Files
tidb/statistics/feedback.go

1218 lines
39 KiB
Go

// Copyright 2018 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"bytes"
"encoding/gob"
"fmt"
"math"
"math/rand"
"sort"
"time"
"github.com/cznic/mathutil"
"github.com/pingcap/errors"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/ranger"
log "github.com/sirupsen/logrus"
"github.com/spaolacci/murmur3"
)
// `feedback` represents the total scan count in range [lower, upper).
type feedback struct {
lower *types.Datum
upper *types.Datum
count int64
repeat int64
}
// QueryFeedback is used to represent the query feedback info. It contains the query's scan ranges and number of rows
// in each range.
type QueryFeedback struct {
physicalID int64
hist *Histogram
tp int
feedback []feedback
expected int64 // expected is the expected scan count of corresponding query.
actual int64 // actual is the actual scan count of corresponding query.
valid bool // valid represents the whether this query feedback is still valid.
desc bool // desc represents the corresponding query is desc scan.
}
// NewQueryFeedback returns a new query feedback.
func NewQueryFeedback(physicalID int64, hist *Histogram, expected int64, desc bool) *QueryFeedback {
if hist != nil && hist.Len() == 0 {
hist = nil
}
tp := pkType
if hist != nil && hist.isIndexHist() {
tp = indexType
}
return &QueryFeedback{
physicalID: physicalID,
valid: true,
tp: tp,
hist: hist,
expected: expected,
desc: desc,
}
}
var (
// MaxNumberOfRanges is the max number of ranges before split to collect feedback.
MaxNumberOfRanges = 20
// FeedbackProbability is the probability to collect the feedback.
FeedbackProbability = 0.0
)
// CollectFeedback decides whether to collect the feedback. It returns false when:
// 1: the histogram is nil or has no buckets;
// 2: the number of scan ranges exceeds the limit because it may affect the performance;
// 3: it does not pass the probabilistic sampler.
func (q *QueryFeedback) CollectFeedback(numOfRanges int) bool {
if q.hist == nil || q.hist.Len() == 0 {
return false
}
if numOfRanges > MaxNumberOfRanges || rand.Float64() > FeedbackProbability {
return false
}
return true
}
// DecodeToRanges decode the feedback to ranges.
func (q *QueryFeedback) DecodeToRanges(isIndex bool) ([]*ranger.Range, error) {
ranges := make([]*ranger.Range, 0, len(q.feedback))
for _, val := range q.feedback {
low, high := *val.lower, *val.upper
var lowVal, highVal []types.Datum
if isIndex {
var err error
// As we do not know the origin length, just use a custom value here.
lowVal, err = codec.DecodeRange(low.GetBytes(), 4)
if err != nil {
return nil, errors.Trace(err)
}
highVal, err = codec.DecodeRange(high.GetBytes(), 4)
if err != nil {
return nil, errors.Trace(err)
}
} else {
_, lowInt, err := codec.DecodeInt(val.lower.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
_, highInt, err := codec.DecodeInt(val.upper.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
lowVal = []types.Datum{types.NewIntDatum(lowInt)}
highVal = []types.Datum{types.NewIntDatum(highInt)}
}
ranges = append(ranges, &(ranger.Range{
LowVal: lowVal,
HighVal: highVal,
HighExclude: true,
}))
}
return ranges, nil
}
func (q *QueryFeedback) decodeIntValues() *QueryFeedback {
nq := &QueryFeedback{}
nq.feedback = make([]feedback, 0, len(q.feedback))
for _, fb := range q.feedback {
_, lowInt, err := codec.DecodeInt(fb.lower.GetBytes())
if err != nil {
log.Debugf("decode feedback lower bound \"%v\" to integer failed: %v", fb.lower.GetBytes(), err)
continue
}
_, highInt, err := codec.DecodeInt(fb.upper.GetBytes())
if err != nil {
log.Debugf("decode feedback upper bound \"%v\" to integer failed: %v", fb.upper.GetBytes(), err)
continue
}
low, high := types.NewIntDatum(lowInt), types.NewIntDatum(highInt)
nq.feedback = append(nq.feedback, feedback{lower: &low, upper: &high, count: fb.count})
}
return nq
}
// StoreRanges stores the ranges for update.
func (q *QueryFeedback) StoreRanges(ranges []*ranger.Range) {
q.feedback = make([]feedback, 0, len(ranges))
for _, ran := range ranges {
q.feedback = append(q.feedback, feedback{&ran.LowVal[0], &ran.HighVal[0], 0, 0})
}
}
// Invalidate is used to invalidate the query feedback.
func (q *QueryFeedback) Invalidate() {
q.feedback = nil
q.hist = nil
q.valid = false
q.actual = -1
}
// Actual gets the actual row count.
func (q *QueryFeedback) Actual() int64 {
if !q.valid {
return -1
}
return q.actual
}
// Hist gets the histogram.
func (q *QueryFeedback) Hist() *Histogram {
return q.hist
}
// Update updates the query feedback. `startKey` is the start scan key of the partial result, used to find
// the range for update. `counts` is the scan counts of each range, used to update the feedback count info.
func (q *QueryFeedback) Update(startKey kv.Key, counts []int64) {
// Older version do not have the counts info.
if len(counts) == 0 {
q.Invalidate()
return
}
sum := int64(0)
for _, count := range counts {
sum += count
}
metrics.DistSQLScanKeysPartialHistogram.Observe(float64(sum))
q.actual += sum
if !q.valid || q.hist == nil {
return
}
if q.tp == indexType {
startKey = tablecodec.CutIndexPrefix(startKey)
} else {
startKey = tablecodec.CutRowKeyPrefix(startKey)
}
// Find the range that startKey falls in.
idx := sort.Search(len(q.feedback), func(i int) bool {
return bytes.Compare(q.feedback[i].lower.GetBytes(), startKey) > 0
})
idx--
if idx < 0 {
return
}
// If the desc is true, the counts is reversed, so here we need to reverse it back.
if q.desc {
for i := 0; i < len(counts)/2; i++ {
j := len(counts) - i - 1
counts[i], counts[j] = counts[j], counts[i]
}
}
// Update the feedback count info.
for i, count := range counts {
if i+idx >= len(q.feedback) {
q.Invalidate()
break
}
q.feedback[i+idx].count += count
}
return
}
// BucketFeedback stands for all the feedback for a bucket.
type BucketFeedback struct {
feedback []feedback // All the feedback info in the same bucket.
lower *types.Datum // The lower bound of the new bucket.
upper *types.Datum // The upper bound of the new bucket.
}
// outOfRange checks if the `val` is between `min` and `max`.
func outOfRange(sc *stmtctx.StatementContext, min, max, val *types.Datum) (int, error) {
result, err := val.CompareDatum(sc, min)
if err != nil {
return 0, err
}
if result < 0 {
return result, nil
}
result, err = val.CompareDatum(sc, max)
if err != nil {
return 0, err
}
if result > 0 {
return result, nil
}
return 0, nil
}
// adjustFeedbackBoundaries adjust the feedback boundaries according to the `min` and `max`.
// If the feedback has no intersection with `min` and `max`, we could just skip this feedback.
func (f *feedback) adjustFeedbackBoundaries(sc *stmtctx.StatementContext, min, max *types.Datum) (bool, error) {
result, err := outOfRange(sc, min, max, f.lower)
if err != nil {
return false, err
}
if result > 0 {
return true, nil
}
if result < 0 {
f.lower = min
}
result, err = outOfRange(sc, min, max, f.upper)
if err != nil {
return false, err
}
if result < 0 {
return true, nil
}
if result > 0 {
f.upper = max
}
return false, nil
}
// buildBucketFeedback build the feedback for each bucket from the histogram feedback.
func buildBucketFeedback(h *Histogram, feedback *QueryFeedback) (map[int]*BucketFeedback, int) {
bktID2FB := make(map[int]*BucketFeedback)
if len(feedback.feedback) == 0 {
return bktID2FB, 0
}
total := 0
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
min, max := getMinValue(h.Tp), getMaxValue(h.Tp)
for _, fb := range feedback.feedback {
skip, err := fb.adjustFeedbackBoundaries(sc, &min, &max)
if err != nil {
log.Debugf("adjust feedback boundaries failed, err: %v", errors.ErrorStack(err))
continue
}
if skip {
continue
}
idx, _ := h.Bounds.LowerBound(0, fb.lower)
bktIdx := 0
// The last bucket also stores the feedback that falls outside the upper bound.
if idx >= h.Bounds.NumRows()-2 {
bktIdx = h.Len() - 1
} else {
bktIdx = idx / 2
// Make sure that this feedback lies within the bucket.
if chunk.Compare(h.Bounds.GetRow(2*bktIdx+1), 0, fb.upper) < 0 {
continue
}
}
total++
bkt := bktID2FB[bktIdx]
if bkt == nil {
bkt = &BucketFeedback{lower: h.GetLower(bktIdx), upper: h.GetUpper(bktIdx)}
bktID2FB[bktIdx] = bkt
}
bkt.feedback = append(bkt.feedback, fb)
// Update the bound if necessary.
res, err := bkt.lower.CompareDatum(nil, fb.lower)
if err != nil {
log.Debugf("compare datum %v with %v failed, err: %v", bkt.lower, fb.lower, errors.ErrorStack(err))
continue
}
if res > 0 {
bkt.lower = fb.lower
}
res, err = bkt.upper.CompareDatum(nil, fb.upper)
if err != nil {
log.Debugf("compare datum %v with %v failed, err: %v", bkt.upper, fb.upper, errors.ErrorStack(err))
continue
}
if res < 0 {
bkt.upper = fb.upper
}
}
return bktID2FB, total
}
// getBoundaries gets the new boundaries after split.
func (b *BucketFeedback) getBoundaries(num int) []types.Datum {
// Get all the possible new boundaries.
vals := make([]types.Datum, 0, len(b.feedback)*2+2)
for _, fb := range b.feedback {
vals = append(vals, *fb.lower, *fb.upper)
}
vals = append(vals, *b.lower)
err := types.SortDatums(nil, vals)
if err != nil {
log.Debugf("sort datums failed, err: %v", errors.ErrorStack(err))
vals = vals[:0]
vals = append(vals, *b.lower, *b.upper)
return vals
}
total, interval := 0, len(vals)/num
// Pick values per `interval`.
for i := 0; i < len(vals); i, total = i+interval, total+1 {
vals[total] = vals[i]
}
// Append the upper bound.
vals[total] = *b.upper
vals = vals[:total+1]
total = 1
// Erase the repeat values.
for i := 1; i < len(vals); i++ {
cmp, err := vals[total-1].CompareDatum(nil, &vals[i])
if err != nil {
log.Debugf("compare datum %v with %v failed, err: %v", vals[total-1], vals[i], errors.ErrorStack(err))
continue
}
if cmp == 0 {
continue
}
vals[total] = vals[i]
total++
}
return vals[:total]
}
// There are only two types of datum in bucket: one is `Blob`, which is for index; the other one
// is `Int`, which is for primary key.
type bucket = feedback
// splitBucket firstly splits this "BucketFeedback" to "newNumBkts" new buckets,
// calculates the count for each new bucket, merge the new bucket whose count
// is smaller than "minBucketFraction*totalCount" with the next new bucket
// until the last new bucket.
func (b *BucketFeedback) splitBucket(newNumBkts int, totalCount float64, originBucketCount float64) []bucket {
// Split the bucket.
bounds := b.getBoundaries(newNumBkts + 1)
bkts := make([]bucket, 0, len(bounds)-1)
for i := 1; i < len(bounds); i++ {
newBkt := bucket{&bounds[i-1], bounds[i].Copy(), 0, 0}
// get bucket count
_, ratio := getOverlapFraction(feedback{b.lower, b.upper, int64(originBucketCount), 0}, newBkt)
countInNewBkt := originBucketCount * ratio
countInNewBkt = b.refineBucketCount(newBkt, countInNewBkt)
// do not split if the count of result bucket is too small.
if countInNewBkt < minBucketFraction*totalCount {
bounds[i] = bounds[i-1]
continue
}
newBkt.count = int64(countInNewBkt)
bkts = append(bkts, newBkt)
// To guarantee that each bucket's range will not overlap.
setNextValue(&bounds[i])
}
return bkts
}
// getOverlapFraction gets the overlap fraction of feedback and bucket range. In order to get the bucket count, it also
// returns the ratio between bucket fraction and feedback fraction.
func getOverlapFraction(fb feedback, bkt bucket) (float64, float64) {
datums := make([]types.Datum, 0, 4)
datums = append(datums, *fb.lower, *fb.upper)
datums = append(datums, *bkt.lower, *bkt.upper)
err := types.SortDatums(nil, datums)
if err != nil {
return 0, 0
}
minValue, maxValue := &datums[0], &datums[3]
fbLower := calcFraction4Datums(minValue, maxValue, fb.lower)
fbUpper := calcFraction4Datums(minValue, maxValue, fb.upper)
bktLower := calcFraction4Datums(minValue, maxValue, bkt.lower)
bktUpper := calcFraction4Datums(minValue, maxValue, bkt.upper)
ratio := (bktUpper - bktLower) / (fbUpper - fbLower)
// full overlap
if fbLower <= bktLower && bktUpper <= fbUpper {
return bktUpper - bktLower, ratio
}
if bktLower <= fbLower && fbUpper <= bktUpper {
return fbUpper - fbLower, ratio
}
// partial overlap
overlap := math.Min(bktUpper-fbLower, fbUpper-bktLower)
return overlap, ratio
}
// refineBucketCount refine the newly split bucket count. It uses the feedback that overlaps most
// with the bucket to get the bucket count.
func (b *BucketFeedback) refineBucketCount(bkt bucket, defaultCount float64) float64 {
bestFraction := minBucketFraction
count := defaultCount
for _, fb := range b.feedback {
fraction, ratio := getOverlapFraction(fb, bkt)
// choose the max overlap fraction
if fraction > bestFraction {
bestFraction = fraction
count = float64(fb.count) * ratio
}
}
return count
}
const (
defaultSplitCount = 10
splitPerFeedback = 10
)
// getSplitCount gets the split count for the histogram. It is based on the intuition that:
// 1: If we have more remaining unused buckets, we can split more.
// 2: We cannot split too aggressive, thus we make it split every `splitPerFeedback`.
func getSplitCount(numFeedbacks, remainBuckets int) int {
// Split more if have more buckets available.
splitCount := mathutil.Max(remainBuckets, defaultSplitCount)
return mathutil.Min(splitCount, numFeedbacks/splitPerFeedback)
}
type bucketScore struct {
id int
score float64
}
type bucketScores []bucketScore
func (bs bucketScores) Len() int { return len(bs) }
func (bs bucketScores) Swap(i, j int) { bs[i], bs[j] = bs[j], bs[i] }
func (bs bucketScores) Less(i, j int) bool { return bs[i].score < bs[j].score }
const (
// To avoid the histogram been too imbalanced, we constrain the count of a bucket in range
// [minBucketFraction * totalCount, maxBucketFraction * totalCount].
minBucketFraction = 1 / 10000.0
maxBucketFraction = 1 / 10.0
)
// getBucketScore gets the score for merge this bucket with previous one.
// TODO: We also need to consider the bucket hit count.
func getBucketScore(bkts []bucket, totalCount float64, id int) bucketScore {
preCount, count := float64(bkts[id-1].count), float64(bkts[id].count)
// do not merge if the result bucket is too large
if (preCount + count) > maxBucketFraction*totalCount {
return bucketScore{id, math.MaxFloat64}
}
// merge them if the result bucket is already too small.
if (preCount + count) < minBucketFraction*totalCount {
return bucketScore{id, 0}
}
low, mid, high := bkts[id-1].lower, bkts[id-1].upper, bkts[id].upper
// If we choose to merge, err is the absolute estimate error for the previous bucket.
err := calcFraction4Datums(low, high, mid)*(preCount+count) - preCount
return bucketScore{id, math.Abs(err / (preCount + count))}
}
// defaultBucketCount is the number of buckets a column histogram has.
var defaultBucketCount = 256
func mergeBuckets(bkts []bucket, isNewBuckets []bool, totalCount float64) []bucket {
mergeCount := len(bkts) - defaultBucketCount
if mergeCount <= 0 {
return bkts
}
bs := make(bucketScores, 0, len(bkts))
for i := 1; i < len(bkts); i++ {
// Do not merge the newly created buckets.
if !isNewBuckets[i] && !isNewBuckets[i-1] {
bs = append(bs, getBucketScore(bkts, totalCount, i))
}
}
sort.Sort(bs)
ids := make([]int, 0, mergeCount)
for i := 0; i < mergeCount; i++ {
ids = append(ids, bs[i].id)
}
sort.Ints(ids)
idCursor, bktCursor := 0, 0
for i := range bkts {
// Merge this bucket with last one.
if idCursor < mergeCount && ids[idCursor] == i {
bkts[bktCursor-1].upper = bkts[i].upper
bkts[bktCursor-1].count += bkts[i].count
bkts[bktCursor-1].repeat = bkts[i].repeat
idCursor++
} else {
bkts[bktCursor] = bkts[i]
bktCursor++
}
}
bkts = bkts[:bktCursor]
return bkts
}
// splitBuckets split the histogram buckets according to the feedback.
func splitBuckets(h *Histogram, feedback *QueryFeedback) ([]bucket, []bool, int64) {
bktID2FB, numTotalFBs := buildBucketFeedback(h, feedback)
buckets := make([]bucket, 0, h.Len())
isNewBuckets := make([]bool, 0, h.Len())
splitCount := getSplitCount(numTotalFBs, defaultBucketCount-h.Len())
for i := 0; i < h.Len(); i++ {
bktFB, ok := bktID2FB[i]
// No feedback, just use the original one.
if !ok {
buckets = append(buckets, bucket{h.GetLower(i), h.GetUpper(i), h.bucketCount(i), h.Buckets[i].Repeat})
isNewBuckets = append(isNewBuckets, false)
continue
}
// Distribute the total split count to bucket based on number of bucket feedback.
newBktNums := splitCount * len(bktFB.feedback) / numTotalFBs
bkts := bktFB.splitBucket(newBktNums, h.totalRowCount(), float64(h.bucketCount(i)))
buckets = append(buckets, bkts...)
if len(bkts) == 1 {
isNewBuckets = append(isNewBuckets, false)
} else {
for i := 0; i < len(bkts); i++ {
isNewBuckets = append(isNewBuckets, true)
}
}
}
totCount := int64(0)
for _, bkt := range buckets {
totCount += bkt.count
}
return buckets, isNewBuckets, totCount
}
// UpdateHistogram updates the histogram according buckets.
func UpdateHistogram(h *Histogram, feedback *QueryFeedback) *Histogram {
buckets, isNewBuckets, totalCount := splitBuckets(h, feedback)
buckets = mergeBuckets(buckets, isNewBuckets, float64(totalCount))
hist := buildNewHistogram(h, buckets)
// Update the NDV of primary key column.
if feedback.tp == pkType {
hist.NDV = int64(hist.totalRowCount())
}
return hist
}
// UpdateCMSketch updates the CMSketch by feedback.
func UpdateCMSketch(c *CMSketch, eqFeedbacks []feedback) *CMSketch {
if c == nil || len(eqFeedbacks) == 0 {
return c
}
newCMSketch := c.copy()
for _, fb := range eqFeedbacks {
h1, h2 := murmur3.Sum128(fb.lower.GetBytes())
newCMSketch.setValue(h1, h2, uint32(fb.count))
}
return newCMSketch
}
func buildNewHistogram(h *Histogram, buckets []bucket) *Histogram {
hist := NewHistogram(h.ID, h.NDV, h.NullCount, h.LastUpdateVersion, h.Tp, len(buckets), h.TotColSize)
preCount := int64(0)
for _, bkt := range buckets {
hist.AppendBucket(bkt.lower, bkt.upper, bkt.count+preCount, bkt.repeat)
preCount += bkt.count
}
return hist
}
// queryFeedback is used to serialize the QueryFeedback.
type queryFeedback struct {
IntRanges []int64
// HashValues is the murmur hash values for each index point.
HashValues []uint64
IndexRanges [][]byte
// Counts is the number of scan keys in each range. It first stores the count for `IntRanges`, `IndexRanges` or `ColumnRanges`.
// After that, it stores the Ranges for `HashValues`.
Counts []int64
ColumnRanges [][]byte
}
func encodePKFeedback(q *QueryFeedback) (*queryFeedback, error) {
pb := &queryFeedback{}
for _, fb := range q.feedback {
// There is no need to update the point queries.
if bytes.Compare(kv.Key(fb.lower.GetBytes()).PrefixNext(), fb.upper.GetBytes()) >= 0 {
continue
}
_, low, err := codec.DecodeInt(fb.lower.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
_, high, err := codec.DecodeInt(fb.upper.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
pb.IntRanges = append(pb.IntRanges, low, high)
pb.Counts = append(pb.Counts, fb.count)
}
return pb, nil
}
func encodeIndexFeedback(q *QueryFeedback) *queryFeedback {
pb := &queryFeedback{}
var pointCounts []int64
for _, fb := range q.feedback {
if bytes.Compare(kv.Key(fb.lower.GetBytes()).PrefixNext(), fb.upper.GetBytes()) >= 0 {
h1, h2 := murmur3.Sum128(fb.lower.GetBytes())
pb.HashValues = append(pb.HashValues, h1, h2)
pointCounts = append(pointCounts, fb.count)
} else {
pb.IndexRanges = append(pb.IndexRanges, fb.lower.GetBytes(), fb.upper.GetBytes())
pb.Counts = append(pb.Counts, fb.count)
}
}
pb.Counts = append(pb.Counts, pointCounts...)
return pb
}
func encodeColumnFeedback(q *QueryFeedback) (*queryFeedback, error) {
pb := &queryFeedback{}
sc := stmtctx.StatementContext{TimeZone: time.UTC}
for _, fb := range q.feedback {
lowerBytes, err := codec.EncodeKey(&sc, nil, *fb.lower)
if err != nil {
return nil, errors.Trace(err)
}
upperBytes, err := codec.EncodeKey(&sc, nil, *fb.upper)
if err != nil {
return nil, errors.Trace(err)
}
pb.ColumnRanges = append(pb.ColumnRanges, lowerBytes, upperBytes)
pb.Counts = append(pb.Counts, fb.count)
}
return pb, nil
}
func encodeFeedback(q *QueryFeedback) ([]byte, error) {
var pb *queryFeedback
var err error
switch q.tp {
case pkType:
pb, err = encodePKFeedback(q)
case indexType:
pb = encodeIndexFeedback(q)
case colType:
pb, err = encodeColumnFeedback(q)
}
if err != nil {
return nil, errors.Trace(err)
}
var buf bytes.Buffer
enc := gob.NewEncoder(&buf)
err = enc.Encode(pb)
if err != nil {
return nil, errors.Trace(err)
}
return buf.Bytes(), nil
}
func decodeFeedbackForIndex(q *QueryFeedback, pb *queryFeedback, c *CMSketch) {
q.tp = indexType
// decode the index range feedback
for i := 0; i < len(pb.IndexRanges); i += 2 {
lower, upper := types.NewBytesDatum(pb.IndexRanges[i]), types.NewBytesDatum(pb.IndexRanges[i+1])
q.feedback = append(q.feedback, feedback{&lower, &upper, pb.Counts[i/2], 0})
}
if c != nil {
// decode the index point feedback, just set value count in CM Sketch
start := len(pb.IndexRanges) / 2
for i := 0; i < len(pb.HashValues); i += 2 {
c.setValue(pb.HashValues[i], pb.HashValues[i+1], uint32(pb.Counts[start+i/2]))
}
}
}
func decodeFeedbackForPK(q *QueryFeedback, pb *queryFeedback, isUnsigned bool) {
q.tp = pkType
// decode feedback for primary key
for i := 0; i < len(pb.IntRanges); i += 2 {
var lower, upper types.Datum
if isUnsigned {
lower.SetUint64(uint64(pb.IntRanges[i]))
upper.SetUint64(uint64(pb.IntRanges[i+1]))
} else {
lower.SetInt64(pb.IntRanges[i])
upper.SetInt64(pb.IntRanges[i+1])
}
q.feedback = append(q.feedback, feedback{&lower, &upper, pb.Counts[i/2], 0})
}
}
func decodeFeedbackForColumn(q *QueryFeedback, pb *queryFeedback) error {
q.tp = colType
for i := 0; i < len(pb.ColumnRanges); i += 2 {
low, err := codec.DecodeRange(pb.ColumnRanges[i], 1)
if err != nil {
return errors.Trace(err)
}
high, err := codec.DecodeRange(pb.ColumnRanges[i+1], 1)
if err != nil {
return errors.Trace(err)
}
q.feedback = append(q.feedback, feedback{&low[0], &high[0], pb.Counts[i/2], 0})
}
return nil
}
func decodeFeedback(val []byte, q *QueryFeedback, c *CMSketch, isUnsigned bool) error {
buf := bytes.NewBuffer(val)
dec := gob.NewDecoder(buf)
pb := &queryFeedback{}
err := dec.Decode(pb)
if err != nil {
return errors.Trace(err)
}
if len(pb.IndexRanges) > 0 || len(pb.HashValues) > 0 {
decodeFeedbackForIndex(q, pb, c)
} else if len(pb.IntRanges) > 0 {
decodeFeedbackForPK(q, pb, isUnsigned)
} else {
err := decodeFeedbackForColumn(q, pb)
if err != nil {
return errors.Trace(err)
}
}
return nil
}
// Equal tests if two query feedback equal, it is only used in test.
func (q *QueryFeedback) Equal(rq *QueryFeedback) bool {
if len(q.feedback) != len(rq.feedback) {
return false
}
for i, fb := range q.feedback {
rfb := rq.feedback[i]
if fb.count != rfb.count {
return false
}
if fb.lower.Kind() == types.KindInt64 {
if fb.lower.GetInt64() != rfb.lower.GetInt64() {
return false
}
if fb.upper.GetInt64() != rfb.upper.GetInt64() {
return false
}
} else {
if !bytes.Equal(fb.lower.GetBytes(), rfb.lower.GetBytes()) {
return false
}
if !bytes.Equal(fb.upper.GetBytes(), rfb.upper.GetBytes()) {
return false
}
}
}
return true
}
// recalculateExpectCount recalculates the expect row count if the origin row count is estimated by pseudo.
func (q *QueryFeedback) recalculateExpectCount(h *Handle) error {
t, ok := h.statsCache.Load().(statsCache)[q.physicalID]
if !ok {
return nil
}
tablePseudo := t.Pseudo || t.IsOutdated()
if !tablePseudo {
return nil
}
isIndex := q.hist.Tp.Tp == mysql.TypeBlob
id := q.hist.ID
if isIndex && (t.Indices[id] == nil || !t.Indices[id].NotAccurate()) {
return nil
}
if !isIndex && (t.Columns[id] == nil || !t.Columns[id].NotAccurate()) {
return nil
}
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
ranges, err := q.DecodeToRanges(isIndex)
if err != nil {
return errors.Trace(err)
}
expected := 0.0
if isIndex {
idx := t.Indices[id]
expected, err = idx.getRowCount(sc, ranges, t.ModifyCount)
expected *= idx.getIncreaseFactor(t.Count)
} else {
c := t.Columns[id]
expected, err = c.getColumnRowCount(sc, ranges, t.ModifyCount)
expected *= c.getIncreaseFactor(t.Count)
}
if err != nil {
return errors.Trace(err)
}
q.expected = int64(expected)
return nil
}
// splitFeedback splits the feedbacks into equality feedbacks and range feedbacks.
func splitFeedbackByQueryType(feedbacks []feedback) ([]feedback, []feedback) {
var eqFB, ranFB []feedback
for _, fb := range feedbacks {
// Use `>=` here because sometimes the lower is equal to upper.
if bytes.Compare(kv.Key(fb.lower.GetBytes()).PrefixNext(), fb.upper.GetBytes()) >= 0 {
eqFB = append(eqFB, fb)
} else {
ranFB = append(ranFB, fb)
}
}
return eqFB, ranFB
}
// formatBuckets formats bucket from lowBkt to highBkt.
func formatBuckets(hg *Histogram, lowBkt, highBkt, idxCols int) string {
if lowBkt == highBkt {
return hg.bucketToString(lowBkt, idxCols)
}
if lowBkt+1 == highBkt {
return fmt.Sprintf("%s, %s", hg.bucketToString(lowBkt, 0), hg.bucketToString(highBkt, 0))
}
// do not care the middle buckets
return fmt.Sprintf("%s, (%d buckets, total count %d), %s", hg.bucketToString(lowBkt, 0),
highBkt-lowBkt-1, hg.Buckets[highBkt-1].Count-hg.Buckets[lowBkt].Count, hg.bucketToString(highBkt, 0))
}
func colRangeToStr(c *Column, ran *ranger.Range, actual int64, factor float64) string {
lowCount, lowBkt := c.lessRowCountWithBktIdx(ran.LowVal[0])
highCount, highBkt := c.lessRowCountWithBktIdx(ran.HighVal[0])
return fmt.Sprintf("range: %s, actual: %d, expected: %d, buckets: {%s}", ran.String(), actual,
int64((highCount-lowCount)*factor), formatBuckets(&c.Histogram, lowBkt, highBkt, 0))
}
func logForPK(prefix string, c *Column, ranges []*ranger.Range, actual []int64, factor float64) {
for i, ran := range ranges {
if ran.LowVal[0].GetInt64()+1 >= ran.HighVal[0].GetInt64() {
continue
}
log.Debugf("%s column: %s, %s", prefix, c.Info.Name, colRangeToStr(c, ran, actual[i], factor))
}
}
func logForIndexRange(idx *Index, ran *ranger.Range, actual int64, factor float64) string {
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
lb, err := codec.EncodeKey(sc, nil, ran.LowVal...)
if err != nil {
return ""
}
rb, err := codec.EncodeKey(sc, nil, ran.HighVal...)
if err != nil {
return ""
}
if idx.CMSketch != nil && bytes.Compare(kv.Key(lb).PrefixNext(), rb) >= 0 {
str, err := types.DatumsToString(ran.LowVal, true)
if err != nil {
return ""
}
return fmt.Sprintf("value: %s, actual: %d, expected: %d", str, actual, int64(float64(idx.QueryBytes(lb))*factor))
}
l, r := types.NewBytesDatum(lb), types.NewBytesDatum(rb)
lowCount, lowBkt := idx.lessRowCountWithBktIdx(l)
highCount, highBkt := idx.lessRowCountWithBktIdx(r)
return fmt.Sprintf("range: %s, actual: %d, expected: %d, histogram: {%s}", ran.String(), actual,
int64((highCount-lowCount)*factor), formatBuckets(&idx.Histogram, lowBkt, highBkt, len(idx.Info.Columns)))
}
func logForIndex(prefix string, t *Table, idx *Index, ranges []*ranger.Range, actual []int64, factor float64) {
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
if idx.CMSketch == nil || idx.statsVer != version1 {
for i, ran := range ranges {
log.Debugf("%s index: %s, %s", prefix, idx.Info.Name.O, logForIndexRange(idx, ran, actual[i], factor))
}
return
}
for i, ran := range ranges {
rangePosition := getOrdinalOfRangeCond(sc, ran)
// only contains range or equality query
if rangePosition == 0 || rangePosition == len(ran.LowVal) {
log.Debugf("%s index: %s, %s", prefix, idx.Info.Name.O, logForIndexRange(idx, ran, actual[i], factor))
continue
}
equalityString, err := types.DatumsToString(ran.LowVal[:rangePosition], true)
if err != nil {
continue
}
bytes, err := codec.EncodeKey(sc, nil, ran.LowVal[:rangePosition]...)
if err != nil {
continue
}
equalityCount := idx.CMSketch.QueryBytes(bytes)
rang := ranger.Range{
LowVal: []types.Datum{ran.LowVal[rangePosition]},
HighVal: []types.Datum{ran.HighVal[rangePosition]},
}
colName := idx.Info.Columns[rangePosition].Name.L
// prefer index stats over column stats
if idxHist := t.indexStartWithColumn(colName); idxHist != nil && idxHist.Histogram.Len() > 0 {
rangeString := logForIndexRange(idxHist, &rang, -1, factor)
log.Debugf("%s index: %s, actual: %d, equality: %s, expected equality: %d, %s", prefix, idx.Info.Name.O,
actual[i], equalityString, equalityCount, rangeString)
} else if colHist := t.columnByName(colName); colHist != nil && colHist.Histogram.Len() > 0 {
rangeString := colRangeToStr(colHist, &rang, -1, factor)
log.Debugf("%s index: %s, actual: %d, equality: %s, expected equality: %d, %s", prefix, idx.Info.Name.O,
actual[i], equalityString, equalityCount, rangeString)
} else {
count, err := getPseudoRowCountByColumnRanges(sc, float64(t.Count), []*ranger.Range{&rang}, 0)
if err == nil {
log.Debugf("%s index: %s, actual: %d, equality: %s, expected equality: %d, range: %s, pseudo count: %.0f", prefix, idx.Info.Name.O,
actual[i], equalityString, equalityCount, rang.String(), count)
}
}
}
}
func (q *QueryFeedback) logDetailedInfo(h *Handle) {
t, ok := h.statsCache.Load().(statsCache)[q.physicalID]
if !ok {
return
}
isIndex := q.hist.isIndexHist()
ranges, err := q.DecodeToRanges(isIndex)
if err != nil {
log.Debug(err)
return
}
actual := make([]int64, 0, len(q.feedback))
for _, fb := range q.feedback {
actual = append(actual, fb.count)
}
logPrefix := fmt.Sprintf("[stats-feedback] %s,", t.name)
if isIndex {
idx := t.Indices[q.hist.ID]
if idx == nil || idx.Histogram.Len() == 0 {
return
}
logForIndex(logPrefix, t, idx, ranges, actual, idx.getIncreaseFactor(t.Count))
} else {
c := t.Columns[q.hist.ID]
if c == nil || c.Histogram.Len() == 0 {
return
}
logForPK(logPrefix, c, ranges, actual, c.getIncreaseFactor(t.Count))
}
}
// minAdjustFactor is the minimum adjust factor of each index feedback.
// We use it to avoid adjusting too much when the assumption of independence failed.
const minAdjustFactor = 0.7
// getNewCount adjust the estimated `eqCount` and `rangeCount` according to the real count.
// We assumes that `eqCount` and `rangeCount` contribute the same error rate.
func getNewCountForIndex(eqCount, rangeCount, totalCount, realCount float64) (float64, float64) {
estimate := (eqCount / totalCount) * (rangeCount / totalCount) * totalCount
if estimate <= 1 {
return eqCount, rangeCount
}
adjustFactor := math.Sqrt(realCount / estimate)
adjustFactor = math.Max(adjustFactor, minAdjustFactor)
return eqCount * adjustFactor, rangeCount * adjustFactor
}
// dumpFeedbackForIndex dumps the feedback for index.
// For queries that contains both equality and range query, we will split them and update accordingly.
func dumpFeedbackForIndex(h *Handle, q *QueryFeedback, t *Table) error {
idx, ok := t.Indices[q.hist.ID]
if !ok {
return nil
}
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
if idx.CMSketch == nil || idx.statsVer != version1 {
return h.dumpFeedbackToKV(q)
}
ranges, err := q.DecodeToRanges(true)
if err != nil {
log.Debug("decode feedback ranges failed: ", err)
return nil
}
for i, ran := range ranges {
rangePosition := getOrdinalOfRangeCond(sc, ran)
// only contains range or equality query
if rangePosition == 0 || rangePosition == len(ran.LowVal) {
continue
}
bytes, err := codec.EncodeKey(sc, nil, ran.LowVal[:rangePosition]...)
if err != nil {
log.Debug("encode keys failed: err", err)
continue
}
equalityCount := float64(idx.CMSketch.QueryBytes(bytes)) * idx.getIncreaseFactor(t.Count)
rang := ranger.Range{
LowVal: []types.Datum{ran.LowVal[rangePosition]},
HighVal: []types.Datum{ran.HighVal[rangePosition]},
}
colName := idx.Info.Columns[rangePosition].Name.L
var rangeCount float64
rangeFB := &QueryFeedback{physicalID: q.physicalID}
// prefer index stats over column stats
if idx := t.indexStartWithColumn(colName); idx != nil && idx.Histogram.Len() != 0 {
rangeCount, err = t.GetRowCountByIndexRanges(sc, idx.ID, []*ranger.Range{&rang})
rangeFB.tp, rangeFB.hist = indexType, &idx.Histogram
} else if col := t.columnByName(colName); col != nil && col.Histogram.Len() != 0 {
rangeCount, err = t.GetRowCountByColumnRanges(sc, col.ID, []*ranger.Range{&rang})
rangeFB.tp, rangeFB.hist = colType, &col.Histogram
} else {
continue
}
if err != nil {
log.Debug("get row count by ranges failed: ", err)
continue
}
equalityCount, rangeCount = getNewCountForIndex(equalityCount, rangeCount, float64(t.Count), float64(q.feedback[i].count))
value := types.NewBytesDatum(bytes)
q.feedback[i] = feedback{lower: &value, upper: &value, count: int64(equalityCount)}
err = rangeFB.dumpRangeFeedback(sc, h, &rang, rangeCount)
if err != nil {
log.Debug("dump range feedback failed:", err)
continue
}
}
return errors.Trace(h.dumpFeedbackToKV(q))
}
func (q *QueryFeedback) dumpRangeFeedback(sc *stmtctx.StatementContext, h *Handle, ran *ranger.Range, rangeCount float64) error {
if q.tp == indexType {
lower, err := codec.EncodeKey(sc, nil, ran.LowVal[0])
if err != nil {
return errors.Trace(err)
}
upper, err := codec.EncodeKey(sc, nil, ran.HighVal[0])
if err != nil {
return errors.Trace(err)
}
ran.LowVal[0].SetBytes(lower)
ran.HighVal[0].SetBytes(upper)
} else {
if !supportColumnType(q.hist.Tp) {
return nil
}
if ran.LowVal[0].Kind() == types.KindMinNotNull {
ran.LowVal[0] = getMinValue(q.hist.Tp)
}
if ran.HighVal[0].Kind() == types.KindMaxValue {
ran.HighVal[0] = getMaxValue(q.hist.Tp)
}
}
ranges := q.hist.SplitRange(sc, []*ranger.Range{ran}, q.tp == indexType)
counts := make([]float64, 0, len(ranges))
sum := 0.0
for _, r := range ranges {
count := q.hist.betweenRowCount(r.LowVal[0], r.HighVal[0])
sum += count
counts = append(counts, count)
}
if sum <= 1 {
return nil
}
// We assume that each part contributes the same error rate.
adjustFactor := rangeCount / sum
for i, r := range ranges {
q.feedback = append(q.feedback, feedback{lower: &r.LowVal[0], upper: &r.HighVal[0], count: int64(counts[i] * adjustFactor)})
}
return errors.Trace(h.dumpFeedbackToKV(q))
}
// setNextValue sets the next value for the given datum. For types like float,
// we do not set because it is not discrete and does not matter too much when estimating the scalar info.
func setNextValue(d *types.Datum) {
switch d.Kind() {
case types.KindBytes, types.KindString:
d.SetBytes(kv.Key(d.GetBytes()).PrefixNext())
case types.KindInt64:
d.SetInt64(d.GetInt64() + 1)
case types.KindUint64:
d.SetUint64(d.GetUint64() + 1)
case types.KindMysqlDuration:
duration := d.GetMysqlDuration()
duration.Duration = duration.Duration + 1
d.SetMysqlDuration(duration)
case types.KindMysqlTime:
t := d.GetMysqlTime()
sc := &stmtctx.StatementContext{TimeZone: types.BoundTimezone}
if _, err := t.Add(sc, types.Duration{Duration: 1, Fsp: 0}); err != nil {
log.Error(errors.ErrorStack(err))
}
d.SetMysqlTime(t)
}
}
// supportColumnType checks if the type of the column can be updated by feedback.
func supportColumnType(ft *types.FieldType) bool {
switch ft.Tp {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong, mysql.TypeFloat,
mysql.TypeDouble, mysql.TypeString, mysql.TypeVarString, mysql.TypeVarchar, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob,
mysql.TypeNewDecimal, mysql.TypeDuration, mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
return true
default:
return false
}
}
func getMaxValue(ft *types.FieldType) (max types.Datum) {
switch ft.Tp {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong:
if mysql.HasUnsignedFlag(ft.Flag) {
max.SetUint64(types.UnsignedUpperBound[ft.Tp])
} else {
max.SetInt64(types.SignedUpperBound[ft.Tp])
}
case mysql.TypeFloat:
max.SetFloat32(float32(types.GetMaxFloat(ft.Flen, ft.Decimal)))
case mysql.TypeDouble:
max.SetFloat64(types.GetMaxFloat(ft.Flen, ft.Decimal))
case mysql.TypeString, mysql.TypeVarString, mysql.TypeVarchar, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
val := types.MaxValueDatum()
bytes, err := codec.EncodeKey(nil, nil, val)
// should not happen
if err != nil {
log.Error(err)
}
max.SetBytes(bytes)
case mysql.TypeNewDecimal:
max.SetMysqlDecimal(types.NewMaxOrMinDec(false, ft.Flen, ft.Decimal))
case mysql.TypeDuration:
max.SetMysqlDuration(types.Duration{Duration: math.MaxInt64})
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
if ft.Tp == mysql.TypeDate || ft.Tp == mysql.TypeDatetime {
max.SetMysqlTime(types.Time{Time: types.MaxDatetime, Type: ft.Tp})
} else {
max.SetMysqlTime(types.MaxTimestamp)
}
}
return
}
func getMinValue(ft *types.FieldType) (min types.Datum) {
switch ft.Tp {
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong:
if mysql.HasUnsignedFlag(ft.Flag) {
min.SetUint64(0)
} else {
min.SetInt64(types.SignedLowerBound[ft.Tp])
}
case mysql.TypeFloat:
min.SetFloat32(float32(-types.GetMaxFloat(ft.Flen, ft.Decimal)))
case mysql.TypeDouble:
min.SetFloat64(-types.GetMaxFloat(ft.Flen, ft.Decimal))
case mysql.TypeString, mysql.TypeVarString, mysql.TypeVarchar, mysql.TypeBlob, mysql.TypeTinyBlob, mysql.TypeMediumBlob, mysql.TypeLongBlob:
val := types.MinNotNullDatum()
bytes, err := codec.EncodeKey(nil, nil, val)
// should not happen
if err != nil {
log.Error(err)
}
min.SetBytes(bytes)
case mysql.TypeNewDecimal:
min.SetMysqlDecimal(types.NewMaxOrMinDec(true, ft.Flen, ft.Decimal))
case mysql.TypeDuration:
min.SetMysqlDuration(types.Duration{Duration: math.MinInt64})
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
if ft.Tp == mysql.TypeDate || ft.Tp == mysql.TypeDatetime {
min.SetMysqlTime(types.Time{Time: types.MinDatetime, Type: ft.Tp})
} else {
min.SetMysqlTime(types.MinTimestamp)
}
}
return
}