return HashChunkSelected(typeCtx, h, chk, tp, colIdx, buf, isNull, nil, false)
}
// HashChunkSelected writes the encoded value of selected row's column, which of index `colIdx`, to h.
// sel indicates which rows are selected. If it is nil, all rows are selected.
func HashChunkSelected(typeCtx types.Context, h []hash.Hash64, chk *chunk.Chunk, tp *types.FieldType, colIdx int, buf []byte,
isNull, sel []bool, ignoreNull bool) (err error) {
var b []byte
column := chk.Column(colIdx)
rows := chk.NumRows()
switch tp.GetType() {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeYear:
i64s := column.Int64s()
for i, v := range i64s {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = uvarintFlag
if !mysql.HasUnsignedFlag(tp.GetFlag()) && v < 0 {
buf[0] = varintFlag
}
b = column.GetRaw(i)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeFloat:
f32s := column.Float32s()
for i, f := range f32s {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = floatFlag
d := float64(f)
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
if d == 0 {
d = 0
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&d)), sizeFloat64)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeDouble:
f64s := column.Float64s()
for i := range f64s {
f := f64s[i]
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = floatFlag
// For negative zero. In memory, 0 is [0, 0, 0, 0, 0, 0, 0, 0] and -0 is [0, 0, 0, 0, 0, 0, 0, 128].
// It makes -0's hash val different from 0's.
if f == 0 {
f = 0
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&f)), sizeFloat64)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeVarchar, mysql.TypeVarString, mysql.TypeString, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
collator := collate.GetCollator(tp.GetCollate())
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = compactBytesFlag
b = column.GetBytes(i)
b = collator.ImmutableKey(string(hack.String(b)))
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
ts := column.Times()
for i, t := range ts {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = uintFlag
var v uint64
v, err = t.ToPackedUint()
if err != nil {
return
}
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeDuration:
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = durationFlag
// duration may have negative value, so we cannot use String to encode directly.
b = column.GetRaw(i)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeNewDecimal:
ds := column.Decimals()
for i, d := range ds {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = decimalFlag
// If hash is true, we only consider the original value of this decimal and ignore it's precision.
b, err = d.ToHashKey()
if err != nil {
return
}
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeEnum:
var collator collate.Collator
if !mysql.HasEnumSetAsIntFlag(tp.GetFlag()) {
collator = collate.GetCollator(tp.GetCollate())
}
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else if mysql.HasEnumSetAsIntFlag(tp.GetFlag()) {
buf[0] = uvarintFlag
v := column.GetEnum(i).Value
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)
} else {
buf[0] = compactBytesFlag
v := column.GetEnum(i).Value
str := ""
if enum, err := types.ParseEnumValue(tp.GetElems(), v); err == nil {
// str will be empty string if v out of definition of enum.
str = enum.Name
}
b = collator.ImmutableKey(str)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeSet:
collator := collate.GetCollator(tp.GetCollate())
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = compactBytesFlag
s, err := types.ParseSetValue(tp.GetElems(), column.GetSet(i).Value)
if err != nil {
return err
}
b = collator.ImmutableKey(s.Name)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeBit:
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
// We don't need to handle errors here since the literal is ensured to be able to store in uint64 in convertToMysqlBit.
buf[0] = uvarintFlag
v, err1 := types.BinaryLiteral(column.GetBytes(i)).ToInt(typeCtx)
terror.Log(errors.Trace(err1))
b = unsafe.Slice((*byte)(unsafe.Pointer(&v)), sizeUint64)
}
// As the golang doc described, `Hash.Write` never returns an error.
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeJSON:
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = jsonFlag
json := column.GetJSON(i)
b = b[:0]
b = json.HashValue(b)
}
// As the golang doc described, `Hash.Write` never returns an error..
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeTiDBVectorFloat32:
for i := range rows {
if sel != nil && !sel[i] {
continue
}
if column.IsNull(i) {
buf[0], b = NilFlag, nil
isNull[i] = !ignoreNull
} else {
buf[0] = vectorFloat32Flag
v := column.GetVectorFloat32(i)
b = v.SerializeTo(nil)
}
// As the golang doc described, `Hash.Write` never returns an error..
// See https://golang.org/pkg/hash/#Hash
_, _ = h[i].Write(buf)
_, _ = h[i].Write(b)
}
case mysql.TypeNull:
for i := range rows {
if sel != nil && !sel[i] {
continue
}
isNull[i] = !ignoreNull
buf[0] = NilFlag
_, _ = h[i].Write(buf)
}
default:
return errors.Errorf("unsupport column type for encode %d", tp.GetType())
}
return
}
// HashChunkRow writes the encoded values to w.
// If two rows are logically equal, it will generate the same bytes.
func HashChunkRow(typeCtx types.Context, w io.Writer, row chunk.Row, allTypes []*types.FieldType, colIdx []int, buf []byte) (err error) {
var b []byte
for i, idx := range colIdx {
buf[0], b, err = encodeHashChunkRowIdx(typeCtx, row, allTypes[i], idx)
if err != nil {
return errors.Trace(err)
}
_, err = w.Write(buf)
if err != nil {
return
}
_, err = w.Write(b)
if err != nil {
return
}
}
return err
}
// EqualChunkRow returns a boolean reporting whether row1 and row2
// with their types and column index are logically equal.
func EqualChunkRow(typeCtx types.Context,
row1 chunk.Row, allTypes1 []*types.FieldType, colIdx1 []int,
row2 chunk.Row, allTypes2 []*types.FieldType, colIdx2 []int,
) (bool, error) {
if len(colIdx1) != len(colIdx2) {
return false, errors.Errorf("Internal error: Hash columns count mismatch, col1: %d, col2: %d", len(colIdx1), len(colIdx2))
}
for i := range colIdx1 {
idx1, idx2 := colIdx1[i], colIdx2[i]
flag1, b1, err := encodeHashChunkRowIdx(typeCtx, row1, allTypes1[i], idx1)
if err != nil {
return false, errors.Trace(err)
}
flag2, b2, err := encodeHashChunkRowIdx(typeCtx, row2, allTypes2[i], idx2)
if err != nil {
return false, errors.Trace(err)
}
if !(flag1 == flag2 && bytes.Equal(b1, b2)) {
return false, nil
}
}
return true, nil
}
// Decode decodes values from a byte slice generated with EncodeKey or EncodeValue
// before.
// size is the size of decoded datum slice.
func Decode(b []byte, size int) ([]types.Datum, error) {
if len(b) < 1 {
return nil, errors.New("invalid encoded key")
}
var (
err error
values = make([]types.Datum, 0, size)
)
for len(b) > 0 {
var d types.Datum
b, d, err = DecodeOne(b)
if err != nil {
return nil, errors.Trace(err)
}
values = append(values, d)
}
return values, nil
}
// DecodeRange decodes the range values from a byte slice that generated by EncodeKey.
// It handles some special values like `MinNotNull` and `MaxValueDatum`.
// loc can be nil and only used in when the corresponding type is `mysql.TypeTimestamp`.
func DecodeRange(b []byte, size int, idxColumnTypes []byte, loc *time.Location) ([]types.Datum, []byte, error) {
if len(b) < 1 {
return nil, b, errors.New("invalid encoded key: length of key is zero")
}
var (
err error
values = make([]types.Datum, 0, size)
)
i := 0
for len(b) > 1 {
var d types.Datum
if idxColumnTypes == nil {
b, d, err = DecodeOne(b)
} else {
if i >= len(idxColumnTypes) {
return values, b, errors.New("invalid length of index's columns")
}
if types.IsTypeTime(idxColumnTypes[i]) {
// handle datetime values specially since they are encoded to int and we'll get int values if using DecodeOne.
b, d, err = DecodeAsDateTime(b, idxColumnTypes[i], loc)
} else if types.IsTypeFloat(idxColumnTypes[i]) {
b, d, err = DecodeAsFloat32(b, idxColumnTypes[i])
} else {
b, d, err = DecodeOne(b)
}
}
if err != nil {
return values, b, errors.Trace(err)
}
values = append(values, d)
i++
}
if len(b) == 1 {
switch b[0] {
case NilFlag:
values = append(values, types.Datum{})
case bytesFlag:
values = append(values, types.MinNotNullDatum())
// `maxFlag + 1` for PrefixNext
case maxFlag, maxFlag + 1:
values = append(values, types.MaxValueDatum())
default:
return values, b, errors.Errorf("invalid encoded key flag %v", b[0])
}
}
return values, nil, nil
}
// DecodeOne decodes on datum from a byte slice generated with EncodeKey or EncodeValue.
func DecodeOne(b []byte) (remain []byte, d types.Datum, err error) {
if len(b) < 1 {
return nil, d, errors.New("invalid encoded key")
}
flag := b[0]
b = b[1:]
switch flag {
case intFlag:
var v int64
b, v, err = DecodeInt(b)
d.SetInt64(v)
case uintFlag:
var v uint64
b, v, err = DecodeUint(b)
d.SetUint64(v)
case varintFlag:
var v int64
b, v, err = DecodeVarint(b)
d.SetInt64(v)
case uvarintFlag:
var v uint64
b, v, err = DecodeUvarint(b)
d.SetUint64(v)
case floatFlag:
var v float64
b, v, err = DecodeFloat(b)
d.SetFloat64(v)
case bytesFlag:
var v []byte
b, v, err = DecodeBytes(b, nil)
d.SetBytes(v)
case compactBytesFlag:
var v []byte
b, v, err = DecodeCompactBytes(b)
d.SetBytes(v)
case decimalFlag:
var (
dec *types.MyDecimal
precision, frac int
)
b, dec, precision, frac, err = DecodeDecimal(b)
if err == nil {
d.SetMysqlDecimal(dec)
d.SetLength(precision)
d.SetFrac(frac)
}
case durationFlag:
var r int64
b, r, err = DecodeInt(b)
if err == nil {
// use max fsp, let outer to do round manually.
v := types.Duration{Duration: time.Duration(r), Fsp: types.MaxFsp}
d.SetMysqlDuration(v)
}
case jsonFlag:
var size int
size, err = types.PeekBytesAsJSON(b)
if err != nil {
return b, d, err
}
j := types.BinaryJSON{TypeCode: b[0], Value: b[1:size]}
d.SetMysqlJSON(j)
b = b[size:]
case vectorFloat32Flag:
v, remaining, err := types.ZeroCopyDeserializeVectorFloat32(b)
if err != nil {
return b, d, errors.Trace(err)
}
d.SetVectorFloat32(v)
b = remaining
case NilFlag:
default:
return b, d, errors.Errorf("invalid encoded key flag %v", flag)
}
if err != nil {
return b, d, errors.Trace(err)
}
return b, d, nil
}
// DecodeAsDateTime decodes on datum from []byte of `KindMysqlTime`.
func DecodeAsDateTime(b []byte, tp byte, loc *time.Location) (remain []byte, d types.Datum, err error) {
if len(b) < 1 {
return nil, d, errors.New("invalid encoded key")
}
flag := b[0]
b = b[1:]
var v uint64
switch flag {
case uintFlag:
b, v, err = DecodeUint(b)
case uvarintFlag:
// Datetime can be encoded as Uvarint
b, v, err = DecodeUvarint(b)
case NilFlag:
// null value should also be decoded out.
return b, d, nil
default:
return b, d, errors.Errorf("invalid encoded key flag %v", flag)
}
if err != nil {
return b, d, err
}
t := types.NewTime(types.ZeroCoreTime, tp, 0)
err = t.FromPackedUint(v)
if err != nil {
return b, d, errors.Trace(err)
}
if tp == mysql.TypeTimestamp && !t.IsZero() && loc != nil {
err = t.ConvertTimeZone(time.UTC, loc)
if err != nil {
return b, d, err
}
}
d.SetMysqlTime(t)
return b, d, nil
}
// DecodeAsFloat32 decodes value for mysql.TypeFloat
func DecodeAsFloat32(b []byte, tp byte) (remain []byte, d types.Datum, err error) {
if len(b) < 1 || tp != mysql.TypeFloat {
return nil, d, errors.New("invalid encoded key")
}
flag := b[0]
b = b[1:]
if flag != floatFlag {
return b, d, errors.Errorf("invalid encoded key flag %v for DecodeAsFloat32", flag)
}
var v float64
b, v, err = DecodeFloat(b)
if err != nil {
return nil, d, err
}
d.SetFloat32FromF64(v)
return b, d, nil
}
// CutOne cuts the first encoded value from b.
// It will return the first encoded item and the remains as byte slice.
func CutOne(b []byte) (data []byte, remain []byte, err error) {
l, err := peek(b)
if err != nil {
return nil, nil, errors.Trace(err)
}
return b[:l], b[l:], nil
}
// CutColumnID cuts the column ID from b.
// It will return the remains as byte slice and column ID
func CutColumnID(b []byte) (remain []byte, n int64, err error) {
if len(b) < 1 {
return nil, 0, errors.New("invalid encoded key")
}
// skip the flag
b = b[1:]
return DecodeVarint(b)
}
// SetRawValues set raw datum values from a row data.
func SetRawValues(data []byte, values []types.Datum) error {
for i := range values {
l, err := peek(data)
if err != nil {
return errors.Trace(err)
}
values[i].SetRaw(data[:l:l])
data = data[l:]
}
return nil
}
// peek peeks the first encoded value from b and returns its length.
func peek(b []byte) (length int, err error) {
originLength := len(b)
if len(b) < 1 {
return 0, errors.New("invalid encoded key")
}
flag := b[0]
length++
b = b[1:]
var l int
switch flag {
case NilFlag:
case intFlag, uintFlag, floatFlag, durationFlag:
// Those types are stored in 8 bytes.
l = 8
case bytesFlag:
l, err = peekBytes(b)
case compactBytesFlag:
l, err = peekCompactBytes(b)
case decimalFlag:
l, err = types.DecimalPeak(b)
case varintFlag:
l, err = peekVarint(b)
case uvarintFlag:
l, err = peekUvarint(b)
case jsonFlag:
l, err = types.PeekBytesAsJSON(b)
case vectorFloat32Flag:
l, err = types.PeekBytesAsVectorFloat32(b)
default:
return 0, errors.Errorf("invalid encoded key flag %v", flag)
}
if err != nil {
return 0, errors.Trace(err)
}
length += l
if length <= 0 {
return 0, errors.New("invalid encoded key")
} else if length > originLength {
return 0, errors.Errorf("invalid encoded key, "+
"expected length: %d, actual length: %d", length, originLength)
}
return
}
func peekBytes(b []byte) (int, error) {
offset := 0
for {
if len(b) < offset+encGroupSize+1 {
return 0, errors.New("insufficient bytes to decode value")
}
// The byte slice is encoded into many groups.
// For each group, there are 8 bytes for data and 1 byte for marker.
marker := b[offset+encGroupSize]
padCount := encMarker - marker
offset += encGroupSize + 1
// When padCount is not zero, it means we get the end of the byte slice.
if padCount != 0 {
break
}
}
return offset, nil
}
func peekCompactBytes(b []byte) (int, error) {
// Get length.
v, n := binary.Varint(b)
vi := int(v)
if n < 0 {
return 0, errors.New("value larger than 64 bits")
} else if n == 0 {
return 0, errors.New("insufficient bytes to decode value")
}
if len(b) < vi+n {
return 0, errors.Errorf("insufficient bytes to decode value, expected length: %v", n)
}
return n + vi, nil
}
func peekVarint(b []byte) (int, error) {
_, n := binary.Varint(b)
if n < 0 {
return 0, errors.New("value larger than 64 bits")
}
return n, nil
}
func peekUvarint(b []byte) (int, error) {
_, n := binary.Uvarint(b)
if n < 0 {
return 0, errors.New("value larger than 64 bits")
}
return n, nil
}
// Decoder is used to decode value to chunk.
type Decoder struct {
chk *chunk.Chunk
timezone *time.Location
// buf is only used for DecodeBytes to avoid the cost of makeslice.
buf []byte
}
// NewDecoder creates a Decoder.
func NewDecoder(chk *chunk.Chunk, timezone *time.Location) *Decoder {
return &Decoder{
chk: chk,
timezone: timezone,
}
}
// DecodeOne decodes one value to chunk and returns the remained bytes.
func (decoder *Decoder) DecodeOne(b []byte, colIdx int, ft *types.FieldType) (remain []byte, err error) {
if len(b) < 1 {
return nil, errors.New("invalid encoded key")
}
chk := decoder.chk
flag := b[0]
b = b[1:]
switch flag {
case intFlag:
var v int64
b, v, err = DecodeInt(b)
if err != nil {
return nil, errors.Trace(err)
}
appendIntToChunk(v, chk, colIdx, ft)
case uintFlag:
var v uint64
b, v, err = DecodeUint(b)
if err != nil {
return nil, errors.Trace(err)
}
err = appendUintToChunk(v, chk, colIdx, ft, decoder.timezone)
case varintFlag:
var v int64
b, v, err = DecodeVarint(b)
if err != nil {
return nil, errors.Trace(err)
}
appendIntToChunk(v, chk, colIdx, ft)
case uvarintFlag:
var v uint64
b, v, err = DecodeUvarint(b)
if err != nil {
return nil, errors.Trace(err)
}
err = appendUintToChunk(v, chk, colIdx, ft, decoder.timezone)
case floatFlag:
var v float64
b, v, err = DecodeFloat(b)
if err != nil {
return nil, errors.Trace(err)
}
appendFloatToChunk(v, chk, colIdx, ft)
case bytesFlag:
b, decoder.buf, err = DecodeBytes(b, decoder.buf)
if err != nil {
return nil, errors.Trace(err)
}
chk.AppendBytes(colIdx, decoder.buf)
case compactBytesFlag:
var v []byte
b, v, err = DecodeCompactBytes(b)
if err != nil {
return nil, errors.Trace(err)
}
chk.AppendBytes(colIdx, v)
case decimalFlag:
var dec *types.MyDecimal
var frac int
b, dec, _, frac, err = DecodeDecimal(b)
if err != nil {
return nil, errors.Trace(err)
}
if ft.GetDecimal() != types.UnspecifiedLength && frac > ft.GetDecimal() {
to := new(types.MyDecimal)
err := dec.Round(to, ft.GetDecimal(), types.ModeHalfUp)
if err != nil {
return nil, errors.Trace(err)
}
dec = to
}
chk.AppendMyDecimal(colIdx, dec)
case durationFlag:
var r int64
b, r, err = DecodeInt(b)
if err != nil {
return nil, errors.Trace(err)
}
v := types.Duration{Duration: time.Duration(r), Fsp: ft.GetDecimal()}
chk.AppendDuration(colIdx, v)
case jsonFlag:
var size int
size, err = types.PeekBytesAsJSON(b)
if err != nil {
return nil, errors.Trace(err)
}
chk.AppendJSON(colIdx, types.BinaryJSON{TypeCode: b[0], Value: b[1:size]})
b = b[size:]
case vectorFloat32Flag:
v, remaining, err := types.ZeroCopyDeserializeVectorFloat32(b)
if err != nil {
return nil, errors.Trace(err)
}
chk.AppendVectorFloat32(colIdx, v)
b = remaining
case NilFlag:
chk.AppendNull(colIdx)
default:
return nil, errors.Errorf("invalid encoded key flag %v", flag)
}
if err != nil {
return nil, errors.Trace(err)
}
return b, nil
}
func appendIntToChunk(val int64, chk *chunk.Chunk, colIdx int, ft *types.FieldType) {
switch ft.GetType() {
case mysql.TypeDuration:
v := types.Duration{Duration: time.Duration(val), Fsp: ft.GetDecimal()}
chk.AppendDuration(colIdx, v)
default:
chk.AppendInt64(colIdx, val)
}
}
func appendUintToChunk(val uint64, chk *chunk.Chunk, colIdx int, ft *types.FieldType, loc *time.Location) error {
switch ft.GetType() {
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
t := types.NewTime(types.ZeroCoreTime, ft.GetType(), ft.GetDecimal())
var err error
err = t.FromPackedUint(val)
if err != nil {
return errors.Trace(err)
}
if ft.GetType() == mysql.TypeTimestamp && !t.IsZero() {
err = t.ConvertTimeZone(time.UTC, loc)
if err != nil {
return errors.Trace(err)
}
}
chk.AppendTime(colIdx, t)
case mysql.TypeEnum:
// ignore error deliberately, to read empty enum value.
enum, err := types.ParseEnumValue(ft.GetElems(), val)
if err != nil {
enum = types.Enum{}
}
chk.AppendEnum(colIdx, enum)
case mysql.TypeSet:
set, err := types.ParseSetValue(ft.GetElems(), val)
if err != nil {
return errors.Trace(err)
}
chk.AppendSet(colIdx, set)
case mysql.TypeBit:
byteSize := (ft.GetFlen() + 7) >> 3
chk.AppendBytes(colIdx, types.NewBinaryLiteralFromUint(val, byteSize))
default:
chk.AppendUint64(colIdx, val)
}
return nil
}
func appendFloatToChunk(val float64, chk *chunk.Chunk, colIdx int, ft *types.FieldType) {
if ft.GetType() == mysql.TypeFloat {
chk.AppendFloat32(colIdx, float32(val))
} else {
chk.AppendFloat64(colIdx, val)
}
}
// HashGroupKey encodes each row of this column and append encoded data into buf.
// Only use in the aggregate executor.
func HashGroupKey(loc *time.Location, n int, col *chunk.Column, buf [][]byte, ft *types.FieldType) ([][]byte, error) {
var err error
switch ft.EvalType() {
case types.ETInt:
i64s := col.Int64s()
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = encodeSignedInt(buf[i], i64s[i], false)
}
}
case types.ETReal:
f64s := col.Float64s()
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = append(buf[i], floatFlag)
buf[i] = EncodeFloat(buf[i], f64s[i])
}
}
case types.ETDecimal:
ds := col.Decimals()
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = append(buf[i], decimalFlag)
buf[i], err = EncodeDecimal(buf[i], &ds[i], ft.GetFlen(), ft.GetDecimal())
if err != nil {
return buf, err
}
}
}
case types.ETDatetime, types.ETTimestamp:
ts := col.Times()
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = append(buf[i], uintFlag)
buf[i], err = EncodeMySQLTime(loc, ts[i], mysql.TypeUnspecified, buf[i])
if err != nil {
return buf, err
}
}
}
case types.ETDuration:
ds := col.GoDurations()
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = append(buf[i], durationFlag)
buf[i] = EncodeInt(buf[i], int64(ds[i]))
}
}
case types.ETJson:
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = append(buf[i], jsonFlag)
buf[i] = col.GetJSON(i).HashValue(buf[i])
}
}
case types.ETString:
collator := collate.GetCollator(ft.GetCollate())
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = encodeBytes(buf[i], collator.ImmutableKey(string(hack.String(col.GetBytes(i)))), false)
}
}
case types.ETVectorFloat32:
for i := range n {
if col.IsNull(i) {
buf[i] = append(buf[i], NilFlag)
} else {
buf[i] = col.GetVectorFloat32(i).SerializeTo(buf[i])
}
}
default:
return nil, errors.Errorf("unsupported type %s during evaluation", ft.EvalType())
}
return buf, nil
}
// ConvertByCollation converts these bytes according to its collation.
func ConvertByCollation(raw []byte, tp *types.FieldType) []byte {
collator := collate.GetCollator(tp.GetCollate())
return collator.Key(string(hack.String(raw)))
}
// ConvertByCollationStr converts this string according to its collation.
func ConvertByCollationStr(str string, tp *types.FieldType) string {
collator := collate.GetCollator(tp.GetCollate())
return string(hack.String(collator.Key(str)))
}
// Hash64 is for datum hash64 calculation.
func Hash64(h base.Hasher, d *types.Datum) {
// let h.cache to receive datum hash value, which is potentially expendable.
// clean the cache before using it.
b := h.Cache()[:0]
b = HashCode(b, *d)
h.HashBytes(b)
h.SetCache(b)
}
func init() {
types.Hash64ForDatum = Hash64
}
// HashCode encodes a Datum into a unique byte slice.
// It is mostly the same as EncodeValue, but it doesn't contain truncation or verification logic in order to make the encoding lossless.
func HashCode(b []byte, d types.Datum) []byte {
switch d.Kind() {
case types.KindInt64:
b = encodeSignedInt(b, d.GetInt64(), false)
case types.KindUint64:
b = encodeUnsignedInt(b, d.GetUint64(), false)
case types.KindFloat32, types.KindFloat64:
b = append(b, floatFlag)
b = EncodeFloat(b, d.GetFloat64())
case types.KindString:
b = encodeString(b, d, false)
case types.KindBytes:
b = encodeBytes(b, d.GetBytes(), false)
case types.KindMysqlTime:
b = append(b, uintFlag)
t := d.GetMysqlTime().CoreTime()
b = encodeUnsignedInt(b, uint64(t), true)
case types.KindMysqlDuration:
// duration may have negative value, so we cannot use String to encode directly.
b = append(b, durationFlag)
b = EncodeInt(b, int64(d.GetMysqlDuration().Duration))
case types.KindMysqlDecimal:
b = append(b, decimalFlag)
decStr := d.GetMysqlDecimal().ToString()
b = encodeBytes(b, decStr, false)
case types.KindMysqlEnum:
b = encodeUnsignedInt(b, d.GetMysqlEnum().Value, false)
case types.KindMysqlSet:
b = encodeUnsignedInt(b, d.GetMysqlSet().Value, false)
case types.KindMysqlBit, types.KindBinaryLiteral:
val := d.GetBinaryLiteral()
b = encodeBytes(b, val, false)
case types.KindMysqlJSON:
b = append(b, jsonFlag)
j := d.GetMysqlJSON()
b = append(b, j.TypeCode)
b = append(b, j.Value...)
case types.KindVectorFloat32:
b = append(b, vectorFloat32Flag)
v := d.GetVectorFloat32()
b = v.SerializeTo(b)
case types.KindNull:
b = append(b, NilFlag)
case types.KindMinNotNull:
b = append(b, bytesFlag)
case types.KindMaxValue:
b = append(b, maxFlag)
default:
logutil.BgLogger().Warn("trying to calculate HashCode of an unexpected type of Datum",
zap.Uint8("Datum Kind", d.Kind()),
zap.Stack("stack"))
}
return b
}