Files
tidb/pkg/expression/scalar_function.go

964 lines
31 KiB
Go

// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"bytes"
"slices"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/expression/exprctx"
"github.com/pingcap/tidb/pkg/parser/ast"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/parser/terror"
"github.com/pingcap/tidb/pkg/planner/cascades/base"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/codec"
"github.com/pingcap/tidb/pkg/util/dbterror/plannererrors"
"github.com/pingcap/tidb/pkg/util/hack"
"github.com/pingcap/tidb/pkg/util/intest"
)
var _ base.HashEquals = &ScalarFunction{}
// ScalarFunction is the function that returns a value.
type ScalarFunction struct {
FuncName ast.CIStr
// RetType is the type that ScalarFunction returns.
// TODO: Implement type inference here, now we use ast's return type temporarily.
RetType *types.FieldType `plan-cache-clone:"shallow"`
Function builtinFunc
hashcode []byte
canonicalhashcode []byte
}
// SafeToShareAcrossSession returns if the function can be shared across different sessions.
func (sf *ScalarFunction) SafeToShareAcrossSession() bool {
return sf.Function.SafeToShareAcrossSession()
}
// VecEvalInt evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalInt(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalInt(ctx, input, result)
}
// VecEvalReal evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalReal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalReal(ctx, input, result)
}
// VecEvalString evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalString(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalString(ctx, input, result)
}
// VecEvalDecimal evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalDecimal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalDecimal(ctx, input, result)
}
// VecEvalTime evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalTime(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalTime(ctx, input, result)
}
// VecEvalDuration evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalDuration(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalDuration(ctx, input, result)
}
// VecEvalJSON evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalJSON(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.vecEvalJSON(ctx, input, result)
}
// VecEvalVectorFloat32 evaluates this expression in a vectorized manner.
func (sf *ScalarFunction) VecEvalVectorFloat32(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return sf.Function.vecEvalVectorFloat32(ctx, input, result)
}
// GetArgs gets arguments of function.
func (sf *ScalarFunction) GetArgs() []Expression {
return sf.Function.getArgs()
}
// Vectorized returns if this expression supports vectorized evaluation.
func (sf *ScalarFunction) Vectorized() bool {
return sf.Function.vectorized() && sf.Function.isChildrenVectorized()
}
// StringWithCtx implements Expression interface.
func (sf *ScalarFunction) StringWithCtx(ctx ParamValues, redact string) string {
buffer := bytes.NewBuffer(make([]byte, 0, len(sf.FuncName.L)+8+16*len(sf.GetArgs())))
buffer.WriteString(sf.FuncName.L)
buffer.WriteByte('(')
switch sf.FuncName.L {
case ast.Cast:
for _, arg := range sf.GetArgs() {
buffer.WriteString(arg.StringWithCtx(ctx, redact))
buffer.WriteString(", ")
buffer.WriteString(sf.RetType.String())
}
default:
for i, arg := range sf.GetArgs() {
buffer.WriteString(arg.StringWithCtx(ctx, redact))
if i+1 != len(sf.GetArgs()) {
buffer.WriteString(", ")
}
}
}
buffer.WriteString(")")
return buffer.String()
}
// String returns the string representation of the function
func (sf *ScalarFunction) String() string {
return sf.StringWithCtx(exprctx.EmptyParamValues, errors.RedactLogDisable)
}
// typeInferForNull infers the NULL constants field type and set the field type
// of NULL constant same as other non-null operands.
func typeInferForNull(ctx EvalContext, args []Expression) {
if len(args) < 2 {
return
}
var isNull = func(expr Expression) bool {
cons, ok := expr.(*Constant)
return ok && cons.RetType.GetType() == mysql.TypeNull && cons.Value.IsNull()
}
// Infer the actual field type of the NULL constant.
var retFieldTp *types.FieldType
var hasNullArg bool
for i := len(args) - 1; i >= 0; i-- {
isNullArg := isNull(args[i])
if !isNullArg && retFieldTp == nil {
retFieldTp = args[i].GetType(ctx)
}
hasNullArg = hasNullArg || isNullArg
// Break if there are both NULL and non-NULL expression
if hasNullArg && retFieldTp != nil {
break
}
}
if !hasNullArg || retFieldTp == nil {
return
}
for i, arg := range args {
argflags := arg.GetType(ctx)
if isNull(arg) && !(argflags.Equals(retFieldTp) && mysql.HasNotNullFlag(retFieldTp.GetFlag())) {
newarg := arg.Clone()
*newarg.GetType(ctx) = *retFieldTp.Clone()
newarg.GetType(ctx).DelFlag(mysql.NotNullFlag) // Remove NotNullFlag of NullConst
args[i] = newarg
}
}
}
// newFunctionImpl creates a new scalar function or constant.
// fold: 1 means folding constants, while 0 means not,
// -1 means try to fold constants if without errors/warnings, otherwise not.
func newFunctionImpl(ctx BuildContext, fold int, funcName string, retType *types.FieldType, checkOrInit ScalarFunctionCallBack, args ...Expression) (ret Expression, err error) {
if retType == nil {
return nil, errors.Errorf("RetType cannot be nil for ScalarFunction")
}
switch funcName {
case ast.Cast:
return BuildCastFunction(ctx, args[0], retType), nil
case ast.GetVar:
return BuildGetVarFunction(ctx, args[0], retType)
case InternalFuncFromBinary:
return BuildFromBinaryFunction(ctx, args[0], retType, false), nil
case InternalFuncToBinary:
return BuildToBinaryFunction(ctx, args[0]), nil
case ast.Sysdate:
if ctx.GetSysdateIsNow() {
funcName = ast.Now
}
}
fc, ok := funcs[funcName]
if !ok {
if extFunc, exist := extensionFuncs.Load(funcName); exist {
fc = extFunc.(functionClass)
ok = true
}
}
if !ok {
db := ctx.GetEvalCtx().CurrentDB()
if db == "" {
return nil, errors.Trace(plannererrors.ErrNoDB)
}
return nil, ErrFunctionNotExists.GenWithStackByArgs("FUNCTION", db+"."+funcName)
}
noopFuncsMode := ctx.GetNoopFuncsMode()
if noopFuncsMode != variable.OnInt {
if _, ok := noopFuncs[funcName]; ok {
err := ErrFunctionsNoopImpl.FastGenByArgs(funcName)
if noopFuncsMode == variable.OffInt {
return nil, errors.Trace(err)
}
// NoopFuncsMode is Warn, append an error
ctx.GetEvalCtx().AppendWarning(err)
}
}
funcArgs := slices.Clone(args)
switch funcName {
case ast.If, ast.Ifnull, ast.Nullif:
// Do nothing. Because it will call InferType4ControlFuncs.
case ast.RowFunc:
// Do nothing. Because it shouldn't use ROW's args to infer null type.
// For example, expression ('abc', 1) = (null, 0). Null's type should be STRING, not INT.
// The type infer happens when converting the expression to ('abc' = null) and (1 = 0).
default:
typeInferForNull(ctx.GetEvalCtx(), funcArgs)
}
f, err := fc.getFunction(ctx, funcArgs)
if err != nil {
return nil, err
}
if builtinRetTp := f.getRetTp(); builtinRetTp.GetType() != mysql.TypeUnspecified || retType.GetType() == mysql.TypeUnspecified {
retType = builtinRetTp
}
sf := &ScalarFunction{
FuncName: ast.NewCIStr(funcName),
RetType: retType,
Function: f,
}
if checkOrInit != nil {
sf2, err := checkOrInit(sf)
if err != nil {
return nil, errors.Trace(err)
}
sf = sf2
}
if fold == 1 {
return FoldConstant(ctx, sf), nil
} else if fold == -1 {
// try to fold constants, and return the original function if errors/warnings occur
evalCtx := ctx.GetEvalCtx()
beforeWarns := evalCtx.WarningCount()
newSf := FoldConstant(ctx, sf)
afterWarns := evalCtx.WarningCount()
if afterWarns > beforeWarns {
evalCtx.TruncateWarnings(beforeWarns)
return sf, nil
}
return newSf, nil
}
return sf, nil
}
// ScalarFunctionCallBack is the definition of callback of calling a newFunction.
type ScalarFunctionCallBack func(function *ScalarFunction) (*ScalarFunction, error)
func defaultScalarFunctionCheck(function *ScalarFunction) (*ScalarFunction, error) {
// todo: more scalar function init actions can be added here, or setting up with customized init callback.
if function.FuncName.L == ast.Grouping {
if !function.Function.(*BuiltinGroupingImplSig).isMetaInited {
return function, errors.Errorf("grouping meta data hasn't been initialized, try use function clone instead")
}
}
return function, nil
}
// NewFunctionWithInit creates a new scalar function with callback init function.
func NewFunctionWithInit(ctx BuildContext, funcName string, retType *types.FieldType, init ScalarFunctionCallBack, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, 1, funcName, retType, init, args...)
}
// NewFunction creates a new scalar function or constant via a constant folding.
func NewFunction(ctx BuildContext, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, 1, funcName, retType, defaultScalarFunctionCheck, args...)
}
// NewFunctionBase creates a new scalar function with no constant folding.
func NewFunctionBase(ctx BuildContext, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, 0, funcName, retType, defaultScalarFunctionCheck, args...)
}
// NewFunctionTryFold creates a new scalar function with trying constant folding.
func NewFunctionTryFold(ctx BuildContext, funcName string, retType *types.FieldType, args ...Expression) (Expression, error) {
return newFunctionImpl(ctx, -1, funcName, retType, defaultScalarFunctionCheck, args...)
}
// NewFunctionInternal is similar to NewFunction, but do not return error, should only be used internally.
// Deprecated: use NewFunction instead, old logic here is for the convenience of go linter error check.
// while for the new function creation, some errors can also be thrown out, for example, args verification
// error, collation derivation error, special function with meta doesn't be initialized error and so on.
// only threw the these internal error out, then we can debug and dig it out quickly rather than in a confusion
// of index out of range / nil pointer error / function execution error.
func NewFunctionInternal(ctx BuildContext, funcName string, retType *types.FieldType, args ...Expression) Expression {
expr, err := NewFunction(ctx, funcName, retType, args...)
terror.Log(errors.Trace(err))
return expr
}
// ScalarFuncs2Exprs converts []*ScalarFunction to []Expression.
func ScalarFuncs2Exprs(funcs []*ScalarFunction) []Expression {
result := make([]Expression, 0, len(funcs))
for _, col := range funcs {
result = append(result, col)
}
return result
}
// Clone implements Expression interface.
func (sf *ScalarFunction) Clone() Expression {
c := &ScalarFunction{
FuncName: sf.FuncName,
RetType: sf.RetType,
Function: sf.Function.Clone(),
}
// An implicit assumption: ScalarFunc.RetType == ScalarFunc.builtinFunc.RetType
if sf.canonicalhashcode != nil {
c.canonicalhashcode = slices.Clone(sf.canonicalhashcode)
}
c.SetCharsetAndCollation(sf.CharsetAndCollation())
c.SetCoercibility(sf.Coercibility())
c.SetRepertoire(sf.Repertoire())
return c
}
// GetType implements Expression interface.
func (sf *ScalarFunction) GetType(_ EvalContext) *types.FieldType {
return sf.GetStaticType()
}
// GetStaticType returns the static type of the scalar function.
func (sf *ScalarFunction) GetStaticType() *types.FieldType {
return sf.RetType
}
// Equal implements Expression interface.
func (sf *ScalarFunction) Equal(ctx EvalContext, e Expression) bool {
intest.Assert(ctx != nil)
fun, ok := e.(*ScalarFunction)
if !ok {
return false
}
// If they are the same object, they must be equal.
if sf == fun {
return true
}
if sf.FuncName.L != fun.FuncName.L {
return false
}
if !sf.RetType.Equal(fun.RetType) {
return false
}
if sf.hashcode != nil && fun.hashcode != nil {
if intest.InTest {
assertCheckHashCode(sf)
assertCheckHashCode(fun)
}
return bytes.Equal(sf.hashcode, fun.hashcode)
}
return sf.Function.equal(ctx, fun.Function)
}
func assertCheckHashCode(sf *ScalarFunction) {
intest.Assert(intest.InTest)
copyhashcode := make([]byte, len(sf.hashcode))
copy(copyhashcode, sf.hashcode)
// avoid data race in the plan cache
s := sf.Clone().(*ScalarFunction)
ReHashCode(s)
intest.Assert(bytes.Equal(s.hashcode, copyhashcode), "HashCode should not change after ReHashCode is called")
}
// IsCorrelated implements Expression interface.
func (sf *ScalarFunction) IsCorrelated() bool {
for _, arg := range sf.GetArgs() {
if arg.IsCorrelated() {
return true
}
}
return false
}
// ConstLevel returns the const level for the expression
func (sf *ScalarFunction) ConstLevel() ConstLevel {
// Note: some unfoldable functions are deterministic, we use unFoldableFunctions here for simplification.
if _, ok := unFoldableFunctions[sf.FuncName.L]; ok {
return ConstNone
}
if _, ok := sf.Function.(*extensionFuncSig); ok {
// we should return `ConstNone` for extension functions for safety, because it may have a side effect.
return ConstNone
}
level := ConstStrict
for _, arg := range sf.GetArgs() {
argLevel := arg.ConstLevel()
if argLevel == ConstNone {
return ConstNone
}
if argLevel < level {
level = argLevel
}
}
return level
}
// Decorrelate implements Expression interface.
func (sf *ScalarFunction) Decorrelate(schema *Schema) Expression {
for i, arg := range sf.GetArgs() {
sf.GetArgs()[i] = arg.Decorrelate(schema)
}
return sf
}
// Traverse implements the TraverseDown interface.
func (sf *ScalarFunction) Traverse(action TraverseAction) Expression {
return action.Transform(sf)
}
// Eval implements Expression interface.
func (sf *ScalarFunction) Eval(ctx EvalContext, row chunk.Row) (d types.Datum, err error) {
var (
res any
isNull bool
)
intest.AssertNotNil(ctx)
switch tp, evalType := sf.GetType(ctx), sf.GetType(ctx).EvalType(); evalType {
case types.ETInt:
var intRes int64
intRes, isNull, err = sf.EvalInt(ctx, row)
if mysql.HasUnsignedFlag(tp.GetFlag()) {
res = uint64(intRes)
} else {
res = intRes
}
case types.ETReal:
res, isNull, err = sf.EvalReal(ctx, row)
case types.ETDecimal:
res, isNull, err = sf.EvalDecimal(ctx, row)
case types.ETDatetime, types.ETTimestamp:
res, isNull, err = sf.EvalTime(ctx, row)
case types.ETDuration:
res, isNull, err = sf.EvalDuration(ctx, row)
case types.ETJson:
res, isNull, err = sf.EvalJSON(ctx, row)
case types.ETVectorFloat32:
res, isNull, err = sf.EvalVectorFloat32(ctx, row)
case types.ETString:
var str string
str, isNull, err = sf.EvalString(ctx, row)
if !isNull && err == nil && tp.GetType() == mysql.TypeEnum {
res, err = types.ParseEnum(tp.GetElems(), str, tp.GetCollate())
tc := typeCtx(ctx)
err = tc.HandleTruncate(err)
} else {
res = str
}
}
if isNull || err != nil {
d.SetNull()
return d, err
}
d.SetValue(res, sf.RetType)
return
}
// EvalInt implements Expression interface.
func (sf *ScalarFunction) EvalInt(ctx EvalContext, row chunk.Row) (int64, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalInt(ctx, row)
}
// EvalReal implements Expression interface.
func (sf *ScalarFunction) EvalReal(ctx EvalContext, row chunk.Row) (float64, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalReal(ctx, row)
}
// EvalDecimal implements Expression interface.
func (sf *ScalarFunction) EvalDecimal(ctx EvalContext, row chunk.Row) (*types.MyDecimal, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalDecimal(ctx, row)
}
// EvalString implements Expression interface.
func (sf *ScalarFunction) EvalString(ctx EvalContext, row chunk.Row) (string, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalString(ctx, row)
}
// EvalTime implements Expression interface.
func (sf *ScalarFunction) EvalTime(ctx EvalContext, row chunk.Row) (types.Time, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalTime(ctx, row)
}
// EvalDuration implements Expression interface.
func (sf *ScalarFunction) EvalDuration(ctx EvalContext, row chunk.Row) (types.Duration, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalDuration(ctx, row)
}
// EvalJSON implements Expression interface.
func (sf *ScalarFunction) EvalJSON(ctx EvalContext, row chunk.Row) (types.BinaryJSON, bool, error) {
intest.Assert(ctx != nil)
if intest.EnableAssert {
ctx = wrapEvalAssert(ctx, sf.Function)
}
return sf.Function.evalJSON(ctx, row)
}
// EvalVectorFloat32 implements Expression interface.
func (sf *ScalarFunction) EvalVectorFloat32(ctx EvalContext, row chunk.Row) (types.VectorFloat32, bool, error) {
return sf.Function.evalVectorFloat32(ctx, row)
}
// HashCode implements Expression interface.
func (sf *ScalarFunction) HashCode() []byte {
if len(sf.hashcode) > 0 {
if intest.InTest {
assertCheckHashCode(sf)
}
return sf.hashcode
}
ReHashCode(sf)
return sf.hashcode
}
// CanonicalHashCode implements Expression interface.
func (sf *ScalarFunction) CanonicalHashCode() []byte {
if len(sf.canonicalhashcode) > 0 {
return sf.canonicalhashcode
}
simpleCanonicalizedHashCode(sf)
return sf.canonicalhashcode
}
// ExpressionsSemanticEqual is used to judge whether two expression tree is semantic equivalent.
func ExpressionsSemanticEqual(expr1, expr2 Expression) bool {
return bytes.Equal(expr1.CanonicalHashCode(), expr2.CanonicalHashCode())
}
// simpleCanonicalizedHashCode is used to judge whether two expression is semantically equal.
func simpleCanonicalizedHashCode(sf *ScalarFunction) {
if sf.canonicalhashcode != nil {
sf.canonicalhashcode = sf.canonicalhashcode[:0]
}
sf.canonicalhashcode = append(sf.canonicalhashcode, scalarFunctionFlag)
argsHashCode := make([][]byte, 0, len(sf.GetArgs()))
for _, arg := range sf.GetArgs() {
argsHashCode = append(argsHashCode, arg.CanonicalHashCode())
}
switch sf.FuncName.L {
case ast.Plus, ast.Mul, ast.EQ, ast.In, ast.LogicOr, ast.LogicAnd:
// encode original function name.
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(sf.FuncName.L))
// reorder parameters hashcode, eg: a+b and b+a should has the same hashcode here.
slices.SortFunc(argsHashCode, func(i, j []byte) int {
return bytes.Compare(i, j)
})
for _, argCode := range argsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
case ast.GE, ast.LE: // directed binary OP: a >= b and b <= a should have the same hashcode.
// encode GE function name.
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GE))
// encode GE function name and switch the args order.
if sf.FuncName.L == ast.GE {
for _, argCode := range argsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
} else {
for i := len(argsHashCode) - 1; i >= 0; i-- {
sf.canonicalhashcode = append(sf.canonicalhashcode, argsHashCode[i]...)
}
}
case ast.GT, ast.LT:
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GT))
if sf.FuncName.L == ast.GT {
for _, argCode := range argsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
} else {
for i := len(argsHashCode) - 1; i >= 0; i-- {
sf.canonicalhashcode = append(sf.canonicalhashcode, argsHashCode[i]...)
}
}
case ast.UnaryNot:
child, ok := sf.GetArgs()[0].(*ScalarFunction)
if !ok {
// encode original function name.
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(sf.FuncName.L))
// use the origin arg hash code.
for _, argCode := range argsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
} else {
childArgsHashCode := make([][]byte, 0, len(child.GetArgs()))
for _, arg := range child.GetArgs() {
childArgsHashCode = append(childArgsHashCode, arg.CanonicalHashCode())
}
switch child.FuncName.L {
case ast.GT: // not GT ==> LE ==> use GE and switch args
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GE))
for i := len(childArgsHashCode) - 1; i >= 0; i-- {
sf.canonicalhashcode = append(sf.canonicalhashcode, childArgsHashCode[i]...)
}
case ast.LT: // not LT ==> GE
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GE))
for _, argCode := range childArgsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
case ast.GE: // not GE ==> LT ==> use GT and switch args
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GT))
for i := len(childArgsHashCode) - 1; i >= 0; i-- {
sf.canonicalhashcode = append(sf.canonicalhashcode, childArgsHashCode[i]...)
}
case ast.LE: // not LE ==> GT
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(ast.GT))
for _, argCode := range childArgsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
}
}
default:
// encode original function name.
sf.canonicalhashcode = codec.EncodeCompactBytes(sf.canonicalhashcode, hack.Slice(sf.FuncName.L))
for _, argCode := range argsHashCode {
sf.canonicalhashcode = append(sf.canonicalhashcode, argCode...)
}
// Cast is a special case. The RetType should also be considered as an argument.
// Please see `newFunctionImpl()` for detail.
if sf.FuncName.L == ast.Cast {
evalTp := sf.RetType.EvalType()
sf.canonicalhashcode = append(sf.canonicalhashcode, byte(evalTp))
}
}
}
// Hash64 implements HashEquals.<0th> interface.
func (sf *ScalarFunction) Hash64(h base.Hasher) {
h.HashByte(scalarFunctionFlag)
h.HashString(sf.FuncName.L)
if sf.RetType == nil {
h.HashByte(base.NilFlag)
} else {
h.HashByte(base.NotNilFlag)
sf.RetType.Hash64(h)
}
// hash the arg length to avoid hash collision.
h.HashInt(len(sf.GetArgs()))
for _, arg := range sf.GetArgs() {
arg.Hash64(h)
}
}
// Equals implements HashEquals.<1th> interface.
func (sf *ScalarFunction) Equals(other any) bool {
sf2, ok := other.(*ScalarFunction)
if !ok {
return false
}
if sf == nil {
return sf2 == nil
}
if sf2 == nil {
return false
}
ok = sf.FuncName.L == sf2.FuncName.L
ok = ok && (sf.RetType == nil && sf2.RetType == nil || sf.RetType != nil && sf2.RetType != nil && sf.RetType.Equals(sf2.RetType))
if len(sf.GetArgs()) != len(sf2.GetArgs()) {
return false
}
for i, arg := range sf.GetArgs() {
ok = ok && arg.Equals(sf2.GetArgs()[i])
if !ok {
return false
}
}
return ok
}
// ReHashCode is used after we change the argument in place.
func ReHashCode(sf *ScalarFunction) {
sf.hashcode = sf.hashcode[:0]
sf.hashcode = slices.Grow(sf.hashcode, 1+len(sf.FuncName.L)+len(sf.GetArgs())*8+1)
sf.hashcode = append(sf.hashcode, scalarFunctionFlag)
sf.hashcode = codec.EncodeCompactBytes(sf.hashcode, hack.Slice(sf.FuncName.L))
for _, arg := range sf.GetArgs() {
sf.hashcode = append(sf.hashcode, arg.HashCode()...)
}
// Cast is a special case. The RetType should also be considered as an argument.
// Please see `newFunctionImpl()` for detail.
if sf.FuncName.L == ast.Cast {
evalTp := sf.RetType.EvalType()
sf.hashcode = append(sf.hashcode, byte(evalTp))
}
if sf.FuncName.L == ast.Grouping {
sf.hashcode = codec.EncodeInt(sf.hashcode, int64(sf.Function.(*BuiltinGroupingImplSig).GetGroupingMode()))
marks := sf.Function.(*BuiltinGroupingImplSig).GetMetaGroupingMarks()
sf.hashcode = codec.EncodeInt(sf.hashcode, int64(len(marks)))
for _, mark := range marks {
sf.hashcode = codec.EncodeInt(sf.hashcode, int64(len(mark)))
// we need to sort map keys to ensure the hashcode is deterministic.
keys := make([]uint64, 0, len(mark))
for k := range mark {
keys = append(keys, k)
}
slices.Sort(keys)
for _, k := range keys {
sf.hashcode = codec.EncodeInt(sf.hashcode, int64(k))
}
}
}
}
// ResolveIndices implements Expression interface.
func (sf *ScalarFunction) ResolveIndices(schema *Schema) (Expression, error) {
newSf := sf.Clone()
err := newSf.resolveIndices(schema)
return newSf, err
}
func (sf *ScalarFunction) resolveIndices(schema *Schema) error {
for _, arg := range sf.GetArgs() {
err := arg.resolveIndices(schema)
if err != nil {
return err
}
}
return nil
}
// ResolveIndicesByVirtualExpr implements Expression interface.
func (sf *ScalarFunction) ResolveIndicesByVirtualExpr(ctx EvalContext, schema *Schema) (Expression, bool) {
newSf := sf.Clone()
isOK := newSf.resolveIndicesByVirtualExpr(ctx, schema)
return newSf, isOK
}
func (sf *ScalarFunction) resolveIndicesByVirtualExpr(ctx EvalContext, schema *Schema) bool {
for _, arg := range sf.GetArgs() {
isOk := arg.resolveIndicesByVirtualExpr(ctx, schema)
if !isOk {
return false
}
}
return true
}
// RemapColumn remaps columns with provided mapping and returns new expression
func (sf *ScalarFunction) RemapColumn(m map[int64]*Column) (Expression, error) {
newSf, ok := sf.Clone().(*ScalarFunction)
if !ok {
return nil, errors.New("failed to cast to scalar function")
}
for i, arg := range sf.GetArgs() {
newArg, err := arg.RemapColumn(m)
if err != nil {
return nil, err
}
newSf.GetArgs()[i] = newArg
}
// clear hash code
newSf.hashcode = nil
return newSf, nil
}
// GetSingleColumn returns (Col, Desc) when the ScalarFunction is equivalent to (Col, Desc)
// when used as a sort key, otherwise returns (nil, false).
//
// Can only handle:
// - ast.Plus
// - ast.Minus
// - ast.UnaryMinus
func (sf *ScalarFunction) GetSingleColumn(reverse bool) (*Column, bool) {
switch sf.FuncName.String() {
case ast.Plus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp, reverse
case *ScalarFunction:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp.GetSingleColumn(reverse)
case *Constant:
switch rtp := args[1].(type) {
case *Column:
return rtp, reverse
case *ScalarFunction:
return rtp.GetSingleColumn(reverse)
}
}
return nil, false
case ast.Minus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp, reverse
case *ScalarFunction:
if _, ok := args[1].(*Constant); !ok {
return nil, false
}
return tp.GetSingleColumn(reverse)
case *Constant:
switch rtp := args[1].(type) {
case *Column:
return rtp, !reverse
case *ScalarFunction:
return rtp.GetSingleColumn(!reverse)
}
}
return nil, false
case ast.UnaryMinus:
args := sf.GetArgs()
switch tp := args[0].(type) {
case *Column:
return tp, !reverse
case *ScalarFunction:
return tp.GetSingleColumn(!reverse)
}
return nil, false
}
return nil, false
}
// Coercibility returns the coercibility value which is used to check collations.
func (sf *ScalarFunction) Coercibility() Coercibility {
if !sf.Function.HasCoercibility() {
sf.SetCoercibility(deriveCoercibilityForScalarFunc(sf))
}
return sf.Function.Coercibility()
}
// HasCoercibility ...
func (sf *ScalarFunction) HasCoercibility() bool {
return sf.Function.HasCoercibility()
}
// SetCoercibility sets a specified coercibility for this expression.
func (sf *ScalarFunction) SetCoercibility(val Coercibility) {
sf.Function.SetCoercibility(val)
}
// CharsetAndCollation gets charset and collation.
func (sf *ScalarFunction) CharsetAndCollation() (string, string) {
return sf.Function.CharsetAndCollation()
}
// SetCharsetAndCollation sets charset and collation.
func (sf *ScalarFunction) SetCharsetAndCollation(chs, coll string) {
sf.Function.SetCharsetAndCollation(chs, coll)
}
// Repertoire returns the repertoire value which is used to check collations.
func (sf *ScalarFunction) Repertoire() Repertoire {
return sf.Function.Repertoire()
}
// SetRepertoire sets a specified repertoire for this expression.
func (sf *ScalarFunction) SetRepertoire(r Repertoire) {
sf.Function.SetRepertoire(r)
}
// IsExplicitCharset return the charset is explicit set or not.
func (sf *ScalarFunction) IsExplicitCharset() bool {
return sf.Function.IsExplicitCharset()
}
// SetExplicitCharset set the charset is explicit or not.
func (sf *ScalarFunction) SetExplicitCharset(explicit bool) {
sf.Function.SetExplicitCharset(explicit)
}
const emptyScalarFunctionSize = int64(unsafe.Sizeof(ScalarFunction{}))
// MemoryUsage return the memory usage of ScalarFunction
func (sf *ScalarFunction) MemoryUsage() (sum int64) {
if sf == nil {
return
}
sum = emptyScalarFunctionSize + int64(len(sf.FuncName.L)+len(sf.FuncName.O)) + int64(cap(sf.hashcode))
if sf.RetType != nil {
sum += sf.RetType.MemoryUsage()
}
if sf.Function != nil {
sum += sf.Function.MemoryUsage()
}
return sum
}