Files
tidb/planner/core/stats.go

347 lines
12 KiB
Go

// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"math"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/planner/property"
"github.com/pingcap/tidb/statistics"
log "github.com/sirupsen/logrus"
)
func (p *basePhysicalPlan) StatsCount() float64 {
return p.stats.RowCount
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalTableDual) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
profile := &property.StatsInfo{
RowCount: float64(p.RowCount),
Cardinality: make([]float64, p.Schema().Len()),
}
for i := range profile.Cardinality {
profile.Cardinality[i] = float64(p.RowCount)
}
p.stats = profile
return p.stats, nil
}
func (p *baseLogicalPlan) recursiveDeriveStats() (*property.StatsInfo, error) {
if p.stats != nil {
return p.stats, nil
}
childStats := make([]*property.StatsInfo, len(p.children))
for i, child := range p.children {
childProfile, err := child.recursiveDeriveStats()
if err != nil {
return nil, err
}
childStats[i] = childProfile
}
return p.self.DeriveStats(childStats)
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *baseLogicalPlan) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
if len(childStats) == 1 {
p.stats = childStats[0]
return p.stats, nil
}
if len(childStats) > 1 {
err := ErrInternal.GenWithStack("LogicalPlans with more than one child should implement their own DeriveStats().")
return nil, err
}
profile := &property.StatsInfo{
RowCount: float64(1),
Cardinality: make([]float64, p.self.Schema().Len()),
}
for i := range profile.Cardinality {
profile.Cardinality[i] = float64(1)
}
p.stats = profile
return profile, nil
}
func (ds *DataSource) getStatsByFilter(conds expression.CNFExprs) (*property.StatsInfo, *statistics.HistColl) {
profile := &property.StatsInfo{
RowCount: float64(ds.statisticTable.Count),
Cardinality: make([]float64, len(ds.Columns)),
HistColl: ds.statisticTable.GenerateHistCollFromColumnInfo(ds.Columns, ds.schema.Columns),
UsePseudoStats: ds.statisticTable.Pseudo,
}
for i, col := range ds.Columns {
hist, ok := ds.statisticTable.Columns[col.ID]
if ok && hist.Count > 0 {
factor := float64(ds.statisticTable.Count) / float64(hist.Count)
profile.Cardinality[i] = float64(hist.NDV) * factor
} else {
profile.Cardinality[i] = profile.RowCount * distinctFactor
}
}
ds.stats = profile
selectivity, nodes, err := profile.HistColl.Selectivity(ds.ctx, conds)
if err != nil {
log.Warnf("An error happened: %v, we have to use the default selectivity", err.Error())
selectivity = selectionFactor
}
if ds.ctx.GetSessionVars().OptimizerSelectivityLevel >= 1 && ds.stats.HistColl != nil {
finalHist := ds.stats.HistColl.NewHistCollBySelectivity(ds.ctx.GetSessionVars().StmtCtx, nodes)
return profile, finalHist
}
return profile.Scale(selectivity), nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (ds *DataSource) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
// PushDownNot here can convert query 'not (a != 1)' to 'a = 1'.
for i, expr := range ds.pushedDownConds {
ds.pushedDownConds[i] = expression.PushDownNot(nil, expr, false)
}
var finalHist *statistics.HistColl
ds.stats, finalHist = ds.getStatsByFilter(ds.pushedDownConds)
for _, path := range ds.possibleAccessPaths {
if path.isTablePath {
noIntervalRanges, err := ds.deriveTablePathStats(path)
if err != nil {
return nil, err
}
// If we have point or empty range, just remove other possible paths.
if noIntervalRanges || len(path.ranges) == 0 {
ds.possibleAccessPaths[0] = path
ds.possibleAccessPaths = ds.possibleAccessPaths[:1]
break
}
continue
}
noIntervalRanges, err := ds.deriveIndexPathStats(path)
if err != nil {
return nil, err
}
// If we have empty range, or point range on unique index, just remove other possible paths.
if (noIntervalRanges && path.index.Unique) || len(path.ranges) == 0 {
ds.possibleAccessPaths[0] = path
ds.possibleAccessPaths = ds.possibleAccessPaths[:1]
break
}
}
if ds.ctx.GetSessionVars().OptimizerSelectivityLevel >= 1 {
ds.stats.HistColl = finalHist
}
return ds.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalSelection) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = childStats[0].Scale(selectionFactor)
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalUnionAll) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = &property.StatsInfo{
Cardinality: make([]float64, p.Schema().Len()),
}
for _, childProfile := range childStats {
p.stats.RowCount += childProfile.RowCount
for i := range p.stats.Cardinality {
p.stats.Cardinality[i] += childProfile.Cardinality[i]
}
}
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalLimit) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
p.stats = &property.StatsInfo{
RowCount: math.Min(float64(p.Count), childProfile.RowCount),
Cardinality: make([]float64, len(childProfile.Cardinality)),
}
for i := range p.stats.Cardinality {
p.stats.Cardinality[i] = math.Min(childProfile.Cardinality[i], p.stats.RowCount)
}
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (lt *LogicalTopN) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
lt.stats = &property.StatsInfo{
RowCount: math.Min(float64(lt.Count), childProfile.RowCount),
Cardinality: make([]float64, len(childProfile.Cardinality)),
}
for i := range lt.stats.Cardinality {
lt.stats.Cardinality[i] = math.Min(childProfile.Cardinality[i], lt.stats.RowCount)
}
return lt.stats, nil
}
// getCardinality will return the Cardinality of a couple of columns. We simply return the max one, because we cannot know
// the Cardinality for multi-dimension attributes properly. This is a simple and naive scheme of Cardinality estimation.
func getCardinality(cols []*expression.Column, schema *expression.Schema, profile *property.StatsInfo) float64 {
indices := schema.ColumnsIndices(cols)
if indices == nil {
log.Errorf("Cannot find column %v indices from schema %s", cols, schema)
return 0
}
var cardinality = 1.0
for _, idx := range indices {
// It is a very elementary estimation.
cardinality = math.Max(cardinality, profile.Cardinality[idx])
}
return cardinality
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalProjection) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
p.stats = &property.StatsInfo{
RowCount: childProfile.RowCount,
Cardinality: make([]float64, len(p.Exprs)),
}
for i, expr := range p.Exprs {
cols := expression.ExtractColumns(expr)
p.stats.Cardinality[i] = getCardinality(cols, p.children[0].Schema(), childProfile)
}
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (la *LogicalAggregation) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
gbyCols := make([]*expression.Column, 0, len(la.GroupByItems))
for _, gbyExpr := range la.GroupByItems {
cols := expression.ExtractColumns(gbyExpr)
gbyCols = append(gbyCols, cols...)
}
cardinality := getCardinality(gbyCols, la.children[0].Schema(), childProfile)
la.stats = &property.StatsInfo{
RowCount: cardinality,
Cardinality: make([]float64, la.schema.Len()),
}
// We cannot estimate the Cardinality for every output, so we use a conservative strategy.
for i := range la.stats.Cardinality {
la.stats.Cardinality[i] = cardinality
}
la.inputCount = childProfile.RowCount
return la.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
// If the type of join is SemiJoin, the selectivity of it will be same as selection's.
// If the type of join is LeftOuterSemiJoin, it will not add or remove any row. The last column is a boolean value, whose Cardinality should be two.
// If the type of join is inner/outer join, the output of join(s, t) should be N(s) * N(t) / (V(s.key) * V(t.key)) * Min(s.key, t.key).
// N(s) stands for the number of rows in relation s. V(s.key) means the Cardinality of join key in s.
// This is a quite simple strategy: We assume every bucket of relation which will participate join has the same number of rows, and apply cross join for
// every matched bucket.
func (p *LogicalJoin) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
leftProfile, rightProfile := childStats[0], childStats[1]
if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin {
p.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount * selectionFactor,
Cardinality: make([]float64, len(leftProfile.Cardinality)),
}
for i := range p.stats.Cardinality {
p.stats.Cardinality[i] = leftProfile.Cardinality[i] * selectionFactor
}
return p.stats, nil
}
if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
p.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount,
Cardinality: make([]float64, p.schema.Len()),
}
copy(p.stats.Cardinality, leftProfile.Cardinality)
p.stats.Cardinality[len(p.stats.Cardinality)-1] = 2.0
return p.stats, nil
}
if 0 == len(p.EqualConditions) {
p.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount * rightProfile.RowCount,
Cardinality: append(leftProfile.Cardinality, rightProfile.Cardinality...),
}
return p.stats, nil
}
leftKeyCardinality := getCardinality(p.LeftJoinKeys, p.children[0].Schema(), leftProfile)
rightKeyCardinality := getCardinality(p.RightJoinKeys, p.children[1].Schema(), rightProfile)
count := leftProfile.RowCount * rightProfile.RowCount / math.Max(leftKeyCardinality, rightKeyCardinality)
if p.JoinType == LeftOuterJoin {
count = math.Max(count, leftProfile.RowCount)
} else if p.JoinType == RightOuterJoin {
count = math.Max(count, rightProfile.RowCount)
}
cardinality := make([]float64, 0, p.schema.Len())
cardinality = append(cardinality, leftProfile.Cardinality...)
cardinality = append(cardinality, rightProfile.Cardinality...)
for i := range cardinality {
cardinality[i] = math.Min(cardinality[i], count)
}
p.stats = &property.StatsInfo{
RowCount: count,
Cardinality: cardinality,
}
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (la *LogicalApply) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
leftProfile := childStats[0]
la.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount,
Cardinality: make([]float64, la.schema.Len()),
}
copy(la.stats.Cardinality, leftProfile.Cardinality)
if la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin {
la.stats.Cardinality[len(la.stats.Cardinality)-1] = 2.0
} else {
for i := la.children[0].Schema().Len(); i < la.schema.Len(); i++ {
la.stats.Cardinality[i] = leftProfile.RowCount
}
}
return la.stats, nil
}
// Exists and MaxOneRow produce at most one row, so we set the RowCount of stats one.
func getSingletonStats(len int) *property.StatsInfo {
ret := &property.StatsInfo{
RowCount: 1.0,
Cardinality: make([]float64, len),
}
for i := 0; i < len; i++ {
ret.Cardinality[i] = 1
}
return ret
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalMaxOneRow) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = getSingletonStats(p.Schema().Len())
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalWindow) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
childLen := len(childProfile.Cardinality)
p.stats = &property.StatsInfo{
RowCount: childProfile.RowCount,
Cardinality: make([]float64, childLen+1),
}
copy(p.stats.Cardinality, childProfile.Cardinality)
p.stats.Cardinality[childLen] = childProfile.RowCount
return p.stats, nil
}