Files
tidb/store/tikv/2pc.go

1146 lines
35 KiB
Go

// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package tikv
import (
"bytes"
"context"
"math"
"sync"
"sync/atomic"
"time"
"unsafe"
"github.com/opentracing/opentracing-go"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
pb "github.com/pingcap/kvproto/pkg/kvrpcpb"
"github.com/pingcap/parser/terror"
"github.com/pingcap/tidb/config"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/sessionctx/binloginfo"
"github.com/pingcap/tidb/store/tikv/tikvrpc"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/util/execdetails"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tipb/go-binlog"
"go.uber.org/zap"
)
type twoPhaseCommitAction int
const (
actionPrewrite twoPhaseCommitAction = 1 + iota
actionCommit
actionCleanup
actionPessimisticLock
actionPessimisticRollback
)
var (
tikvSecondaryLockCleanupFailureCounterCommit = metrics.TiKVSecondaryLockCleanupFailureCounter.WithLabelValues("commit")
tikvSecondaryLockCleanupFailureCounterRollback = metrics.TiKVSecondaryLockCleanupFailureCounter.WithLabelValues("rollback")
)
// Global variable set by config file.
var (
PessimisticLockTTL uint64
)
func (ca twoPhaseCommitAction) String() string {
switch ca {
case actionPrewrite:
return "prewrite"
case actionCommit:
return "commit"
case actionCleanup:
return "cleanup"
case actionPessimisticLock:
return "pessimistic_lock"
case actionPessimisticRollback:
return "pessimistic_rollback"
}
return "unknown"
}
// MetricsTag returns detail tag for metrics.
func (ca twoPhaseCommitAction) MetricsTag() string {
return "2pc_" + ca.String()
}
// twoPhaseCommitter executes a two-phase commit protocol.
type twoPhaseCommitter struct {
store *tikvStore
txn *tikvTxn
startTS uint64
keys [][]byte
mutations map[string]*mutationEx
lockTTL uint64
commitTS uint64
priority pb.CommandPri
connID uint64 // connID is used for log.
cleanWg sync.WaitGroup
// maxTxnTimeUse represents max time a Txn may use (in ms) from its startTS to commitTS.
// We use it to guarantee GC worker will not influence any active txn. The value
// should be less than GC life time.
maxTxnTimeUse uint64
detail unsafe.Pointer
primaryKey []byte
forUpdateTS uint64
pessimisticTTL uint64
mu struct {
sync.RWMutex
undeterminedErr error // undeterminedErr saves the rpc error we encounter when commit primary key.
committed bool
}
syncLog bool
// For pessimistic transaction
isPessimistic bool
isFirstLock bool
// regionTxnSize stores the number of keys involved in each region
regionTxnSize map[uint64]int
}
// batchExecutor is txn controller providing rate control like utils
type batchExecutor struct {
rateLim int // concurrent worker numbers
rateLimiter *rateLimit // rate limiter for concurrency control, maybe more strategies
committer *twoPhaseCommitter // here maybe more different type committer in the future
action twoPhaseCommitAction // the work action type
procFn procOneBatchFn // injected proc batch function
backoffer *Backoffer // Backoffer
tokenWaitDuration time.Duration // get token wait time
}
type procOneBatchFn func(bo *Backoffer, batch batchKeys) error
type mutationEx struct {
pb.Mutation
asserted bool
isPessimisticLock bool
}
// newTwoPhaseCommitter creates a twoPhaseCommitter.
func newTwoPhaseCommitter(txn *tikvTxn, connID uint64) (*twoPhaseCommitter, error) {
return &twoPhaseCommitter{
store: txn.store,
txn: txn,
startTS: txn.StartTS(),
connID: connID,
regionTxnSize: map[uint64]int{},
}, nil
}
func (c *twoPhaseCommitter) initKeysAndMutations() error {
var (
keys [][]byte
size int
putCnt int
delCnt int
lockCnt int
)
mutations := make(map[string]*mutationEx)
txn := c.txn
c.isPessimistic = txn.IsPessimistic()
if c.isPessimistic && len(c.primaryKey) > 0 {
keys = append(keys, c.primaryKey)
mutations[string(c.primaryKey)] = &mutationEx{
Mutation: pb.Mutation{
Op: pb.Op_Lock,
Key: c.primaryKey,
},
isPessimisticLock: true,
}
}
err := txn.us.WalkBuffer(func(k kv.Key, v []byte) error {
if len(v) > 0 {
op := pb.Op_Put
if c := txn.us.GetKeyExistErrInfo(k); c != nil {
op = pb.Op_Insert
}
mutations[string(k)] = &mutationEx{
Mutation: pb.Mutation{
Op: op,
Key: k,
Value: v,
},
}
putCnt++
} else {
mutations[string(k)] = &mutationEx{
Mutation: pb.Mutation{
Op: pb.Op_Del,
Key: k,
},
}
delCnt++
}
if c.isPessimistic {
if !bytes.Equal(k, c.primaryKey) {
keys = append(keys, k)
}
} else {
keys = append(keys, k)
}
entrySize := len(k) + len(v)
if entrySize > kv.TxnEntrySizeLimit {
return kv.ErrEntryTooLarge.GenWithStackByArgs(kv.TxnEntrySizeLimit, entrySize)
}
size += entrySize
return nil
})
if err != nil {
return errors.Trace(err)
}
for _, lockKey := range txn.lockKeys {
muEx, ok := mutations[string(lockKey)]
if !ok {
mutations[string(lockKey)] = &mutationEx{
Mutation: pb.Mutation{
Op: pb.Op_Lock,
Key: lockKey,
},
isPessimisticLock: c.isPessimistic,
}
lockCnt++
keys = append(keys, lockKey)
size += len(lockKey)
} else {
muEx.isPessimisticLock = c.isPessimistic
}
}
if len(keys) == 0 {
return nil
}
for _, pair := range txn.assertions {
mutation, ok := mutations[string(pair.key)]
if !ok {
// It's possible when a transaction inserted a key then deleted it later.
continue
}
// Only apply the first assertion!
if mutation.asserted {
continue
}
switch pair.assertion {
case kv.Exist:
mutation.Assertion = pb.Assertion_Exist
case kv.NotExist:
mutation.Assertion = pb.Assertion_NotExist
default:
mutation.Assertion = pb.Assertion_None
}
mutation.asserted = true
}
if size > int(kv.TxnTotalSizeLimit) {
return kv.ErrTxnTooLarge
}
const logEntryCount = 10000
const logSize = 4 * 1024 * 1024 // 4MB
if len(keys) > logEntryCount || size > logSize {
tableID := tablecodec.DecodeTableID(keys[0])
logutil.BgLogger().Info("[BIG_TXN]",
zap.Uint64("con", c.connID),
zap.Int64("table ID", tableID),
zap.Int("size", size),
zap.Int("keys", len(keys)),
zap.Int("puts", putCnt),
zap.Int("dels", delCnt),
zap.Int("locks", lockCnt),
zap.Uint64("txnStartTS", txn.startTS))
}
// Convert from sec to ms
maxTxnTimeUse := uint64(config.GetGlobalConfig().TiKVClient.MaxTxnTimeUse) * 1000
// Sanity check for startTS.
if txn.StartTS() == math.MaxUint64 {
err = errors.Errorf("try to commit with invalid txnStartTS: %d", txn.StartTS())
logutil.BgLogger().Error("commit failed",
zap.Uint64("conn", c.connID),
zap.Error(err))
return errors.Trace(err)
}
commitDetail := &execdetails.CommitDetails{WriteSize: size, WriteKeys: len(keys)}
metrics.TiKVTxnWriteKVCountHistogram.Observe(float64(commitDetail.WriteKeys))
metrics.TiKVTxnWriteSizeHistogram.Observe(float64(commitDetail.WriteSize))
c.maxTxnTimeUse = maxTxnTimeUse
c.keys = keys
c.mutations = mutations
c.lockTTL = txnLockTTL(txn.startTime, size)
c.priority = getTxnPriority(txn)
c.syncLog = getTxnSyncLog(txn)
c.setDetail(commitDetail)
return nil
}
func (c *twoPhaseCommitter) primary() []byte {
if len(c.primaryKey) == 0 {
return c.keys[0]
}
return c.primaryKey
}
const bytesPerMiB = 1024 * 1024
func txnLockTTL(startTime time.Time, txnSize int) uint64 {
// Increase lockTTL for large transactions.
// The formula is `ttl = ttlFactor * sqrt(sizeInMiB)`.
// When writeSize is less than 256KB, the base ttl is defaultTTL (3s);
// When writeSize is 1MiB, 100MiB, or 400MiB, ttl is 6s, 60s, 120s correspondingly;
lockTTL := defaultLockTTL
if txnSize >= txnCommitBatchSize {
sizeMiB := float64(txnSize) / bytesPerMiB
lockTTL = uint64(float64(ttlFactor) * math.Sqrt(sizeMiB))
if lockTTL < defaultLockTTL {
lockTTL = defaultLockTTL
}
if lockTTL > maxLockTTL {
lockTTL = maxLockTTL
}
}
// Increase lockTTL by the transaction's read time.
// When resolving a lock, we compare current ts and startTS+lockTTL to decide whether to clean up. If a txn
// takes a long time to read, increasing its TTL will help to prevent it from been aborted soon after prewrite.
elapsed := time.Since(startTime) / time.Millisecond
return lockTTL + uint64(elapsed)
}
// doActionOnKeys groups keys into primary batch and secondary batches, if primary batch exists in the key,
// it does action on primary batch first, then on secondary batches. If action is commit, secondary batches
// is done in background goroutine.
func (c *twoPhaseCommitter) doActionOnKeys(bo *Backoffer, action twoPhaseCommitAction, keys [][]byte) error {
if len(keys) == 0 {
return nil
}
groups, firstRegion, err := c.store.regionCache.GroupKeysByRegion(bo, keys)
if err != nil {
return errors.Trace(err)
}
metrics.TiKVTxnRegionsNumHistogram.WithLabelValues(action.MetricsTag()).Observe(float64(len(groups)))
var batches []batchKeys
var sizeFunc = c.keySize
if action == actionPrewrite {
// Do not update regionTxnSize on retries. They are not used when building a PrewriteRequest.
if len(bo.errors) == 0 {
for region, keys := range groups {
c.regionTxnSize[region.id] = len(keys)
}
}
sizeFunc = c.keyValueSize
atomic.AddInt32(&c.getDetail().PrewriteRegionNum, int32(len(groups)))
}
// Make sure the group that contains primary key goes first.
batches = appendBatchBySize(batches, firstRegion, groups[firstRegion], sizeFunc, txnCommitBatchSize)
delete(groups, firstRegion)
for id, g := range groups {
batches = appendBatchBySize(batches, id, g, sizeFunc, txnCommitBatchSize)
}
firstIsPrimary := bytes.Equal(keys[0], c.primary())
if firstIsPrimary && (action == actionCommit || action == actionCleanup) {
// primary should be committed/cleanup first
err = c.doActionOnBatches(bo, action, batches[:1])
if err != nil {
return errors.Trace(err)
}
batches = batches[1:]
}
if action == actionCommit {
// Commit secondary batches in background goroutine to reduce latency.
// The backoffer instance is created outside of the goroutine to avoid
// potencial data race in unit test since `CommitMaxBackoff` will be updated
// by test suites.
secondaryBo := NewBackoffer(context.Background(), CommitMaxBackoff)
go func() {
e := c.doActionOnBatches(secondaryBo, action, batches)
if e != nil {
logutil.BgLogger().Debug("2PC async doActionOnBatches",
zap.Uint64("conn", c.connID),
zap.Stringer("action type", action),
zap.Error(e))
tikvSecondaryLockCleanupFailureCounterCommit.Inc()
}
}()
} else {
err = c.doActionOnBatches(bo, action, batches)
}
return errors.Trace(err)
}
// doActionOnBatches does action to batches in parallel.
func (c *twoPhaseCommitter) doActionOnBatches(bo *Backoffer, action twoPhaseCommitAction, batches []batchKeys) error {
singleBatchActionFunc, err := c.getProcFuncByType(action)
if err != nil {
return err
}
if len(batches) == 0 {
return nil
}
if len(batches) == 1 {
e := singleBatchActionFunc(bo, batches[0])
if e != nil {
logutil.BgLogger().Debug("2PC doActionOnBatches failed",
zap.Uint64("conn", c.connID),
zap.Stringer("action type", action),
zap.Error(e),
zap.Uint64("txnStartTS", c.startTS))
}
return errors.Trace(e)
}
rateLim := len(batches) // this will be used for LargeTxn, set rateLim here
batchExecutor := newBatchExecutor(rateLim, c, action, singleBatchActionFunc, bo)
err = batchExecutor.process(batches)
return errors.Trace(err)
}
func (c *twoPhaseCommitter) getProcFuncByType(action twoPhaseCommitAction) (procOneBatchFn, error) {
var singleBatchActionFunc procOneBatchFn
switch action {
case actionPrewrite:
singleBatchActionFunc = c.prewriteSingleBatch
case actionCommit:
singleBatchActionFunc = c.commitSingleBatch
case actionCleanup:
singleBatchActionFunc = c.cleanupSingleBatch
case actionPessimisticLock:
singleBatchActionFunc = c.pessimisticLockSingleBatch
case actionPessimisticRollback:
singleBatchActionFunc = c.pessimisticRollbackSingleBatch
default:
return nil, errors.Errorf("invalid action type=%v", action)
}
return singleBatchActionFunc, nil
}
func (c *twoPhaseCommitter) keyValueSize(key []byte) int {
size := len(key)
if mutation := c.mutations[string(key)]; mutation != nil {
size += len(mutation.Value)
}
return size
}
func (c *twoPhaseCommitter) keySize(key []byte) int {
return len(key)
}
func (c *twoPhaseCommitter) buildPrewriteRequest(batch batchKeys, txnSize uint64) *tikvrpc.Request {
mutations := make([]*pb.Mutation, len(batch.keys))
var isPessimisticLock []bool
if c.isPessimistic {
isPessimisticLock = make([]bool, len(mutations))
}
for i, k := range batch.keys {
tmp := c.mutations[string(k)]
mutations[i] = &tmp.Mutation
if tmp.isPessimisticLock {
isPessimisticLock[i] = true
}
}
req := &pb.PrewriteRequest{
Mutations: mutations,
PrimaryLock: c.primary(),
StartVersion: c.startTS,
LockTtl: c.lockTTL,
IsPessimisticLock: isPessimisticLock,
ForUpdateTs: c.forUpdateTS,
TxnSize: txnSize,
}
return tikvrpc.NewRequest(tikvrpc.CmdPrewrite, req, pb.Context{Priority: c.priority, SyncLog: c.syncLog})
}
func (c *twoPhaseCommitter) prewriteSingleBatch(bo *Backoffer, batch batchKeys) error {
txnSize := uint64(c.regionTxnSize[batch.region.id])
// When we retry because of a region miss, we don't know the transaction size. We set the transaction size here
// to MaxUint64 to avoid unexpected "resolve lock lite".
if len(bo.errors) > 0 {
txnSize = math.MaxUint64
}
req := c.buildPrewriteRequest(batch, txnSize)
for {
resp, err := c.store.SendReq(bo, req, batch.region, readTimeoutShort)
if err != nil {
return errors.Trace(err)
}
regionErr, err := resp.GetRegionError()
if err != nil {
return errors.Trace(err)
}
if regionErr != nil {
err = bo.Backoff(BoRegionMiss, errors.New(regionErr.String()))
if err != nil {
return errors.Trace(err)
}
err = c.prewriteKeys(bo, batch.keys)
return errors.Trace(err)
}
if resp.Resp == nil {
return errors.Trace(ErrBodyMissing)
}
prewriteResp := resp.Resp.(*pb.PrewriteResponse)
keyErrs := prewriteResp.GetErrors()
if len(keyErrs) == 0 {
return nil
}
var locks []*Lock
for _, keyErr := range keyErrs {
// Check already exists error
if alreadyExist := keyErr.GetAlreadyExist(); alreadyExist != nil {
key := alreadyExist.GetKey()
existErrInfo := c.txn.us.GetKeyExistErrInfo(key)
if existErrInfo == nil {
return errors.Errorf("conn %d, existErr for key:%s should not be nil", c.connID, key)
}
return existErrInfo.Err()
}
// Extract lock from key error
lock, err1 := extractLockFromKeyErr(keyErr)
if err1 != nil {
return errors.Trace(err1)
}
logutil.BgLogger().Debug("prewrite encounters lock",
zap.Uint64("conn", c.connID),
zap.Stringer("lock", lock))
locks = append(locks, lock)
}
start := time.Now()
msBeforeExpired, err := c.store.lockResolver.ResolveLocks(bo, locks)
if err != nil {
return errors.Trace(err)
}
atomic.AddInt64(&c.getDetail().ResolveLockTime, int64(time.Since(start)))
if msBeforeExpired > 0 {
err = bo.BackoffWithMaxSleep(BoTxnLock, int(msBeforeExpired), errors.Errorf("2PC prewrite lockedKeys: %d", len(locks)))
if err != nil {
return errors.Trace(err)
}
}
}
}
func (c *twoPhaseCommitter) pessimisticLockSingleBatch(bo *Backoffer, batch batchKeys) error {
mutations := make([]*pb.Mutation, len(batch.keys))
for i, k := range batch.keys {
mut := &pb.Mutation{
Op: pb.Op_PessimisticLock,
Key: k,
}
existErr := c.txn.us.GetKeyExistErrInfo(k)
if existErr != nil {
mut.Assertion = pb.Assertion_NotExist
}
mutations[i] = mut
}
req := tikvrpc.NewRequest(tikvrpc.CmdPessimisticLock, &pb.PessimisticLockRequest{
Mutations: mutations,
PrimaryLock: c.primary(),
StartVersion: c.startTS,
ForUpdateTs: c.forUpdateTS,
LockTtl: c.pessimisticTTL,
IsFirstLock: c.isFirstLock,
}, pb.Context{Priority: c.priority, SyncLog: c.syncLog})
for {
resp, err := c.store.SendReq(bo, req, batch.region, readTimeoutShort)
if err != nil {
return errors.Trace(err)
}
regionErr, err := resp.GetRegionError()
if err != nil {
return errors.Trace(err)
}
if regionErr != nil {
err = bo.Backoff(BoRegionMiss, errors.New(regionErr.String()))
if err != nil {
return errors.Trace(err)
}
err = c.pessimisticLockKeys(bo, batch.keys)
return errors.Trace(err)
}
if resp.Resp == nil {
return errors.Trace(ErrBodyMissing)
}
lockResp := resp.Resp.(*pb.PessimisticLockResponse)
keyErrs := lockResp.GetErrors()
if len(keyErrs) == 0 {
return nil
}
var locks []*Lock
for _, keyErr := range keyErrs {
// Check already exists error
if alreadyExist := keyErr.GetAlreadyExist(); alreadyExist != nil {
key := alreadyExist.GetKey()
existErrInfo := c.txn.us.GetKeyExistErrInfo(key)
if existErrInfo == nil {
return errors.Errorf("conn %d, existErr for key:%s should not be nil", c.connID, key)
}
return existErrInfo.Err()
}
if deadlock := keyErr.Deadlock; deadlock != nil {
return &ErrDeadlock{Deadlock: deadlock}
}
// Extract lock from key error
lock, err1 := extractLockFromKeyErr(keyErr)
if err1 != nil {
return errors.Trace(err1)
}
locks = append(locks, lock)
}
_, err = c.store.lockResolver.ResolveLocks(bo, locks)
if err != nil {
return errors.Trace(err)
}
// Because we already waited on tikv, no need to Backoff here.
}
}
func (c *twoPhaseCommitter) pessimisticRollbackSingleBatch(bo *Backoffer, batch batchKeys) error {
req := tikvrpc.NewRequest(tikvrpc.CmdPessimisticRollback, &pb.PessimisticRollbackRequest{
StartVersion: c.startTS,
ForUpdateTs: c.forUpdateTS,
Keys: batch.keys,
})
for {
resp, err := c.store.SendReq(bo, req, batch.region, readTimeoutShort)
if err != nil {
return errors.Trace(err)
}
regionErr, err := resp.GetRegionError()
if err != nil {
return errors.Trace(err)
}
if regionErr != nil {
err = bo.Backoff(BoRegionMiss, errors.New(regionErr.String()))
if err != nil {
return errors.Trace(err)
}
err = c.pessimisticRollbackKeys(bo, batch.keys)
return errors.Trace(err)
}
return nil
}
}
func getTxnPriority(txn *tikvTxn) pb.CommandPri {
if pri := txn.us.GetOption(kv.Priority); pri != nil {
return kvPriorityToCommandPri(pri.(int))
}
return pb.CommandPri_Normal
}
func getTxnSyncLog(txn *tikvTxn) bool {
if syncOption := txn.us.GetOption(kv.SyncLog); syncOption != nil {
return syncOption.(bool)
}
return false
}
func kvPriorityToCommandPri(pri int) pb.CommandPri {
switch pri {
case kv.PriorityLow:
return pb.CommandPri_Low
case kv.PriorityHigh:
return pb.CommandPri_High
}
return pb.CommandPri_Normal
}
func (c *twoPhaseCommitter) setDetail(d *execdetails.CommitDetails) {
atomic.StorePointer(&c.detail, unsafe.Pointer(d))
}
func (c *twoPhaseCommitter) getDetail() *execdetails.CommitDetails {
return (*execdetails.CommitDetails)(atomic.LoadPointer(&c.detail))
}
func (c *twoPhaseCommitter) setUndeterminedErr(err error) {
c.mu.Lock()
defer c.mu.Unlock()
c.mu.undeterminedErr = err
}
func (c *twoPhaseCommitter) getUndeterminedErr() error {
c.mu.RLock()
defer c.mu.RUnlock()
return c.mu.undeterminedErr
}
func (c *twoPhaseCommitter) commitSingleBatch(bo *Backoffer, batch batchKeys) error {
req := tikvrpc.NewRequest(tikvrpc.CmdCommit, &pb.CommitRequest{
StartVersion: c.startTS,
Keys: batch.keys,
CommitVersion: c.commitTS,
}, pb.Context{Priority: c.priority, SyncLog: c.syncLog})
sender := NewRegionRequestSender(c.store.regionCache, c.store.client)
resp, err := sender.SendReq(bo, req, batch.region, readTimeoutShort)
// If we fail to receive response for the request that commits primary key, it will be undetermined whether this
// transaction has been successfully committed.
// Under this circumstance, we can not declare the commit is complete (may lead to data lost), nor can we throw
// an error (may lead to the duplicated key error when upper level restarts the transaction). Currently the best
// solution is to populate this error and let upper layer drop the connection to the corresponding mysql client.
isPrimary := bytes.Equal(batch.keys[0], c.primary())
if isPrimary && sender.rpcError != nil {
c.setUndeterminedErr(errors.Trace(sender.rpcError))
}
if err != nil {
return errors.Trace(err)
}
regionErr, err := resp.GetRegionError()
if err != nil {
return errors.Trace(err)
}
if regionErr != nil {
err = bo.Backoff(BoRegionMiss, errors.New(regionErr.String()))
if err != nil {
return errors.Trace(err)
}
// re-split keys and commit again.
err = c.commitKeys(bo, batch.keys)
return errors.Trace(err)
}
if resp.Resp == nil {
return errors.Trace(ErrBodyMissing)
}
commitResp := resp.Resp.(*pb.CommitResponse)
// Here we can make sure tikv has processed the commit primary key request. So
// we can clean undetermined error.
if isPrimary {
c.setUndeterminedErr(nil)
}
if keyErr := commitResp.GetError(); keyErr != nil {
c.mu.RLock()
defer c.mu.RUnlock()
err = extractKeyErr(keyErr)
if c.mu.committed {
// No secondary key could be rolled back after it's primary key is committed.
// There must be a serious bug somewhere.
logutil.BgLogger().Error("2PC failed commit key after primary key committed",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return errors.Trace(err)
}
// The transaction maybe rolled back by concurrent transactions.
logutil.BgLogger().Debug("2PC failed commit primary key",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return err
}
c.mu.Lock()
defer c.mu.Unlock()
// Group that contains primary key is always the first.
// We mark transaction's status committed when we receive the first success response.
c.mu.committed = true
return nil
}
func (c *twoPhaseCommitter) cleanupSingleBatch(bo *Backoffer, batch batchKeys) error {
req := tikvrpc.NewRequest(tikvrpc.CmdBatchRollback, &pb.BatchRollbackRequest{
Keys: batch.keys,
StartVersion: c.startTS,
}, pb.Context{Priority: c.priority, SyncLog: c.syncLog})
resp, err := c.store.SendReq(bo, req, batch.region, readTimeoutShort)
if err != nil {
return errors.Trace(err)
}
regionErr, err := resp.GetRegionError()
if err != nil {
return errors.Trace(err)
}
if regionErr != nil {
err = bo.Backoff(BoRegionMiss, errors.New(regionErr.String()))
if err != nil {
return errors.Trace(err)
}
err = c.cleanupKeys(bo, batch.keys)
return errors.Trace(err)
}
if keyErr := resp.Resp.(*pb.BatchRollbackResponse).GetError(); keyErr != nil {
err = errors.Errorf("conn %d 2PC cleanup failed: %s", c.connID, keyErr)
logutil.BgLogger().Debug("2PC failed cleanup key",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return errors.Trace(err)
}
return nil
}
func (c *twoPhaseCommitter) prewriteKeys(bo *Backoffer, keys [][]byte) error {
if span := opentracing.SpanFromContext(bo.ctx); span != nil && span.Tracer() != nil {
span1 := span.Tracer().StartSpan("twoPhaseCommitter.prewriteKeys", opentracing.ChildOf(span.Context()))
defer span1.Finish()
bo.ctx = opentracing.ContextWithSpan(bo.ctx, span1)
}
return c.doActionOnKeys(bo, actionPrewrite, keys)
}
func (c *twoPhaseCommitter) commitKeys(bo *Backoffer, keys [][]byte) error {
if span := opentracing.SpanFromContext(bo.ctx); span != nil && span.Tracer() != nil {
span1 := span.Tracer().StartSpan("twoPhaseCommitter.commitKeys", opentracing.ChildOf(span.Context()))
defer span1.Finish()
bo.ctx = opentracing.ContextWithSpan(bo.ctx, span1)
}
return c.doActionOnKeys(bo, actionCommit, keys)
}
func (c *twoPhaseCommitter) cleanupKeys(bo *Backoffer, keys [][]byte) error {
return c.doActionOnKeys(bo, actionCleanup, keys)
}
func (c *twoPhaseCommitter) pessimisticLockKeys(bo *Backoffer, keys [][]byte) error {
return c.doActionOnKeys(bo, actionPessimisticLock, keys)
}
func (c *twoPhaseCommitter) pessimisticRollbackKeys(bo *Backoffer, keys [][]byte) error {
return c.doActionOnKeys(bo, actionPessimisticRollback, keys)
}
func (c *twoPhaseCommitter) executeAndWriteFinishBinlog(ctx context.Context) error {
err := c.execute(ctx)
if err != nil {
c.writeFinishBinlog(ctx, binlog.BinlogType_Rollback, 0)
} else {
c.txn.commitTS = c.commitTS
c.writeFinishBinlog(ctx, binlog.BinlogType_Commit, int64(c.commitTS))
}
return errors.Trace(err)
}
// execute executes the two-phase commit protocol.
func (c *twoPhaseCommitter) execute(ctx context.Context) error {
defer func() {
// Always clean up all written keys if the txn does not commit.
c.mu.RLock()
committed := c.mu.committed
undetermined := c.mu.undeterminedErr != nil
c.mu.RUnlock()
if !committed && !undetermined {
c.cleanWg.Add(1)
go func() {
cleanupKeysCtx := context.WithValue(context.Background(), txnStartKey, ctx.Value(txnStartKey))
err := c.cleanupKeys(NewBackoffer(cleanupKeysCtx, cleanupMaxBackoff).WithVars(c.txn.vars), c.keys)
if err != nil {
tikvSecondaryLockCleanupFailureCounterRollback.Inc()
logutil.Logger(ctx).Info("2PC cleanup failed",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
} else {
logutil.Logger(ctx).Info("2PC clean up done",
zap.Uint64("txnStartTS", c.startTS))
}
c.cleanWg.Done()
}()
}
}()
binlogChan := c.prewriteBinlog(ctx)
prewriteBo := NewBackoffer(ctx, prewriteMaxBackoff).WithVars(c.txn.vars)
start := time.Now()
err := c.prewriteKeys(prewriteBo, c.keys)
commitDetail := c.getDetail()
commitDetail.PrewriteTime = time.Since(start)
if prewriteBo.totalSleep > 0 {
atomic.AddInt64(&commitDetail.CommitBackoffTime, int64(prewriteBo.totalSleep)*int64(time.Millisecond))
commitDetail.Mu.Lock()
commitDetail.Mu.BackoffTypes = append(commitDetail.Mu.BackoffTypes, prewriteBo.types...)
commitDetail.Mu.Unlock()
}
if binlogChan != nil {
binlogErr := <-binlogChan
if binlogErr != nil {
return errors.Trace(binlogErr)
}
}
if err != nil {
logutil.Logger(ctx).Debug("2PC failed on prewrite",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return errors.Trace(err)
}
start = time.Now()
logutil.Event(ctx, "start get commit ts")
commitTS, err := c.store.getTimestampWithRetry(NewBackoffer(ctx, tsoMaxBackoff).WithVars(c.txn.vars))
if err != nil {
logutil.Logger(ctx).Warn("2PC get commitTS failed",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return errors.Trace(err)
}
commitDetail.GetCommitTsTime = time.Since(start)
logutil.Event(ctx, "finish get commit ts")
logutil.SetTag(ctx, "commitTs", commitTS)
// check commitTS
if commitTS <= c.startTS {
err = errors.Errorf("conn %d Invalid transaction tso with txnStartTS=%v while txnCommitTS=%v",
c.connID, c.startTS, commitTS)
logutil.BgLogger().Error("invalid transaction", zap.Error(err))
return errors.Trace(err)
}
c.commitTS = commitTS
if err = c.checkSchemaValid(); err != nil {
return errors.Trace(err)
}
failpoint.Inject("tmpMaxTxnTime", func(val failpoint.Value) {
if tmpMaxTxnTime := uint64(val.(int)); tmpMaxTxnTime > 0 {
c.maxTxnTimeUse = tmpMaxTxnTime
}
})
if c.store.oracle.IsExpired(c.startTS, c.maxTxnTimeUse) {
err = errors.Errorf("conn %d txn takes too much time, txnStartTS: %d, comm: %d",
c.connID, c.startTS, c.commitTS)
return err
}
start = time.Now()
commitBo := NewBackoffer(ctx, CommitMaxBackoff).WithVars(c.txn.vars)
err = c.commitKeys(commitBo, c.keys)
commitDetail.CommitTime = time.Since(start)
if commitBo.totalSleep > 0 {
atomic.AddInt64(&commitDetail.CommitBackoffTime, int64(commitBo.totalSleep)*int64(time.Millisecond))
commitDetail.Mu.Lock()
commitDetail.Mu.BackoffTypes = append(commitDetail.Mu.BackoffTypes, commitBo.types...)
commitDetail.Mu.Unlock()
}
if err != nil {
if undeterminedErr := c.getUndeterminedErr(); undeterminedErr != nil {
logutil.Logger(ctx).Error("2PC commit result undetermined",
zap.Error(err),
zap.NamedError("rpcErr", undeterminedErr),
zap.Uint64("txnStartTS", c.startTS))
err = errors.Trace(terror.ErrResultUndetermined)
}
if !c.mu.committed {
logutil.Logger(ctx).Debug("2PC failed on commit",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
return errors.Trace(err)
}
logutil.Logger(ctx).Debug("2PC succeed with error",
zap.Error(err),
zap.Uint64("txnStartTS", c.startTS))
}
return nil
}
type schemaLeaseChecker interface {
Check(txnTS uint64) error
}
func (c *twoPhaseCommitter) checkSchemaValid() error {
checker, ok := c.txn.us.GetOption(kv.SchemaChecker).(schemaLeaseChecker)
if ok {
err := checker.Check(c.commitTS)
if err != nil {
return errors.Trace(err)
}
}
return nil
}
func (c *twoPhaseCommitter) prewriteBinlog(ctx context.Context) chan error {
if !c.shouldWriteBinlog() {
return nil
}
ch := make(chan error, 1)
go func() {
logutil.Eventf(ctx, "start prewrite binlog")
binInfo := c.txn.us.GetOption(kv.BinlogInfo).(*binloginfo.BinlogInfo)
bin := binInfo.Data
bin.StartTs = int64(c.startTS)
if bin.Tp == binlog.BinlogType_Prewrite {
bin.PrewriteKey = c.keys[0]
}
err := binInfo.WriteBinlog(c.store.clusterID)
logutil.Eventf(ctx, "finish prewrite binlog")
ch <- errors.Trace(err)
}()
return ch
}
func (c *twoPhaseCommitter) writeFinishBinlog(ctx context.Context, tp binlog.BinlogType, commitTS int64) {
if !c.shouldWriteBinlog() {
return
}
binInfo := c.txn.us.GetOption(kv.BinlogInfo).(*binloginfo.BinlogInfo)
binInfo.Data.Tp = tp
binInfo.Data.CommitTs = commitTS
binInfo.Data.PrewriteValue = nil
go func() {
logutil.Eventf(ctx, "start write finish binlog")
err := binInfo.WriteBinlog(c.store.clusterID)
if err != nil {
logutil.BgLogger().Error("failed to write binlog",
zap.Error(err))
}
logutil.Eventf(ctx, "finish write finish binlog")
}()
}
func (c *twoPhaseCommitter) shouldWriteBinlog() bool {
return c.txn.us.GetOption(kv.BinlogInfo) != nil
}
// TiKV recommends each RPC packet should be less than ~1MB. We keep each packet's
// Key+Value size below 16KB.
const txnCommitBatchSize = 16 * 1024
// batchKeys is a batch of keys in the same region.
type batchKeys struct {
region RegionVerID
keys [][]byte
}
// appendBatchBySize appends keys to []batchKeys. It may split the keys to make
// sure each batch's size does not exceed the limit.
func appendBatchBySize(b []batchKeys, region RegionVerID, keys [][]byte, sizeFn func([]byte) int, limit int) []batchKeys {
var start, end int
for start = 0; start < len(keys); start = end {
var size int
for end = start; end < len(keys) && size < limit; end++ {
size += sizeFn(keys[end])
}
b = append(b, batchKeys{
region: region,
keys: keys[start:end],
})
}
return b
}
// newBatchExecutor create processor to handle concurrent batch works(prewrite/commit etc)
func newBatchExecutor(rateLimit int, committer *twoPhaseCommitter,
action twoPhaseCommitAction, procFn procOneBatchFn, backoffer *Backoffer) *batchExecutor {
return &batchExecutor{rateLimit, nil, committer,
action, procFn, backoffer, time.Duration(1 * time.Millisecond)}
}
// initUtils do initialize batchExecutor related policies like rateLimit util
func (batchExe *batchExecutor) initUtils() error {
// init rateLimiter by injected rate limit number
batchExe.rateLimiter = newRateLimit(batchExe.rateLim)
return nil
}
// startWork concurrently do the work for each batch considering rate limit
func (batchExe *batchExecutor) startWorker(exitCh chan struct{}, ch chan error, batches []batchKeys) {
for idx, batch1 := range batches {
waitStart := time.Now()
if exit := batchExe.rateLimiter.getToken(exitCh); !exit {
batchExe.tokenWaitDuration += time.Since(waitStart)
batch := batch1
go func() {
var singleBatchBackoffer *Backoffer
if batchExe.action == actionCommit {
// Because the secondary batches of the commit actions are implemented to be
// committed asynchronously in background goroutines, we should not
// fork a child context and call cancel() while the foreground goroutine exits.
// Otherwise the background goroutines will be canceled execeptionally.
// Here we makes a new clone of the original backoffer for this goroutine
// exclusively to avoid the data race when using the same backoffer
// in concurrent goroutines.
singleBatchBackoffer = batchExe.backoffer.Clone()
} else {
var singleBatchCancel context.CancelFunc
singleBatchBackoffer, singleBatchCancel = batchExe.backoffer.Fork()
defer singleBatchCancel()
}
beforeSleep := singleBatchBackoffer.totalSleep
ch <- batchExe.procFn(singleBatchBackoffer, batch)
commitDetail := batchExe.committer.getDetail()
if commitDetail != nil { // lock operations of pessimistic-txn will let commitDetail be nil
if delta := singleBatchBackoffer.totalSleep - beforeSleep; delta > 0 {
atomic.AddInt64(&commitDetail.CommitBackoffTime, int64(singleBatchBackoffer.totalSleep-beforeSleep)*int64(time.Millisecond))
commitDetail.Mu.Lock()
commitDetail.Mu.BackoffTypes = append(commitDetail.Mu.BackoffTypes, singleBatchBackoffer.types...)
commitDetail.Mu.Unlock()
}
}
}()
} else {
logutil.Logger(batchExe.backoffer.ctx).Info("break startWorker",
zap.Stringer("action", batchExe.action), zap.Int("batch size", len(batches)),
zap.Int("index", idx))
break
}
}
}
// process will start worker routine and collect results
func (batchExe *batchExecutor) process(batches []batchKeys) error {
var err error
err = batchExe.initUtils()
if err != nil {
logutil.Logger(batchExe.backoffer.ctx).Error("batchExecutor initUtils failed", zap.Error(err))
return err
}
// For prewrite, stop sending other requests after receiving first error.
backoffer := batchExe.backoffer
var cancel context.CancelFunc
if batchExe.action == actionPrewrite {
backoffer, cancel = batchExe.backoffer.Fork()
defer cancel()
}
// concurrently do the work for each batch.
ch := make(chan error, len(batches))
exitCh := make(chan struct{})
go batchExe.startWorker(exitCh, ch, batches)
// check results
for i := 0; i < len(batches); i++ {
if e := <-ch; e != nil {
logutil.Logger(backoffer.ctx).Debug("2PC doActionOnBatches failed",
zap.Uint64("conn", batchExe.committer.connID),
zap.Stringer("action type", batchExe.action),
zap.Error(e),
zap.Uint64("txnStartTS", batchExe.committer.startTS))
// Cancel other requests and return the first error.
if cancel != nil {
logutil.Logger(backoffer.ctx).Debug("2PC doActionOnBatches to cancel other actions",
zap.Uint64("conn", batchExe.committer.connID),
zap.Stringer("action type", batchExe.action),
zap.Uint64("txnStartTS", batchExe.committer.startTS))
cancel()
}
if err == nil {
err = e
}
}
}
close(exitCh)
metrics.TiKVTokenWaitDuration.Observe(float64(batchExe.tokenWaitDuration))
return err
}