Files
tidb/statistics/table.go

773 lines
24 KiB
Go

// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"fmt"
"math"
"strings"
"sync"
"github.com/pingcap/errors"
"github.com/pingcap/parser/model"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/ranger"
log "github.com/sirupsen/logrus"
)
const (
// When we haven't analyzed a table, we use pseudo statistics to estimate costs.
// It has row count 10000, equal condition selects 1/1000 of total rows, less condition selects 1/3 of total rows,
// between condition selects 1/40 of total rows.
pseudoRowCount = 10000
pseudoEqualRate = 1000
pseudoLessRate = 3
pseudoBetweenRate = 40
outOfRangeBetweenRate = 100
)
// Table represents statistics for a table.
type Table struct {
HistColl
Version uint64
name string
}
// HistColl is a collection of histogram. It collects enough information for plan to calculate the selectivity.
type HistColl struct {
PhysicalID int64
// HavePhysicalID is true means this HistColl is from single table and have its ID's information.
// The physical id is used when try to load column stats from storage.
HavePhysicalID bool
Columns map[int64]*Column
Indices map[int64]*Index
// Idx2ColumnIDs maps the index id to its column ids. It's used to calculate the selectivity in planner.
Idx2ColumnIDs map[int64][]int64
// ColID2IdxID maps the column id to index id whose first column is it. It's used to calculate the selectivity in planner.
ColID2IdxID map[int64]int64
Pseudo bool
Count int64
ModifyCount int64 // Total modify count in a table.
}
func (t *Table) copy() *Table {
newHistColl := HistColl{
PhysicalID: t.PhysicalID,
HavePhysicalID: t.HavePhysicalID,
Count: t.Count,
Columns: make(map[int64]*Column),
Indices: make(map[int64]*Index),
Pseudo: t.Pseudo,
ModifyCount: t.ModifyCount,
}
for id, col := range t.Columns {
newHistColl.Columns[id] = col
}
for id, idx := range t.Indices {
newHistColl.Indices[id] = idx
}
nt := &Table{
HistColl: newHistColl,
Version: t.Version,
name: t.name,
}
return nt
}
func (h *Handle) cmSketchFromStorage(tblID int64, isIndex, histID int64) (*CMSketch, error) {
selSQL := fmt.Sprintf("select cm_sketch from mysql.stats_histograms where table_id = %d and is_index = %d and hist_id = %d", tblID, isIndex, histID)
rows, _, err := h.restrictedExec.ExecRestrictedSQL(nil, selSQL)
if err != nil {
return nil, errors.Trace(err)
}
if len(rows) == 0 {
return nil, nil
}
return decodeCMSketch(rows[0].GetBytes(0))
}
func (h *Handle) indexStatsFromStorage(row chunk.Row, table *Table, tableInfo *model.TableInfo) error {
histID := row.GetInt64(2)
distinct := row.GetInt64(3)
histVer := row.GetUint64(4)
nullCount := row.GetInt64(5)
idx := table.Indices[histID]
errorRate := ErrorRate{}
if isAnalyzed(row.GetInt64(8)) {
h.mu.Lock()
h.mu.rateMap.clear(table.PhysicalID, histID, true)
h.mu.Unlock()
} else if idx != nil {
errorRate = idx.ErrorRate
}
for _, idxInfo := range tableInfo.Indices {
if histID != idxInfo.ID {
continue
}
if idx == nil || idx.LastUpdateVersion < histVer {
hg, err := h.histogramFromStorage(table.PhysicalID, histID, types.NewFieldType(mysql.TypeBlob), distinct, 1, histVer, nullCount, 0)
if err != nil {
return errors.Trace(err)
}
cms, err := h.cmSketchFromStorage(table.PhysicalID, 1, idxInfo.ID)
if err != nil {
return errors.Trace(err)
}
idx = &Index{Histogram: *hg, CMSketch: cms, Info: idxInfo, ErrorRate: errorRate, statsVer: row.GetInt64(7)}
}
break
}
if idx != nil {
table.Indices[histID] = idx
} else {
log.Debugf("We cannot find index id %d in table info %s now. It may be deleted.", histID, tableInfo.Name)
}
return nil
}
func (h *Handle) columnStatsFromStorage(row chunk.Row, table *Table, tableInfo *model.TableInfo, loadAll bool) error {
histID := row.GetInt64(2)
distinct := row.GetInt64(3)
histVer := row.GetUint64(4)
nullCount := row.GetInt64(5)
totColSize := row.GetInt64(6)
correlation := row.GetFloat64(9)
col := table.Columns[histID]
errorRate := ErrorRate{}
if isAnalyzed(row.GetInt64(8)) {
h.mu.Lock()
h.mu.rateMap.clear(table.PhysicalID, histID, false)
h.mu.Unlock()
} else if col != nil {
errorRate = col.ErrorRate
}
for _, colInfo := range tableInfo.Columns {
if histID != colInfo.ID {
continue
}
isHandle := tableInfo.PKIsHandle && mysql.HasPriKeyFlag(colInfo.Flag)
// We will not load buckets if:
// 1. Lease > 0, and:
// 2. this column is not handle, and:
// 3. the column doesn't has buckets before, and:
// 4. loadAll is false.
notNeedLoad := h.Lease > 0 &&
!isHandle &&
(col == nil || col.Len() == 0 && col.LastUpdateVersion < histVer) &&
!loadAll
if notNeedLoad {
count, err := h.columnCountFromStorage(table.PhysicalID, histID)
if err != nil {
return errors.Trace(err)
}
col = &Column{
PhysicalID: table.PhysicalID,
Histogram: *NewHistogram(histID, distinct, nullCount, histVer, &colInfo.FieldType, 0, totColSize),
Info: colInfo,
Count: count + nullCount,
ErrorRate: errorRate,
isHandle: tableInfo.PKIsHandle && mysql.HasPriKeyFlag(colInfo.Flag),
}
col.Histogram.Correlation = correlation
break
}
if col == nil || col.LastUpdateVersion < histVer || loadAll {
hg, err := h.histogramFromStorage(table.PhysicalID, histID, &colInfo.FieldType, distinct, 0, histVer, nullCount, totColSize)
if err != nil {
return errors.Trace(err)
}
hg.Correlation = correlation
cms, err := h.cmSketchFromStorage(table.PhysicalID, 0, colInfo.ID)
if err != nil {
return errors.Trace(err)
}
col = &Column{
PhysicalID: table.PhysicalID,
Histogram: *hg,
Info: colInfo,
CMSketch: cms,
Count: int64(hg.totalRowCount()),
ErrorRate: errorRate,
isHandle: tableInfo.PKIsHandle && mysql.HasPriKeyFlag(colInfo.Flag),
}
break
}
if col.TotColSize != totColSize {
newCol := *col
newCol.TotColSize = totColSize
col = &newCol
}
break
}
if col != nil {
table.Columns[col.ID] = col
} else {
// If we didn't find a Column or Index in tableInfo, we won't load the histogram for it.
// But don't worry, next lease the ddl will be updated, and we will load a same table for two times to
// avoid error.
log.Debugf("We cannot find column id %d in table info %s now. It may be deleted.", histID, tableInfo.Name)
}
return nil
}
// tableStatsFromStorage loads table stats info from storage.
func (h *Handle) tableStatsFromStorage(tableInfo *model.TableInfo, physicalID int64, loadAll bool) (*Table, error) {
table, ok := h.statsCache.Load().(statsCache)[physicalID]
// If table stats is pseudo, we also need to copy it, since we will use the column stats when
// the average error rate of it is small.
if !ok {
histColl := HistColl{
PhysicalID: physicalID,
HavePhysicalID: true,
Columns: make(map[int64]*Column, len(tableInfo.Columns)),
Indices: make(map[int64]*Index, len(tableInfo.Indices)),
}
table = &Table{
HistColl: histColl,
}
} else {
// We copy it before writing to avoid race.
table = table.copy()
}
table.Pseudo = false
selSQL := fmt.Sprintf("select table_id, is_index, hist_id, distinct_count, version, null_count, tot_col_size, stats_ver, flag, correlation from mysql.stats_histograms where table_id = %d", physicalID)
rows, _, err := h.restrictedExec.ExecRestrictedSQL(nil, selSQL)
if err != nil {
return nil, errors.Trace(err)
}
// Check deleted table.
if len(rows) == 0 {
return nil, nil
}
for _, row := range rows {
if row.GetInt64(1) > 0 {
if err := h.indexStatsFromStorage(row, table, tableInfo); err != nil {
return nil, errors.Trace(err)
}
} else {
if err := h.columnStatsFromStorage(row, table, tableInfo, loadAll); err != nil {
return nil, errors.Trace(err)
}
}
}
return table, nil
}
// String implements Stringer interface.
func (t *Table) String() string {
strs := make([]string, 0, len(t.Columns)+1)
strs = append(strs, fmt.Sprintf("Table:%d Count:%d", t.PhysicalID, t.Count))
for _, col := range t.Columns {
strs = append(strs, col.String())
}
for _, col := range t.Indices {
strs = append(strs, col.String())
}
return strings.Join(strs, "\n")
}
func (t *Table) indexStartWithColumn(colName string) *Index {
for _, index := range t.Indices {
if index.Info.Columns[0].Name.L == colName {
return index
}
}
return nil
}
func (t *Table) columnByName(colName string) *Column {
for _, c := range t.Columns {
if c.Info.Name.L == colName {
return c
}
}
return nil
}
type tableColumnID struct {
tableID int64
columnID int64
}
type neededColumnMap struct {
m sync.Mutex
cols map[tableColumnID]struct{}
}
func (n *neededColumnMap) allCols() []tableColumnID {
n.m.Lock()
keys := make([]tableColumnID, 0, len(n.cols))
for key := range n.cols {
keys = append(keys, key)
}
n.m.Unlock()
return keys
}
func (n *neededColumnMap) insert(col tableColumnID) {
n.m.Lock()
n.cols[col] = struct{}{}
n.m.Unlock()
}
func (n *neededColumnMap) delete(col tableColumnID) {
n.m.Lock()
delete(n.cols, col)
n.m.Unlock()
}
var histogramNeededColumns = neededColumnMap{cols: map[tableColumnID]struct{}{}}
// RatioOfPseudoEstimate means if modifyCount / statsTblCount is greater than this ratio, we think the stats is invalid
// and use pseudo estimation.
var RatioOfPseudoEstimate = 0.7
// IsOutdated returns true if the table stats is outdated.
func (t *Table) IsOutdated() bool {
if t.Count > 0 && float64(t.ModifyCount)/float64(t.Count) > RatioOfPseudoEstimate {
return true
}
return false
}
// IsInvalid checks if this column is invalid. If this column has histogram but not loaded yet, then we mark it
// as need histogram.
func (c *Column) IsInvalid(sc *stmtctx.StatementContext, collPseudo bool) bool {
if collPseudo && c.NotAccurate() {
return true
}
if c.NDV > 0 && c.Len() == 0 && sc != nil {
sc.SetHistogramsNotLoad()
histogramNeededColumns.insert(tableColumnID{tableID: c.PhysicalID, columnID: c.Info.ID})
}
return c.totalRowCount() == 0 || (c.NDV > 0 && c.Len() == 0)
}
// ColumnGreaterRowCount estimates the row count where the column greater than value.
func (t *Table) ColumnGreaterRowCount(sc *stmtctx.StatementContext, value types.Datum, colID int64) float64 {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sc, t.Pseudo) {
return float64(t.Count) / pseudoLessRate
}
return c.greaterRowCount(value) * c.getIncreaseFactor(t.Count)
}
// ColumnLessRowCount estimates the row count where the column less than value.
func (t *Table) ColumnLessRowCount(sc *stmtctx.StatementContext, value types.Datum, colID int64) float64 {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sc, t.Pseudo) {
return float64(t.Count) / pseudoLessRate
}
return c.lessRowCount(value) * c.getIncreaseFactor(t.Count)
}
// ColumnBetweenRowCount estimates the row count where column greater or equal to a and less than b.
func (t *Table) ColumnBetweenRowCount(sc *stmtctx.StatementContext, a, b types.Datum, colID int64) float64 {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sc, t.Pseudo) {
return float64(t.Count) / pseudoBetweenRate
}
return c.betweenRowCount(a, b) * c.getIncreaseFactor(t.Count)
}
// ColumnEqualRowCount estimates the row count where the column equals to value.
func (t *Table) ColumnEqualRowCount(sc *stmtctx.StatementContext, value types.Datum, colID int64) (float64, error) {
c, ok := t.Columns[colID]
if !ok || c.IsInvalid(sc, t.Pseudo) {
return float64(t.Count) / pseudoEqualRate, nil
}
result, err := c.equalRowCount(sc, value, t.ModifyCount)
result *= c.getIncreaseFactor(t.Count)
return result, errors.Trace(err)
}
// GetRowCountByIntColumnRanges estimates the row count by a slice of IntColumnRange.
func (coll *HistColl) GetRowCountByIntColumnRanges(sc *stmtctx.StatementContext, colID int64, intRanges []*ranger.Range) (float64, error) {
c, ok := coll.Columns[colID]
if !ok || c.IsInvalid(sc, coll.Pseudo) {
if len(intRanges) == 0 {
return 0, nil
}
if intRanges[0].LowVal[0].Kind() == types.KindInt64 {
return getPseudoRowCountBySignedIntRanges(intRanges, float64(coll.Count)), nil
}
return getPseudoRowCountByUnsignedIntRanges(intRanges, float64(coll.Count)), nil
}
result, err := c.getColumnRowCount(sc, intRanges, coll.ModifyCount)
result *= c.getIncreaseFactor(coll.Count)
return result, errors.Trace(err)
}
// GetRowCountByColumnRanges estimates the row count by a slice of Range.
func (coll *HistColl) GetRowCountByColumnRanges(sc *stmtctx.StatementContext, colID int64, colRanges []*ranger.Range) (float64, error) {
c, ok := coll.Columns[colID]
if !ok || c.IsInvalid(sc, coll.Pseudo) {
return getPseudoRowCountByColumnRanges(sc, float64(coll.Count), colRanges, 0)
}
result, err := c.getColumnRowCount(sc, colRanges, coll.ModifyCount)
result *= c.getIncreaseFactor(coll.Count)
return result, errors.Trace(err)
}
// GetRowCountByIndexRanges estimates the row count by a slice of Range.
func (coll *HistColl) GetRowCountByIndexRanges(sc *stmtctx.StatementContext, idxID int64, indexRanges []*ranger.Range) (float64, error) {
idx := coll.Indices[idxID]
if idx == nil || coll.Pseudo && idx.NotAccurate() || idx.Len() == 0 {
colsLen := -1
if idx != nil && idx.Info.Unique {
colsLen = len(idx.Info.Columns)
}
return getPseudoRowCountByIndexRanges(sc, indexRanges, float64(coll.Count), colsLen)
}
var result float64
var err error
if idx.CMSketch != nil && idx.statsVer == version1 {
result, err = coll.getIndexRowCount(sc, idxID, indexRanges)
} else {
result, err = idx.getRowCount(sc, indexRanges, coll.ModifyCount)
}
result *= idx.getIncreaseFactor(coll.Count)
return result, errors.Trace(err)
}
// PseudoAvgCountPerValue gets a pseudo average count if histogram not exists.
func (t *Table) PseudoAvgCountPerValue() float64 {
return float64(t.Count) / pseudoEqualRate
}
// getOrdinalOfRangeCond gets the ordinal of the position range condition,
// if not exist, it returns the end position.
func getOrdinalOfRangeCond(sc *stmtctx.StatementContext, ran *ranger.Range) int {
for i := range ran.LowVal {
a, b := ran.LowVal[i], ran.HighVal[i]
cmp, err := a.CompareDatum(sc, &b)
if err != nil {
return 0
}
if cmp != 0 {
return i
}
}
return len(ran.LowVal)
}
// GenerateHistCollFromColumnInfo generates a new HistColl whose ColID2IdxID and IdxID2ColIDs is built from the given parameter.
func (coll *HistColl) GenerateHistCollFromColumnInfo(infos []*model.ColumnInfo, columns []*expression.Column) *HistColl {
newColHistMap := make(map[int64]*Column)
colInfoID2UniqueID := make(map[int64]int64)
colNames2UniqueID := make(map[string]int64)
for _, col := range columns {
colInfoID2UniqueID[col.ID] = col.UniqueID
}
for _, colInfo := range infos {
uniqueID, ok := colInfoID2UniqueID[colInfo.ID]
if ok {
colNames2UniqueID[colInfo.Name.L] = uniqueID
}
}
for id, colHist := range coll.Columns {
uniqueID, ok := colInfoID2UniqueID[id]
// Collect the statistics by the given columns.
if ok {
newColHistMap[uniqueID] = colHist
}
}
newIdxHistMap := make(map[int64]*Index)
idx2Columns := make(map[int64][]int64)
colID2IdxID := make(map[int64]int64)
for _, idxHist := range coll.Indices {
ids := make([]int64, 0, len(idxHist.Info.Columns))
for _, idxCol := range idxHist.Info.Columns {
uniqueID, ok := colNames2UniqueID[idxCol.Name.L]
if !ok {
break
}
ids = append(ids, uniqueID)
}
// If the length of the id list is 0, this index won't be used in this query.
if len(ids) == 0 {
continue
}
colID2IdxID[ids[0]] = idxHist.ID
newIdxHistMap[idxHist.ID] = idxHist
idx2Columns[idxHist.ID] = ids
}
newColl := &HistColl{
PhysicalID: coll.PhysicalID,
HavePhysicalID: coll.HavePhysicalID,
Pseudo: coll.Pseudo,
Count: coll.Count,
ModifyCount: coll.ModifyCount,
Columns: newColHistMap,
Indices: newIdxHistMap,
ColID2IdxID: colID2IdxID,
Idx2ColumnIDs: idx2Columns,
}
return newColl
}
func (coll *HistColl) getIndexRowCount(sc *stmtctx.StatementContext, idxID int64, indexRanges []*ranger.Range) (float64, error) {
idx := coll.Indices[idxID]
totalCount := float64(0)
for _, ran := range indexRanges {
rangePosition := getOrdinalOfRangeCond(sc, ran)
// first one is range, just use the previous way to estimate
if rangePosition == 0 {
count, err := idx.getRowCount(sc, []*ranger.Range{ran}, coll.ModifyCount)
if err != nil {
return 0, errors.Trace(err)
}
totalCount += count
continue
}
var selectivity float64
// use CM Sketch to estimate the equal conditions
bytes, err := codec.EncodeKey(sc, nil, ran.LowVal[:rangePosition]...)
if err != nil {
return 0, errors.Trace(err)
}
val := types.NewBytesDatum(bytes)
if idx.outOfRange(val) {
// When the value is out of range, we could not found this value in the CM Sketch,
// so we use heuristic methods to estimate the selectivity.
if idx.NDV > 0 && len(ran.LowVal) == len(idx.Info.Columns) && rangePosition == len(ran.LowVal) {
// for equality queries
selectivity = float64(coll.ModifyCount) / float64(idx.NDV) / idx.totalRowCount()
} else {
// for range queries
selectivity = float64(coll.ModifyCount) / outOfRangeBetweenRate / idx.totalRowCount()
}
} else {
selectivity = float64(idx.CMSketch.QueryBytes(bytes)) / float64(idx.totalRowCount())
}
// use histogram to estimate the range condition
if rangePosition != len(ran.LowVal) {
rang := ranger.Range{
LowVal: []types.Datum{ran.LowVal[rangePosition]},
LowExclude: ran.LowExclude,
HighVal: []types.Datum{ran.HighVal[rangePosition]},
HighExclude: ran.HighExclude,
}
var count float64
var err error
colIDs := coll.Idx2ColumnIDs[idxID]
var colID int64
if rangePosition >= len(colIDs) {
colID = -1
} else {
colID = colIDs[rangePosition]
}
// prefer index stats over column stats
if idx, ok := coll.ColID2IdxID[colID]; ok {
count, err = coll.GetRowCountByIndexRanges(sc, idx, []*ranger.Range{&rang})
} else {
count, err = coll.GetRowCountByColumnRanges(sc, colID, []*ranger.Range{&rang})
}
if err != nil {
return 0, errors.Trace(err)
}
selectivity = selectivity * count / float64(idx.totalRowCount())
}
totalCount += selectivity * float64(idx.totalRowCount())
}
if totalCount > idx.totalRowCount() {
totalCount = idx.totalRowCount()
}
return totalCount, nil
}
const fakePhysicalID int64 = -1
// PseudoTable creates a pseudo table statistics.
func PseudoTable(tblInfo *model.TableInfo) *Table {
pseudoHistColl := HistColl{
Count: pseudoRowCount,
PhysicalID: tblInfo.ID,
HavePhysicalID: true,
Columns: make(map[int64]*Column, len(tblInfo.Columns)),
Indices: make(map[int64]*Index, len(tblInfo.Indices)),
Pseudo: true,
}
t := &Table{
HistColl: pseudoHistColl,
}
for _, col := range tblInfo.Columns {
if col.State == model.StatePublic {
t.Columns[col.ID] = &Column{
PhysicalID: fakePhysicalID,
Info: col,
isHandle: tblInfo.PKIsHandle && mysql.HasPriKeyFlag(col.Flag),
}
}
}
for _, idx := range tblInfo.Indices {
if idx.State == model.StatePublic {
t.Indices[idx.ID] = &Index{Info: idx}
}
}
return t
}
func getPseudoRowCountByIndexRanges(sc *stmtctx.StatementContext, indexRanges []*ranger.Range,
tableRowCount float64, colsLen int) (float64, error) {
if tableRowCount == 0 {
return 0, nil
}
var totalCount float64
for _, indexRange := range indexRanges {
count := tableRowCount
i, err := indexRange.PrefixEqualLen(sc)
if err != nil {
return 0, errors.Trace(err)
}
if i == colsLen && !indexRange.LowExclude && !indexRange.HighExclude {
totalCount += 1.0
continue
}
if i >= len(indexRange.LowVal) {
i = len(indexRange.LowVal) - 1
}
rowCount, err := getPseudoRowCountByColumnRanges(sc, tableRowCount, []*ranger.Range{indexRange}, i)
if err != nil {
return 0, errors.Trace(err)
}
count = count / tableRowCount * rowCount
// If the condition is a = 1, b = 1, c = 1, d = 1, we think every a=1, b=1, c=1 only filtrate 1/100 data,
// so as to avoid collapsing too fast.
for j := 0; j < i; j++ {
count = count / float64(100)
}
totalCount += count
}
if totalCount > tableRowCount {
totalCount = tableRowCount / 3.0
}
return totalCount, nil
}
func getPseudoRowCountByColumnRanges(sc *stmtctx.StatementContext, tableRowCount float64, columnRanges []*ranger.Range, colIdx int) (float64, error) {
var rowCount float64
var err error
for _, ran := range columnRanges {
if ran.LowVal[colIdx].Kind() == types.KindNull && ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount
} else if ran.LowVal[colIdx].Kind() == types.KindMinNotNull {
nullCount := tableRowCount / pseudoEqualRate
if ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount - nullCount
} else if err == nil {
lessCount := tableRowCount / pseudoLessRate
rowCount += lessCount - nullCount
}
} else if ran.HighVal[colIdx].Kind() == types.KindMaxValue {
rowCount += tableRowCount / pseudoLessRate
} else {
compare, err1 := ran.LowVal[colIdx].CompareDatum(sc, &ran.HighVal[colIdx])
if err1 != nil {
return 0, errors.Trace(err1)
}
if compare == 0 {
rowCount += tableRowCount / pseudoEqualRate
} else {
rowCount += tableRowCount / pseudoBetweenRate
}
}
if err != nil {
return 0, errors.Trace(err)
}
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount, nil
}
func getPseudoRowCountBySignedIntRanges(intRanges []*ranger.Range, tableRowCount float64) float64 {
var rowCount float64
for _, rg := range intRanges {
var cnt float64
low := rg.LowVal[0].GetInt64()
if rg.LowVal[0].Kind() == types.KindNull || rg.LowVal[0].Kind() == types.KindMinNotNull {
low = math.MinInt64
}
high := rg.HighVal[0].GetInt64()
if rg.HighVal[0].Kind() == types.KindMaxValue {
high = math.MaxInt64
}
if low == math.MinInt64 && high == math.MaxInt64 {
cnt = tableRowCount
} else if low == math.MinInt64 {
cnt = tableRowCount / pseudoLessRate
} else if high == math.MaxInt64 {
cnt = tableRowCount / pseudoLessRate
} else {
if low == high {
cnt = 1 // When primary key is handle, the equal row count is at most one.
} else {
cnt = tableRowCount / pseudoBetweenRate
}
}
if high-low > 0 && cnt > float64(high-low) {
cnt = float64(high - low)
}
rowCount += cnt
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount
}
func getPseudoRowCountByUnsignedIntRanges(intRanges []*ranger.Range, tableRowCount float64) float64 {
var rowCount float64
for _, rg := range intRanges {
var cnt float64
low := rg.LowVal[0].GetUint64()
if rg.LowVal[0].Kind() == types.KindNull || rg.LowVal[0].Kind() == types.KindMinNotNull {
low = 0
}
high := rg.HighVal[0].GetUint64()
if rg.HighVal[0].Kind() == types.KindMaxValue {
high = math.MaxUint64
}
if low == 0 && high == math.MaxUint64 {
cnt = tableRowCount
} else if low == 0 {
cnt = tableRowCount / pseudoLessRate
} else if high == math.MaxUint64 {
cnt = tableRowCount / pseudoLessRate
} else {
if low == high {
cnt = 1 // When primary key is handle, the equal row count is at most one.
} else {
cnt = tableRowCount / pseudoBetweenRate
}
}
if high > low && cnt > float64(high-low) {
cnt = float64(high - low)
}
rowCount += cnt
}
if rowCount > tableRowCount {
rowCount = tableRowCount
}
return rowCount
}