Files
tidb/pkg/planner/cardinality/selectivity.go
2024-03-15 05:10:01 +00:00

1113 lines
38 KiB
Go

// Copyright 2023 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cardinality
import (
"cmp"
"math"
"math/bits"
"slices"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/expression"
"github.com/pingcap/tidb/pkg/parser/ast"
"github.com/pingcap/tidb/pkg/parser/model"
"github.com/pingcap/tidb/pkg/planner/context"
planutil "github.com/pingcap/tidb/pkg/planner/util"
"github.com/pingcap/tidb/pkg/planner/util/debugtrace"
"github.com/pingcap/tidb/pkg/statistics"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/codec"
"github.com/pingcap/tidb/pkg/util/collate"
"github.com/pingcap/tidb/pkg/util/logutil"
"github.com/pingcap/tidb/pkg/util/mathutil"
"github.com/pingcap/tidb/pkg/util/ranger"
"go.uber.org/zap"
"golang.org/x/exp/maps"
)
var (
outOfRangeBetweenRate int64 = 100
)
// Selectivity is a function calculate the selectivity of the expressions on the specified HistColl.
// The definition of selectivity is (row count after filter / row count before filter).
// And exprs must be CNF now, in other words, `exprs[0] and exprs[1] and ... and exprs[len - 1]`
// should be held when you call this.
// Currently the time complexity is o(n^2).
func Selectivity(
ctx context.PlanContext,
coll *statistics.HistColl,
exprs []expression.Expression,
filledPaths []*planutil.AccessPath,
) (
result float64,
retStatsNodes []*StatsNode,
err error,
) {
var exprStrs []string
if ctx.GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
debugtrace.EnterContextCommon(ctx)
exprStrs = expression.ExprsToStringsForDisplay(exprs)
debugtrace.RecordAnyValuesWithNames(ctx, "Input Expressions", exprStrs)
defer func() {
debugtrace.RecordAnyValuesWithNames(ctx, "Result", result)
debugtrace.LeaveContextCommon(ctx)
}()
}
// If table's count is zero or conditions are empty, we should return 100% selectivity.
if coll.RealtimeCount == 0 || len(exprs) == 0 {
return 1, nil, nil
}
ret := 1.0
sc := ctx.GetSessionVars().StmtCtx
tableID := coll.PhysicalID
// TODO: If len(exprs) is bigger than 63, we could use bitset structure to replace the int64.
// This will simplify some code and speed up if we use this rather than a boolean slice.
if len(exprs) > 63 || (len(coll.Columns) == 0 && len(coll.Indices) == 0) {
ret = pseudoSelectivity(ctx, coll, exprs)
if sc.EnableOptimizerCETrace {
ceTraceExpr(ctx, tableID, "Table Stats-Pseudo-Expression",
expression.ComposeCNFCondition(ctx.GetExprCtx(), exprs...), ret*float64(coll.RealtimeCount))
}
return ret, nil, nil
}
var nodes []*StatsNode
var remainedExprStrs []string
remainedExprs := make([]expression.Expression, 0, len(exprs))
// Deal with the correlated column.
for i, expr := range exprs {
c := isColEqCorCol(expr)
if c == nil {
remainedExprs = append(remainedExprs, expr)
if sc.EnableOptimizerDebugTrace {
remainedExprStrs = append(remainedExprStrs, exprStrs[i])
}
continue
}
colHist := coll.Columns[c.UniqueID]
var sel float64
if statistics.ColumnStatsIsInvalid(colHist, ctx, coll, c.ID) {
sel = 1.0 / pseudoEqualRate
} else if colHist.Histogram.NDV > 0 {
sel = 1 / float64(colHist.Histogram.NDV)
} else {
sel = 1.0 / pseudoEqualRate
}
if sc.EnableOptimizerDebugTrace {
debugtrace.RecordAnyValuesWithNames(ctx, "Expression", expr.String(), "Selectivity", sel)
}
ret *= sel
}
extractedCols := make([]*expression.Column, 0, len(coll.Columns))
extractedCols = expression.ExtractColumnsFromExpressions(extractedCols, remainedExprs, nil)
slices.SortFunc(extractedCols, func(a *expression.Column, b *expression.Column) int {
return cmp.Compare(a.ID, b.ID)
})
extractedCols = slices.CompactFunc(extractedCols, func(a, b *expression.Column) bool {
return a.ID == b.ID
})
for _, col := range extractedCols {
id := col.UniqueID
colStats := coll.Columns[col.UniqueID]
if colStats != nil {
maskCovered, ranges, _, err := getMaskAndRanges(ctx, remainedExprs, ranger.ColumnRangeType, nil, nil, col)
if err != nil {
return 0, nil, errors.Trace(err)
}
nodes = append(nodes, &StatsNode{Tp: ColType, ID: id, mask: maskCovered, Ranges: ranges, numCols: 1})
if colStats.IsHandle {
nodes[len(nodes)-1].Tp = PkType
var cnt float64
cnt, err = GetRowCountByIntColumnRanges(ctx, coll, id, ranges)
if err != nil {
return 0, nil, errors.Trace(err)
}
nodes[len(nodes)-1].Selectivity = cnt / float64(coll.RealtimeCount)
continue
}
cnt, err := GetRowCountByColumnRanges(ctx, coll, id, ranges)
if err != nil {
return 0, nil, errors.Trace(err)
}
nodes[len(nodes)-1].Selectivity = cnt / float64(coll.RealtimeCount)
} else if !col.IsHidden {
// TODO: We are able to remove this path if we remove the async stats load.
statistics.ColumnStatsIsInvalid(nil, ctx, coll, col.ID)
recordUsedItemStatsStatus(ctx, (*statistics.Column)(nil), tableID, col.ID)
}
}
id2Paths := make(map[int64]*planutil.AccessPath)
for _, path := range filledPaths {
// Index merge path and table path don't have index.
if path.Index == nil {
continue
}
id2Paths[path.Index.ID] = path
}
idxIDs := maps.Keys(coll.Indices)
slices.Sort(idxIDs)
for _, id := range idxIDs {
idxStats := coll.Indices[id]
idxInfo := idxStats.Info
if idxInfo.MVIndex {
totalSelectivity, mask, ok := getMaskAndSelectivityForMVIndex(ctx, coll, id, remainedExprs)
if !ok {
continue
}
nodes = append(nodes, &StatsNode{
Tp: IndexType,
ID: id,
mask: mask,
numCols: len(idxInfo.Columns),
Selectivity: totalSelectivity,
})
continue
}
idxCols := findPrefixOfIndexByCol(ctx, extractedCols, coll.Idx2ColumnIDs[id], id2Paths[idxStats.ID])
if len(idxCols) > 0 {
lengths := make([]int, 0, len(idxCols))
for i := 0; i < len(idxCols) && i < len(idxStats.Info.Columns); i++ {
lengths = append(lengths, idxStats.Info.Columns[i].Length)
}
// If the found columns are more than the columns held by the index. We are appending the int pk to the tail of it.
// When storing index data to key-value store, we use (idx_col1, ...., idx_coln, handle_col) as its key.
if len(idxCols) > len(idxStats.Info.Columns) {
lengths = append(lengths, types.UnspecifiedLength)
}
maskCovered, ranges, partCover, err := getMaskAndRanges(ctx, remainedExprs,
ranger.IndexRangeType, lengths, id2Paths[idxStats.ID], idxCols...)
if err != nil {
return 0, nil, errors.Trace(err)
}
cnt, err := GetRowCountByIndexRanges(ctx, coll, id, ranges)
if err != nil {
return 0, nil, errors.Trace(err)
}
selectivity := cnt / float64(coll.RealtimeCount)
nodes = append(nodes, &StatsNode{
Tp: IndexType,
ID: id,
mask: maskCovered,
Ranges: ranges,
numCols: len(idxStats.Info.Columns),
Selectivity: selectivity,
partCover: partCover,
})
}
}
usedSets := GetUsableSetsByGreedy(nodes)
// Initialize the mask with the full set.
mask := (int64(1) << uint(len(remainedExprs))) - 1
// curExpr records covered expressions by now. It's for cardinality estimation tracing.
var curExpr []expression.Expression
for _, set := range usedSets {
mask &^= set.mask
ret *= set.Selectivity
// If `partCover` is true, it means that the conditions are in DNF form, and only part
// of the DNF expressions are extracted as access conditions, so besides from the selectivity
// of the extracted access conditions, we multiply another selectionFactor for the residual
// conditions.
if set.partCover {
ret *= selectionFactor
}
if sc.EnableOptimizerCETrace {
// Tracing for the expression estimation results after applying this StatsNode.
for i := range remainedExprs {
if set.mask&(1<<uint64(i)) > 0 {
curExpr = append(curExpr, remainedExprs[i])
}
}
expr := expression.ComposeCNFCondition(ctx.GetExprCtx(), curExpr...)
ceTraceExpr(ctx, tableID, "Table Stats-Expression-CNF", expr, ret*float64(coll.RealtimeCount))
} else if sc.EnableOptimizerDebugTrace {
var strs []string
for i := range remainedExprs {
if set.mask&(1<<uint64(i)) > 0 {
strs = append(strs, remainedExprStrs[i])
}
}
debugtrace.RecordAnyValuesWithNames(ctx,
"Expressions", strs,
"Selectivity", set.Selectivity,
"partial cover", set.partCover,
)
}
}
notCoveredConstants := make(map[int]*expression.Constant)
notCoveredDNF := make(map[int]*expression.ScalarFunction)
notCoveredStrMatch := make(map[int]*expression.ScalarFunction)
notCoveredNegateStrMatch := make(map[int]*expression.ScalarFunction)
notCoveredOtherExpr := make(map[int]expression.Expression)
if mask > 0 {
for i, expr := range remainedExprs {
if mask&(1<<uint64(i)) == 0 {
continue
}
switch x := expr.(type) {
case *expression.Constant:
notCoveredConstants[i] = x
continue
case *expression.ScalarFunction:
switch x.FuncName.L {
case ast.LogicOr:
notCoveredDNF[i] = x
continue
case ast.Like, ast.Ilike, ast.Regexp, ast.RegexpLike:
notCoveredStrMatch[i] = x
continue
case ast.UnaryNot:
inner := expression.GetExprInsideIsTruth(x.GetArgs()[0])
innerSF, ok := inner.(*expression.ScalarFunction)
if ok {
switch innerSF.FuncName.L {
case ast.Like, ast.Ilike, ast.Regexp, ast.RegexpLike:
notCoveredNegateStrMatch[i] = x
continue
}
}
}
}
notCoveredOtherExpr[i] = expr
}
}
// Try to cover remaining Constants
for i, c := range notCoveredConstants {
if expression.MaybeOverOptimized4PlanCache(ctx.GetExprCtx(), []expression.Expression{c}) {
continue
}
if c.Value.IsNull() {
// c is null
ret *= 0
mask &^= 1 << uint64(i)
delete(notCoveredConstants, i)
} else if isTrue, err := c.Value.ToBool(sc.TypeCtx()); err == nil {
if isTrue == 0 {
// c is false
ret *= 0
}
// c is true, no need to change ret
mask &^= 1 << uint64(i)
delete(notCoveredConstants, i)
}
// Not expected to come here:
// err != nil, no need to do anything.
}
// Try to cover remaining DNF conditions using independence assumption,
// i.e., sel(condA or condB) = sel(condA) + sel(condB) - sel(condA) * sel(condB)
OUTER:
for i, scalarCond := range notCoveredDNF {
// If there are columns not in stats, we won't handle them. This case might happen after DDL operations.
cols := expression.ExtractColumns(scalarCond)
for i := range cols {
if _, ok := coll.Columns[cols[i].UniqueID]; !ok {
continue OUTER
}
}
dnfItems := expression.FlattenDNFConditions(scalarCond)
dnfItems = ranger.MergeDNFItems4Col(ctx, dnfItems)
// If the conditions only contain a single column, we won't handle them.
if len(dnfItems) <= 1 {
continue
}
selectivity := 0.0
for _, cond := range dnfItems {
// In selectivity calculation, we don't handle CorrelatedColumn, so we directly skip over it.
// Other kinds of `Expression`, i.e., Constant, Column and ScalarFunction all can possibly be built into
// ranges and used to calculation selectivity, so we accept them all.
_, ok := cond.(*expression.CorrelatedColumn)
if ok {
continue
}
var cnfItems []expression.Expression
if scalar, ok := cond.(*expression.ScalarFunction); ok && scalar.FuncName.L == ast.LogicAnd {
cnfItems = expression.FlattenCNFConditions(scalar)
} else {
cnfItems = append(cnfItems, cond)
}
curSelectivity, _, err := Selectivity(ctx, coll, cnfItems, nil)
if err != nil {
logutil.BgLogger().Debug("something wrong happened, use the default selectivity", zap.Error(err))
curSelectivity = selectionFactor
}
selectivity = selectivity + curSelectivity - selectivity*curSelectivity
}
if sc.EnableOptimizerCETrace {
// Tracing for the expression estimation results of this DNF.
ceTraceExpr(ctx, tableID, "Table Stats-Expression-DNF", scalarCond, selectivity*float64(coll.RealtimeCount))
} else if sc.EnableOptimizerDebugTrace {
debugtrace.RecordAnyValuesWithNames(ctx, "Expression", remainedExprStrs[i], "Selectivity", selectivity)
}
if selectivity != 0 {
ret *= selectivity
mask &^= 1 << uint64(i)
delete(notCoveredDNF, i)
}
if sc.EnableOptimizerCETrace {
// Tracing for the expression estimation results after applying the DNF estimation result.
curExpr = append(curExpr, remainedExprs[i])
expr := expression.ComposeCNFCondition(ctx.GetExprCtx(), curExpr...)
ceTraceExpr(ctx, tableID, "Table Stats-Expression-CNF", expr, ret*float64(coll.RealtimeCount))
}
}
// Try to cover remaining string matching functions by evaluating the expressions with TopN to estimate.
if ctx.GetSessionVars().EnableEvalTopNEstimationForStrMatch() {
for i, scalarCond := range notCoveredStrMatch {
ok, sel, err := GetSelectivityByFilter(ctx, coll, []expression.Expression{scalarCond})
if err != nil {
sc.AppendWarning(errors.NewNoStackError("Error when using TopN-assisted estimation: " + err.Error()))
}
if !ok {
continue
}
ret *= sel
mask &^= 1 << uint64(i)
delete(notCoveredStrMatch, i)
if sc.EnableOptimizerDebugTrace {
debugtrace.RecordAnyValuesWithNames(ctx, "Expression", remainedExprStrs[i], "Selectivity", sel)
}
}
for i, scalarCond := range notCoveredNegateStrMatch {
ok, sel, err := GetSelectivityByFilter(ctx, coll, []expression.Expression{scalarCond})
if err != nil {
sc.AppendWarning(errors.NewNoStackError("Error when using TopN-assisted estimation: " + err.Error()))
}
if !ok {
continue
}
ret *= sel
mask &^= 1 << uint64(i)
delete(notCoveredNegateStrMatch, i)
if sc.EnableOptimizerDebugTrace {
debugtrace.RecordAnyValuesWithNames(ctx, "Expression", remainedExprStrs[i], "Selectivity", sel)
}
}
}
// At last, if there are still conditions which cannot be estimated, we multiply the selectivity with
// the minimal default selectivity of the remaining conditions.
// Currently, only string matching functions (like and regexp) may have a different default selectivity,
// other expressions' default selectivity is selectionFactor.
if mask > 0 {
minSelectivity := 1.0
if len(notCoveredConstants) > 0 || len(notCoveredDNF) > 0 || len(notCoveredOtherExpr) > 0 {
minSelectivity = math.Min(minSelectivity, selectionFactor)
}
if len(notCoveredStrMatch) > 0 {
minSelectivity = math.Min(minSelectivity, ctx.GetSessionVars().GetStrMatchDefaultSelectivity())
}
if len(notCoveredNegateStrMatch) > 0 {
minSelectivity = math.Min(minSelectivity, ctx.GetSessionVars().GetNegateStrMatchDefaultSelectivity())
}
ret *= minSelectivity
if sc.EnableOptimizerDebugTrace {
debugtrace.RecordAnyValuesWithNames(ctx, "Default Selectivity", minSelectivity)
}
}
if sc.EnableOptimizerCETrace {
// Tracing for the expression estimation results after applying the default selectivity.
totalExpr := expression.ComposeCNFCondition(ctx.GetExprCtx(), remainedExprs...)
ceTraceExpr(ctx, tableID, "Table Stats-Expression-CNF", totalExpr, ret*float64(coll.RealtimeCount))
}
return ret, nodes, nil
}
// CalcTotalSelectivityForMVIdxPath calculates the total selectivity for the given partial paths of an MV index merge path.
// It corresponds with the meaning of AccessPath.CountAfterAccess, as used in buildPartialPathUp4MVIndex.
// It uses the independence assumption to estimate the selectivity.
func CalcTotalSelectivityForMVIdxPath(
coll *statistics.HistColl,
partialPaths []*planutil.AccessPath,
isIntersection bool,
) float64 {
selectivities := make([]float64, 0, len(partialPaths))
for _, path := range partialPaths {
// For a partial path, we distinguish between two cases if it's a mv index path.
// 1. We will access a single value on the virtual column of the mv index.
// In this case, handles from a single partial path must be unique.
// The CountAfterAccess of a partial path will never be larger than the table total row count.
// For an index merge path with only one partial path, the CountAfterAccess will be exactly the same as the
// CountAfterAccess of the partial path (currently there's no index filter for partial path of mv index merge
// path).
// 2. We use the mv index as if it's a non-MV index, which means the virtual column is not involved in the access
// conditions.
// In this case, we may read repeated handles from a single partial path.
// The CountAfterAccess of a partial path might be larger than the table total row count.
// For an index merge path with only one partial path, the CountAfterAccess might be less than the CountAfterAccess
// of the partial path
// For example:
// create table t(a int, d json, index iad(a, (cast(d->'$.b' as signed array))));
// insert into t value(1,'{"b":[1,2,3,4]}'), (2,'{"b":[3,4,5,6]}');
// The index has 8 entries.
// Case 1:
// select * from t use index (iad) where a = 1 and 1 member of (d->'$.b');
// IndexMerge
// ├─IndexRangeScan RowCount:1 Range:[1 1,1 1]
// └─TableRowIDScan RowCount:1
// Case 2:
// select * from t use index (iad) where a = 1;
// IndexMerge
// ├─IndexRangeScan RowCount:4 Range:[1,1]
// └─TableRowIDScan RowCount:1
// From the example, it should be obvious that we need different total row count to calculate the selectivity of
// the access conditions:
// Case 1: Here we should use the table total row count
// Selectivity( a = 1 and 1 member of (d->'$.b') ) = 1 / 2
// Case 2: Here we should use the index total row count
// Selectivity( a = 1 ) = 4 / 8
//
// Now, the `Case 2` above has been avoided because a mv index may not contain all rows. See the related issue
// https://github.com/pingcap/tidb/issues/50125 and fix https://github.com/pingcap/tidb/pull/50183
realtimeCount := coll.RealtimeCount
if !path.IsTablePath() && path.Index.MVIndex {
var virtualCol *expression.Column
for _, col := range coll.MVIdx2Columns[path.Index.ID] {
if col.VirtualExpr != nil {
virtualCol = col
break
}
}
cols := expression.ExtractColumnsFromExpressions(
nil,
path.AccessConds,
func(column *expression.Column) bool {
return virtualCol != nil && column.UniqueID == virtualCol.UniqueID
},
)
// If we can't find the virtual column from the access conditions, it's the case 2.
if len(cols) == 0 {
realtimeCount, _ = coll.GetScaledRealtimeAndModifyCnt(coll.Indices[path.Index.ID])
}
}
sel := path.CountAfterAccess / float64(realtimeCount)
sel = mathutil.Clamp(sel, 0, 1)
selectivities = append(selectivities, sel)
}
var totalSelectivity float64
if isIntersection {
totalSelectivity = 1
for _, sel := range selectivities {
totalSelectivity *= sel
}
} else {
totalSelectivity = 0
for _, sel := range selectivities {
totalSelectivity = (sel + totalSelectivity) - totalSelectivity*sel
}
}
return totalSelectivity
}
// StatsNode is used for calculating selectivity.
type StatsNode struct {
// Ranges contains all the Ranges we got.
Ranges []*ranger.Range
Tp int
ID int64
// mask is a bit pattern whose ith bit will indicate whether the ith expression is covered by this index/column.
mask int64
// Selectivity indicates the Selectivity of this column/index.
Selectivity float64
// numCols is the number of columns contained in the index or column(which is always 1).
numCols int
// partCover indicates whether the bit in the mask is for a full cover or partial cover. It is only true
// when the condition is a DNF expression on index, and the expression is not totally extracted as access condition.
partCover bool
}
// The type of the StatsNode.
const (
IndexType = iota
PkType
ColType
)
func compareType(l, r int) int {
if l == r {
return 0
}
if l == ColType {
return -1
}
if l == PkType {
return 1
}
if r == ColType {
return 1
}
return -1
}
const unknownColumnID = math.MinInt64
// getConstantColumnID receives two expressions and if one of them is column and another is constant, it returns the
// ID of the column.
func getConstantColumnID(e []expression.Expression) int64 {
if len(e) != 2 {
return unknownColumnID
}
col, ok1 := e[0].(*expression.Column)
_, ok2 := e[1].(*expression.Constant)
if ok1 && ok2 {
return col.ID
}
col, ok1 = e[1].(*expression.Column)
_, ok2 = e[0].(*expression.Constant)
if ok1 && ok2 {
return col.ID
}
return unknownColumnID
}
// GetUsableSetsByGreedy will select the indices and pk used for calculate selectivity by greedy algorithm.
func GetUsableSetsByGreedy(nodes []*StatsNode) (newBlocks []*StatsNode) {
slices.SortFunc(nodes, func(i, j *StatsNode) int {
if r := compareType(i.Tp, j.Tp); r != 0 {
return r
}
return cmp.Compare(i.ID, j.ID)
})
marked := make([]bool, len(nodes))
mask := int64(math.MaxInt64)
for {
// Choose the index that covers most.
bestID, bestCount, bestTp, bestNumCols, bestMask, bestSel := -1, 0, ColType, 0, int64(0), float64(0)
for i, set := range nodes {
if marked[i] {
continue
}
curMask := set.mask & mask
if curMask != set.mask {
marked[i] = true
continue
}
bits := bits.OnesCount64(uint64(curMask))
// This set cannot cover any thing, just skip it.
if bits == 0 {
marked[i] = true
continue
}
// We greedy select the stats info based on:
// (1): The stats type, always prefer the primary key or index.
// (2): The number of expression that it covers, the more the better.
// (3): The number of columns that it contains, the less the better.
// (4): The selectivity of the covered conditions, the less the better.
// The rationale behind is that lower selectivity tends to reflect more functional dependencies
// between columns. It's hard to decide the priority of this rule against rule 2 and 3, in order
// to avoid massive plan changes between tidb-server versions, I adopt this conservative strategy
// to impose this rule after rule 2 and 3.
if (bestTp == ColType && set.Tp != ColType) ||
bestCount < bits ||
(bestCount == bits && bestNumCols > set.numCols) ||
(bestCount == bits && bestNumCols == set.numCols && bestSel > set.Selectivity) {
bestID, bestCount, bestTp, bestNumCols, bestMask, bestSel = i, bits, set.Tp, set.numCols, curMask, set.Selectivity
}
}
if bestCount == 0 {
break
}
// Update the mask, remove the bit that nodes[bestID].mask has.
mask &^= bestMask
newBlocks = append(newBlocks, nodes[bestID])
marked[bestID] = true
}
return
}
// isColEqCorCol checks if the expression is a eq function that one side is correlated column and another is column.
// If so, it will return the column's reference. Otherwise return nil instead.
func isColEqCorCol(filter expression.Expression) *expression.Column {
f, ok := filter.(*expression.ScalarFunction)
if !ok || f.FuncName.L != ast.EQ {
return nil
}
if c, ok := f.GetArgs()[0].(*expression.Column); ok {
if _, ok := f.GetArgs()[1].(*expression.CorrelatedColumn); ok {
return c
}
}
if c, ok := f.GetArgs()[1].(*expression.Column); ok {
if _, ok := f.GetArgs()[0].(*expression.CorrelatedColumn); ok {
return c
}
}
return nil
}
// findPrefixOfIndexByCol will find columns in index by checking the unique id or the virtual expression.
// So it will return at once no matching column is found.
func findPrefixOfIndexByCol(ctx context.PlanContext, cols []*expression.Column, idxColIDs []int64,
cachedPath *planutil.AccessPath) []*expression.Column {
if cachedPath != nil {
idxCols := cachedPath.IdxCols
retCols := make([]*expression.Column, 0, len(idxCols))
idLoop:
for _, idCol := range idxCols {
for _, col := range cols {
if col.EqualByExprAndID(ctx.GetExprCtx(), idCol) {
retCols = append(retCols, col)
continue idLoop
}
}
// If no matching column is found, just return.
return retCols
}
return retCols
}
return expression.FindPrefixOfIndex(cols, idxColIDs)
}
func getMaskAndRanges(ctx context.PlanContext, exprs []expression.Expression, rangeType ranger.RangeType,
lengths []int, cachedPath *planutil.AccessPath, cols ...*expression.Column) (
mask int64, ranges []*ranger.Range, partCover bool, err error) {
isDNF := false
var accessConds, remainedConds []expression.Expression
switch rangeType {
case ranger.ColumnRangeType:
accessConds = ranger.ExtractAccessConditionsForColumn(ctx, exprs, cols[0])
ranges, accessConds, _, err = ranger.BuildColumnRange(accessConds, ctx, cols[0].RetType,
types.UnspecifiedLength, ctx.GetSessionVars().RangeMaxSize)
case ranger.IndexRangeType:
if cachedPath != nil {
ranges, accessConds, remainedConds, isDNF = cachedPath.Ranges,
cachedPath.AccessConds, cachedPath.TableFilters, cachedPath.IsDNFCond
break
}
var res *ranger.DetachRangeResult
res, err = ranger.DetachCondAndBuildRangeForIndex(ctx, exprs, cols, lengths, ctx.GetSessionVars().RangeMaxSize)
if err != nil {
return 0, nil, false, err
}
ranges, accessConds, remainedConds, isDNF = res.Ranges, res.AccessConds, res.RemainedConds, res.IsDNFCond
default:
panic("should never be here")
}
if err != nil {
return 0, nil, false, err
}
if isDNF && len(accessConds) > 0 {
mask |= 1
return mask, ranges, len(remainedConds) > 0, nil
}
for i := range exprs {
for j := range accessConds {
if exprs[i].Equal(ctx.GetExprCtx(), accessConds[j]) {
mask |= 1 << uint64(i)
break
}
}
}
return mask, ranges, false, nil
}
func getMaskAndSelectivityForMVIndex(
ctx context.PlanContext,
coll *statistics.HistColl,
id int64,
exprs []expression.Expression,
) (float64, int64, bool) {
cols := coll.MVIdx2Columns[id]
if len(cols) == 0 {
return 1.0, 0, false
}
// You can find more examples and explanations in comments for collectFilters4MVIndex() and
// buildPartialPaths4MVIndex() in planner/core.
accessConds, _, _ := CollectFilters4MVIndex(ctx, exprs, cols)
paths, isIntersection, ok, err := BuildPartialPaths4MVIndex(ctx, accessConds, cols, coll.Indices[id].Info, coll)
if err != nil || !ok {
return 1.0, 0, false
}
totalSelectivity := CalcTotalSelectivityForMVIdxPath(coll, paths, isIntersection)
var mask int64
for i := range exprs {
for _, accessCond := range accessConds {
if exprs[i].Equal(ctx.GetExprCtx(), accessCond) {
mask |= 1 << uint64(i)
break
}
}
}
return totalSelectivity, mask, true
}
// GetSelectivityByFilter try to estimate selectivity of expressions by evaluate the expressions using TopN, Histogram buckets boundaries and NULL.
// Currently, this method can only handle expressions involving a single column.
func GetSelectivityByFilter(sctx context.PlanContext, coll *statistics.HistColl, filters []expression.Expression) (ok bool, selectivity float64, err error) {
// 1. Make sure the expressions
// (1) are safe to be evaluated here,
// (2) involve only one column,
// (3) and this column is not a "new collation" string column so that we're able to restore values from the stats.
for _, filter := range filters {
if expression.IsMutableEffectsExpr(filter) {
return false, 0, nil
}
}
if expression.ContainCorrelatedColumn(filters) {
return false, 0, nil
}
cols := expression.ExtractColumnsFromExpressions(nil, filters, nil)
if len(cols) != 1 {
return false, 0, nil
}
col := cols[0]
tp := col.RetType
if types.IsString(tp.GetType()) && collate.NewCollationEnabled() && !collate.IsBinCollation(tp.GetCollate()) {
return false, 0, nil
}
// 2. Get the available stats, make sure it's a ver2 stats and get the needed data structure from it.
isIndex, i := findAvailableStatsForCol(sctx, coll, col.UniqueID)
if i < 0 {
return false, 0, nil
}
var statsVer, nullCnt int64
var histTotalCnt, totalCnt float64
var topnTotalCnt uint64
var hist *statistics.Histogram
var topn *statistics.TopN
if isIndex {
stats := coll.Indices[i]
statsVer = stats.StatsVer
hist = &stats.Histogram
nullCnt = hist.NullCount
topn = stats.TopN
} else {
stats := coll.Columns[i]
statsVer = stats.StatsVer
hist = &stats.Histogram
nullCnt = hist.NullCount
topn = stats.TopN
}
// Only in stats ver2, we can assume that: TopN + Histogram + NULL == All data
if statsVer != statistics.Version2 {
return false, 0, nil
}
topnTotalCnt = topn.TotalCount()
histTotalCnt = hist.NotNullCount()
totalCnt = float64(topnTotalCnt) + histTotalCnt + float64(nullCnt)
var topNSel, histSel, nullSel float64
// Prepare for evaluation.
// For execution, we use Column.Index instead of Column.UniqueID to locate a column.
// We have only one column here, so we set it to 0.
originalIndex := col.Index
col.Index = 0
defer func() {
// Restore the original Index to avoid unexpected situation.
col.Index = originalIndex
}()
topNLen := 0
histBucketsLen := hist.Len()
if topn != nil {
topNLen = len(topn.TopN)
}
c := chunk.NewChunkWithCapacity([]*types.FieldType{tp}, max(1, topNLen))
selected := make([]bool, 0, max(histBucketsLen, topNLen))
vecEnabled := sctx.GetSessionVars().EnableVectorizedExpression
// 3. Calculate the TopN part selectivity.
// This stage is considered as the core functionality of this method, errors in this stage would make this entire method fail.
var topNSelectedCnt uint64
if topn != nil {
for _, item := range topn.TopN {
_, val, err := codec.DecodeOne(item.Encoded)
if err != nil {
return false, 0, err
}
c.AppendDatum(0, &val)
}
selected, err = expression.VectorizedFilter(sctx.GetExprCtx(), vecEnabled, filters, chunk.NewIterator4Chunk(c), selected)
if err != nil {
return false, 0, err
}
for i, isTrue := range selected {
if isTrue {
topNSelectedCnt += topn.TopN[i].Count
}
}
}
topNSel = float64(topNSelectedCnt) / totalCnt
// 4. Calculate the Histogram part selectivity.
// The buckets upper bounds and the Bucket.Repeat are used like the TopN above.
// The buckets lower bounds are used as random samples and are regarded equally.
if hist != nil && histTotalCnt > 0 {
selected = selected[:0]
selected, err = expression.VectorizedFilter(sctx.GetExprCtx(), vecEnabled, filters, chunk.NewIterator4Chunk(hist.Bounds), selected)
if err != nil {
return false, 0, err
}
var bucketRepeatTotalCnt, bucketRepeatSelectedCnt, lowerBoundMatchCnt int64
for i := range hist.Buckets {
bucketRepeatTotalCnt += hist.Buckets[i].Repeat
if len(selected) < 2*i {
// This should not happen, but we add this check for safety.
break
}
if selected[2*i] {
lowerBoundMatchCnt++
}
if selected[2*i+1] {
bucketRepeatSelectedCnt += hist.Buckets[i].Repeat
}
}
var lowerBoundsRatio, upperBoundsRatio, lowerBoundsSel, upperBoundsSel float64
upperBoundsRatio = min(float64(bucketRepeatTotalCnt)/histTotalCnt, 1)
lowerBoundsRatio = 1 - upperBoundsRatio
if bucketRepeatTotalCnt > 0 {
upperBoundsSel = float64(bucketRepeatSelectedCnt) / float64(bucketRepeatTotalCnt)
}
lowerBoundsSel = float64(lowerBoundMatchCnt) / float64(histBucketsLen)
histSel = lowerBoundsSel*lowerBoundsRatio + upperBoundsSel*upperBoundsRatio
histSel *= histTotalCnt / totalCnt
}
// 5. Calculate the NULL part selectivity.
// Errors in this staged would be returned, but would not make this entire method fail.
c.Reset()
c.AppendNull(0)
selected = selected[:0]
selected, err = expression.VectorizedFilter(sctx.GetExprCtx(), vecEnabled, filters, chunk.NewIterator4Chunk(c), selected)
if err != nil || len(selected) != 1 || !selected[0] {
nullSel = 0
} else {
nullSel = float64(nullCnt) / totalCnt
}
// 6. Get the final result.
res := topNSel + histSel + nullSel
return true, res, err
}
func findAvailableStatsForCol(sctx context.PlanContext, coll *statistics.HistColl, uniqueID int64) (isIndex bool, idx int64) {
// try to find available stats in column stats
if colStats := coll.Columns[uniqueID]; !statistics.ColumnStatsIsInvalid(colStats, sctx, coll, uniqueID) && colStats.IsFullLoad() {
return false, uniqueID
}
// try to find available stats in single column index stats (except for prefix index)
for idxStatsIdx, cols := range coll.Idx2ColumnIDs {
if len(cols) == 1 && cols[0] == uniqueID {
idxStats := coll.Indices[idxStatsIdx]
if !statistics.IndexStatsIsInvalid(sctx, idxStats, coll, idxStatsIdx) &&
idxStats.Info.Columns[0].Length == types.UnspecifiedLength &&
idxStats.IsFullLoad() {
return true, idxStatsIdx
}
}
}
return false, -1
}
// getEqualCondSelectivity gets the selectivity of the equal conditions.
func getEqualCondSelectivity(sctx context.PlanContext, coll *statistics.HistColl, idx *statistics.Index, bytes []byte,
usedColsLen int, idxPointRange *ranger.Range) (result float64, err error) {
if sctx.GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
debugtrace.EnterContextCommon(sctx)
defer func() {
var idxName string
if idx != nil && idx.Info != nil {
idxName = idx.Info.Name.O
}
debugtrace.RecordAnyValuesWithNames(
sctx,
"Index Name", idxName,
"Encoded", bytes,
"UsedColLen", usedColsLen,
"Range", idxPointRange.String(),
"Result", result,
"error", err,
)
debugtrace.LeaveContextCommon(sctx)
}()
}
coverAll := len(idx.Info.Columns) == usedColsLen
// In this case, the row count is at most 1.
if idx.Info.Unique && coverAll {
return 1.0 / idx.TotalRowCount(), nil
}
val := types.NewBytesDatum(bytes)
if outOfRangeOnIndex(idx, val) {
realtimeCnt, _ := coll.GetScaledRealtimeAndModifyCnt(idx)
// When the value is out of range, we could not found this value in the CM Sketch,
// so we use heuristic methods to estimate the selectivity.
if idx.NDV > 0 && coverAll {
return outOfRangeEQSelectivity(sctx, idx.NDV, realtimeCnt, int64(idx.TotalRowCount())), nil
}
// The equal condition only uses prefix columns of the index.
colIDs := coll.Idx2ColumnIDs[idx.ID]
var ndv int64
for i, colID := range colIDs {
if i >= usedColsLen {
break
}
if col, ok := coll.Columns[colID]; ok {
ndv = max(ndv, col.Histogram.NDV)
}
}
return outOfRangeEQSelectivity(sctx, ndv, realtimeCnt, int64(idx.TotalRowCount())), nil
}
minRowCount, crossValidSelectivity, err := crossValidationSelectivity(sctx, coll, idx, usedColsLen, idxPointRange)
if err != nil {
return 0, err
}
idxCount := float64(idx.QueryBytes(sctx, bytes))
if minRowCount < idxCount {
return crossValidSelectivity, nil
}
return idxCount / idx.TotalRowCount(), nil
}
// outOfRangeEQSelectivity estimates selectivities for out-of-range values.
// It assumes all modifications are insertions and all new-inserted rows are uniformly distributed
// and has the same distribution with analyzed rows, which means each unique value should have the
// same number of rows(Tot/NDV) of it.
// The input sctx is just for debug trace, you can pass nil safely if that's not needed.
func outOfRangeEQSelectivity(sctx context.PlanContext, ndv, realtimeRowCount, columnRowCount int64) (result float64) {
if sctx != nil && sctx.GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
debugtrace.EnterContextCommon(sctx)
defer func() {
debugtrace.RecordAnyValuesWithNames(sctx, "Result", result)
debugtrace.LeaveContextCommon(sctx)
}()
}
increaseRowCount := realtimeRowCount - columnRowCount
if increaseRowCount <= 0 {
return 0 // it must be 0 since the histogram contains the whole data
}
if ndv < outOfRangeBetweenRate {
ndv = outOfRangeBetweenRate // avoid inaccurate selectivity caused by small NDV
}
selectivity := 1 / float64(ndv)
if selectivity*float64(columnRowCount) > float64(increaseRowCount) {
selectivity = float64(increaseRowCount) / float64(columnRowCount)
}
return selectivity
}
// crossValidationSelectivity gets the selectivity of multi-column equal conditions by cross validation.
func crossValidationSelectivity(
sctx context.PlanContext,
coll *statistics.HistColl,
idx *statistics.Index,
usedColsLen int,
idxPointRange *ranger.Range,
) (
minRowCount float64,
crossValidationSelectivity float64,
err error,
) {
if sctx.GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
debugtrace.EnterContextCommon(sctx)
defer func() {
var idxName string
if idx != nil && idx.Info != nil {
idxName = idx.Info.Name.O
}
debugtrace.RecordAnyValuesWithNames(
sctx,
"Index Name", idxName,
"minRowCount", minRowCount,
"crossValidationSelectivity", crossValidationSelectivity,
"error", err,
)
debugtrace.LeaveContextCommon(sctx)
}()
}
minRowCount = math.MaxFloat64
cols := coll.Idx2ColumnIDs[idx.ID]
crossValidationSelectivity = 1.0
totalRowCount := idx.TotalRowCount()
for i, colID := range cols {
if i >= usedColsLen {
break
}
col := coll.Columns[colID]
if statistics.ColumnStatsIsInvalid(col, sctx, coll, colID) {
continue
}
// Since the column range is point range(LowVal is equal to HighVal), we need to set both LowExclude and HighExclude to false.
// Otherwise we would get 0.0 estRow from GetColumnRowCount.
rang := ranger.Range{
LowVal: []types.Datum{idxPointRange.LowVal[i]},
LowExclude: false,
HighVal: []types.Datum{idxPointRange.HighVal[i]},
HighExclude: false,
Collators: []collate.Collator{idxPointRange.Collators[i]},
}
rowCount, err := GetColumnRowCount(sctx, col, []*ranger.Range{&rang}, coll.RealtimeCount, coll.ModifyCount, col.IsHandle)
if err != nil {
return 0, 0, err
}
crossValidationSelectivity = crossValidationSelectivity * (rowCount / totalRowCount)
if rowCount < minRowCount {
minRowCount = rowCount
}
}
return minRowCount, crossValidationSelectivity, nil
}
// CollectFilters4MVIndex and BuildPartialPaths4MVIndex are for matching JSON expressions against mv index.
// This logic is shared between the estimation logic and the access path generation logic. But the two functions are
// defined in planner/core package and hard to move here. So we use this trick to avoid the import cycle.
var (
CollectFilters4MVIndex func(
sctx context.PlanContext,
filters []expression.Expression,
idxCols []*expression.Column,
) (
accessFilters,
remainingFilters []expression.Expression,
accessTp int,
)
BuildPartialPaths4MVIndex func(
sctx context.PlanContext,
accessFilters []expression.Expression,
idxCols []*expression.Column,
mvIndex *model.IndexInfo,
histColl *statistics.HistColl,
) (
partialPaths []*planutil.AccessPath,
isIntersection bool,
ok bool,
err error,
)
)