Files
tidb/planner/core/stats.go

499 lines
18 KiB
Go

// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"math"
"github.com/pingcap/parser/ast"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/planner/property"
"github.com/pingcap/tidb/statistics"
"github.com/pingcap/tidb/util/logutil"
"go.uber.org/zap"
)
func (p *basePhysicalPlan) StatsCount() float64 {
return p.stats.RowCount
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalTableDual) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
profile := &property.StatsInfo{
RowCount: float64(p.RowCount),
Cardinality: make([]float64, p.Schema().Len()),
}
for i := range profile.Cardinality {
profile.Cardinality[i] = float64(p.RowCount)
}
p.stats = profile
return p.stats, nil
}
func (p *baseLogicalPlan) recursiveDeriveStats() (*property.StatsInfo, error) {
if p.stats != nil {
return p.stats, nil
}
childStats := make([]*property.StatsInfo, len(p.children))
for i, child := range p.children {
childProfile, err := child.recursiveDeriveStats()
if err != nil {
return nil, err
}
childStats[i] = childProfile
}
return p.self.DeriveStats(childStats)
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *baseLogicalPlan) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
if len(childStats) == 1 {
p.stats = childStats[0]
return p.stats, nil
}
if len(childStats) > 1 {
err := ErrInternal.GenWithStack("LogicalPlans with more than one child should implement their own DeriveStats().")
return nil, err
}
profile := &property.StatsInfo{
RowCount: float64(1),
Cardinality: make([]float64, p.self.Schema().Len()),
}
for i := range profile.Cardinality {
profile.Cardinality[i] = float64(1)
}
p.stats = profile
return profile, nil
}
// getColumnNDV computes estimated NDV of specified column using the original
// histogram of `DataSource` which is retrieved from storage(not the derived one).
func (ds *DataSource) getColumnNDV(colID int64) (ndv float64) {
hist, ok := ds.statisticTable.Columns[colID]
if ok && hist.Count > 0 {
factor := float64(ds.statisticTable.Count) / float64(hist.Count)
ndv = float64(hist.NDV) * factor
} else {
ndv = float64(ds.statisticTable.Count) * distinctFactor
}
return ndv
}
func (ds *DataSource) deriveStatsByFilter(conds expression.CNFExprs) {
tableStats := &property.StatsInfo{
RowCount: float64(ds.statisticTable.Count),
Cardinality: make([]float64, len(ds.Columns)),
HistColl: ds.statisticTable.GenerateHistCollFromColumnInfo(ds.Columns, ds.schema.Columns),
StatsVersion: ds.statisticTable.Version,
}
if ds.statisticTable.Pseudo {
tableStats.StatsVersion = statistics.PseudoVersion
}
for i, col := range ds.Columns {
tableStats.Cardinality[i] = ds.getColumnNDV(col.ID)
}
ds.tableStats = tableStats
ds.TblColHists = ds.statisticTable.ID2UniqueID(ds.TblCols)
selectivity, nodes, err := tableStats.HistColl.Selectivity(ds.ctx, conds)
if err != nil {
logutil.BgLogger().Debug("an error happened, use the default selectivity", zap.Error(err))
selectivity = selectionFactor
}
ds.stats = tableStats.Scale(selectivity)
if ds.ctx.GetSessionVars().OptimizerSelectivityLevel >= 1 {
ds.stats.HistColl = ds.stats.HistColl.NewHistCollBySelectivity(ds.ctx.GetSessionVars().StmtCtx, nodes)
}
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (ds *DataSource) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
// PushDownNot here can convert query 'not (a != 1)' to 'a = 1'.
for i, expr := range ds.pushedDownConds {
ds.pushedDownConds[i] = expression.PushDownNot(nil, expr, false)
}
ds.deriveStatsByFilter(ds.pushedDownConds)
for _, path := range ds.possibleAccessPaths {
if path.isTablePath {
noIntervalRanges, err := ds.deriveTablePathStats(path, ds.pushedDownConds)
if err != nil {
return nil, err
}
// If we have point or empty range, just remove other possible paths.
if noIntervalRanges || len(path.ranges) == 0 {
ds.possibleAccessPaths[0] = path
ds.possibleAccessPaths = ds.possibleAccessPaths[:1]
break
}
continue
}
noIntervalRanges, err := ds.deriveIndexPathStats(path, ds.pushedDownConds)
if err != nil {
return nil, err
}
// If we have empty range, or point range on unique index, just remove other possible paths.
if (noIntervalRanges && path.index.Unique) || len(path.ranges) == 0 {
ds.possibleAccessPaths[0] = path
ds.possibleAccessPaths = ds.possibleAccessPaths[:1]
break
}
}
// Consider the IndexMergePath. Now, we just generate `IndexMergePath` in DNF case.
if len(ds.pushedDownConds) > 0 && len(ds.possibleAccessPaths) > 1 && ds.ctx.GetSessionVars().EnableIndexMerge {
needConsiderIndexMerge := true
for i := 1; i < len(ds.possibleAccessPaths); i++ {
if len(ds.possibleAccessPaths[i].accessConds) != 0 {
needConsiderIndexMerge = false
break
}
}
if needConsiderIndexMerge {
ds.generateIndexMergeOrPaths()
}
}
return ds.stats, nil
}
// getIndexMergeOrPath generates all possible IndexMergeOrPaths.
func (ds *DataSource) generateIndexMergeOrPaths() {
usedIndexCount := len(ds.possibleAccessPaths)
for i, cond := range ds.pushedDownConds {
sf, ok := cond.(*expression.ScalarFunction)
if !ok || sf.FuncName.L != ast.LogicOr {
continue
}
var partialPaths = make([]*accessPath, 0, usedIndexCount)
dnfItems := expression.FlattenDNFConditions(sf)
for _, item := range dnfItems {
cnfItems := expression.SplitCNFItems(item)
itemPaths := ds.accessPathsForConds(cnfItems, usedIndexCount)
if len(itemPaths) == 0 {
partialPaths = nil
break
}
partialPath := ds.buildIndexMergePartialPath(itemPaths)
if partialPath == nil {
partialPaths = nil
break
}
partialPaths = append(partialPaths, partialPath)
}
if len(partialPaths) > 1 {
possiblePath := ds.buildIndexMergeOrPath(partialPaths, i)
if possiblePath != nil {
ds.possibleAccessPaths = append(ds.possibleAccessPaths, possiblePath)
}
}
}
}
// accessPathsForConds generates all possible index paths for conditions.
func (ds *DataSource) accessPathsForConds(conditions []expression.Expression, usedIndexCount int) []*accessPath {
var results = make([]*accessPath, 0, usedIndexCount)
for i := 0; i < usedIndexCount; i++ {
path := &accessPath{}
if ds.possibleAccessPaths[i].isTablePath {
path.isTablePath = true
noIntervalRanges, err := ds.deriveTablePathStats(path, conditions)
if err != nil {
logutil.BgLogger().Debug("can not derive statistics of a path", zap.Error(err))
continue
}
// If we have point or empty range, just remove other possible paths.
if noIntervalRanges || len(path.ranges) == 0 {
results[0] = path
results = results[:1]
break
}
} else {
path.index = ds.possibleAccessPaths[i].index
noIntervalRanges, err := ds.deriveIndexPathStats(path, conditions)
if err != nil {
logutil.BgLogger().Debug("can not derive statistics of a path", zap.Error(err))
continue
}
// If we have empty range, or point range on unique index, just remove other possible paths.
if (noIntervalRanges && path.index.Unique) || len(path.ranges) == 0 {
results[0] = path
results = results[:1]
break
}
}
// If accessConds is empty or tableFilter is not empty, we ignore the access path.
// Now these conditions are too strict.
// For example, a sql `select * from t where a > 1 or (b < 2 and c > 3)` and table `t` with indexes
// on a and b separately. we can generate a `IndexMergePath` with table filter `a > 1 or (b < 2 and c > 3)`.
// TODO: solve the above case
if len(path.tableFilters) > 0 || len(path.accessConds) == 0 {
continue
}
results = append(results, path)
}
return results
}
// buildIndexMergePartialPath chooses the best index path from all possible paths.
// Now we just choose the index with most columns.
// We should improve this strategy, because it is not always better to choose index
// with most columns, e.g, filter is c > 1 and the input indexes are c and c_d_e,
// the former one is enough, and it is less expensive in execution compared with the latter one.
// TODO: improve strategy of the partial path selection
func (ds *DataSource) buildIndexMergePartialPath(indexAccessPaths []*accessPath) *accessPath {
if len(indexAccessPaths) == 1 {
return indexAccessPaths[0]
}
maxColsIndex := 0
maxCols := len(indexAccessPaths[0].idxCols)
for i := 1; i < len(indexAccessPaths); i++ {
current := len(indexAccessPaths[i].idxCols)
if current > maxCols {
maxColsIndex = i
maxCols = current
}
}
return indexAccessPaths[maxColsIndex]
}
// buildIndexMergeOrPath generates one possible IndexMergePath.
func (ds *DataSource) buildIndexMergeOrPath(partialPaths []*accessPath, current int) *accessPath {
indexMergePath := &accessPath{partialIndexPaths: partialPaths}
indexMergePath.tableFilters = append(indexMergePath.tableFilters, ds.pushedDownConds[:current]...)
indexMergePath.tableFilters = append(indexMergePath.tableFilters, ds.pushedDownConds[current+1:]...)
return indexMergePath
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalSelection) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = childStats[0].Scale(selectionFactor)
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalUnionAll) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = &property.StatsInfo{
Cardinality: make([]float64, p.Schema().Len()),
}
for _, childProfile := range childStats {
p.stats.RowCount += childProfile.RowCount
for i := range p.stats.Cardinality {
p.stats.Cardinality[i] += childProfile.Cardinality[i]
}
}
return p.stats, nil
}
func deriveLimitStats(childProfile *property.StatsInfo, limitCount float64) *property.StatsInfo {
stats := &property.StatsInfo{
RowCount: math.Min(limitCount, childProfile.RowCount),
Cardinality: make([]float64, len(childProfile.Cardinality)),
}
for i := range stats.Cardinality {
stats.Cardinality[i] = math.Min(childProfile.Cardinality[i], stats.RowCount)
}
return stats
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalLimit) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = deriveLimitStats(childStats[0], float64(p.Count))
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (lt *LogicalTopN) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
lt.stats = deriveLimitStats(childStats[0], float64(lt.Count))
return lt.stats, nil
}
// getCardinality will return the Cardinality of a couple of columns. We simply return the max one, because we cannot know
// the Cardinality for multi-dimension attributes properly. This is a simple and naive scheme of Cardinality estimation.
func getCardinality(cols []*expression.Column, schema *expression.Schema, profile *property.StatsInfo) float64 {
cardinality := 1.0
indices := schema.ColumnsIndices(cols)
if indices == nil {
logutil.BgLogger().Error("column not found in schema", zap.Any("columns", cols), zap.String("schema", schema.String()))
return cardinality
}
for _, idx := range indices {
// It is a very elementary estimation.
cardinality = math.Max(cardinality, profile.Cardinality[idx])
}
return cardinality
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalProjection) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
p.stats = &property.StatsInfo{
RowCount: childProfile.RowCount,
Cardinality: make([]float64, len(p.Exprs)),
}
for i, expr := range p.Exprs {
cols := expression.ExtractColumns(expr)
p.stats.Cardinality[i] = getCardinality(cols, p.children[0].Schema(), childProfile)
}
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (la *LogicalAggregation) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
gbyCols := make([]*expression.Column, 0, len(la.GroupByItems))
for _, gbyExpr := range la.GroupByItems {
cols := expression.ExtractColumns(gbyExpr)
gbyCols = append(gbyCols, cols...)
}
cardinality := getCardinality(gbyCols, la.children[0].Schema(), childProfile)
la.stats = &property.StatsInfo{
RowCount: cardinality,
Cardinality: make([]float64, la.schema.Len()),
}
// We cannot estimate the Cardinality for every output, so we use a conservative strategy.
for i := range la.stats.Cardinality {
la.stats.Cardinality[i] = cardinality
}
la.inputCount = childProfile.RowCount
return la.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
// If the type of join is SemiJoin, the selectivity of it will be same as selection's.
// If the type of join is LeftOuterSemiJoin, it will not add or remove any row. The last column is a boolean value, whose Cardinality should be two.
// If the type of join is inner/outer join, the output of join(s, t) should be N(s) * N(t) / (V(s.key) * V(t.key)) * Min(s.key, t.key).
// N(s) stands for the number of rows in relation s. V(s.key) means the Cardinality of join key in s.
// This is a quite simple strategy: We assume every bucket of relation which will participate join has the same number of rows, and apply cross join for
// every matched bucket.
func (p *LogicalJoin) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
leftProfile, rightProfile := childStats[0], childStats[1]
if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin {
p.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount * selectionFactor,
Cardinality: make([]float64, len(leftProfile.Cardinality)),
}
for i := range p.stats.Cardinality {
p.stats.Cardinality[i] = leftProfile.Cardinality[i] * selectionFactor
}
return p.stats, nil
}
if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
p.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount,
Cardinality: make([]float64, p.schema.Len()),
}
copy(p.stats.Cardinality, leftProfile.Cardinality)
p.stats.Cardinality[len(p.stats.Cardinality)-1] = 2.0
return p.stats, nil
}
helper := &fullJoinRowCountHelper{
cartesian: 0 == len(p.EqualConditions),
leftProfile: leftProfile,
rightProfile: rightProfile,
leftJoinKeys: p.LeftJoinKeys,
rightJoinKeys: p.RightJoinKeys,
leftSchema: p.children[0].Schema(),
rightSchema: p.children[1].Schema(),
}
count := helper.estimate()
if p.JoinType == LeftOuterJoin {
count = math.Max(count, leftProfile.RowCount)
} else if p.JoinType == RightOuterJoin {
count = math.Max(count, rightProfile.RowCount)
}
cardinality := make([]float64, 0, p.schema.Len())
cardinality = append(cardinality, leftProfile.Cardinality...)
cardinality = append(cardinality, rightProfile.Cardinality...)
for i := range cardinality {
cardinality[i] = math.Min(cardinality[i], count)
}
p.stats = &property.StatsInfo{
RowCount: count,
Cardinality: cardinality,
}
return p.stats, nil
}
type fullJoinRowCountHelper struct {
cartesian bool
leftProfile *property.StatsInfo
rightProfile *property.StatsInfo
leftJoinKeys []*expression.Column
rightJoinKeys []*expression.Column
leftSchema *expression.Schema
rightSchema *expression.Schema
}
func (h *fullJoinRowCountHelper) estimate() float64 {
if h.cartesian {
return h.leftProfile.RowCount * h.rightProfile.RowCount
}
leftKeyCardinality := getCardinality(h.leftJoinKeys, h.leftSchema, h.leftProfile)
rightKeyCardinality := getCardinality(h.rightJoinKeys, h.rightSchema, h.rightProfile)
count := h.leftProfile.RowCount * h.rightProfile.RowCount / math.Max(leftKeyCardinality, rightKeyCardinality)
return count
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (la *LogicalApply) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
leftProfile := childStats[0]
la.stats = &property.StatsInfo{
RowCount: leftProfile.RowCount,
Cardinality: make([]float64, la.schema.Len()),
}
copy(la.stats.Cardinality, leftProfile.Cardinality)
if la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin {
la.stats.Cardinality[len(la.stats.Cardinality)-1] = 2.0
} else {
for i := la.children[0].Schema().Len(); i < la.schema.Len(); i++ {
la.stats.Cardinality[i] = leftProfile.RowCount
}
}
return la.stats, nil
}
// Exists and MaxOneRow produce at most one row, so we set the RowCount of stats one.
func getSingletonStats(len int) *property.StatsInfo {
ret := &property.StatsInfo{
RowCount: 1.0,
Cardinality: make([]float64, len),
}
for i := 0; i < len; i++ {
ret.Cardinality[i] = 1
}
return ret
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalMaxOneRow) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
p.stats = getSingletonStats(p.Schema().Len())
return p.stats, nil
}
// DeriveStats implement LogicalPlan DeriveStats interface.
func (p *LogicalWindow) DeriveStats(childStats []*property.StatsInfo) (*property.StatsInfo, error) {
childProfile := childStats[0]
p.stats = &property.StatsInfo{
RowCount: childProfile.RowCount,
Cardinality: make([]float64, p.schema.Len()),
}
childLen := p.schema.Len() - len(p.WindowFuncDescs)
for i := 0; i < childLen; i++ {
colIdx := p.children[0].Schema().ColumnIndex(p.schema.Columns[i])
p.stats.Cardinality[i] = childProfile.Cardinality[colIdx]
}
for i := childLen; i < p.schema.Len(); i++ {
p.stats.Cardinality[i] = childProfile.RowCount
}
return p.stats, nil
}