646 lines
24 KiB
Go
646 lines
24 KiB
Go
// Copyright 2017 PingCAP, Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package core
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"slices"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/pingcap/errors"
|
|
"github.com/pingcap/tidb/pkg/domain"
|
|
"github.com/pingcap/tidb/pkg/expression"
|
|
"github.com/pingcap/tidb/pkg/infoschema"
|
|
"github.com/pingcap/tidb/pkg/kv"
|
|
"github.com/pingcap/tidb/pkg/parser/model"
|
|
"github.com/pingcap/tidb/pkg/planner/cardinality"
|
|
"github.com/pingcap/tidb/pkg/planner/core/base"
|
|
"github.com/pingcap/tidb/pkg/planner/core/cost"
|
|
"github.com/pingcap/tidb/pkg/planner/property"
|
|
"github.com/pingcap/tidb/pkg/planner/util"
|
|
"github.com/pingcap/tidb/pkg/planner/util/debugtrace"
|
|
"github.com/pingcap/tidb/pkg/sessionctx"
|
|
"github.com/pingcap/tidb/pkg/sessionctx/stmtctx"
|
|
"github.com/pingcap/tidb/pkg/statistics"
|
|
"github.com/pingcap/tidb/pkg/statistics/asyncload"
|
|
"github.com/pingcap/tidb/pkg/table"
|
|
h "github.com/pingcap/tidb/pkg/util/hint"
|
|
"github.com/pingcap/tidb/pkg/util/logutil"
|
|
"go.uber.org/zap"
|
|
)
|
|
|
|
func (p *basePhysicalPlan) StatsCount() float64 {
|
|
return p.StatsInfo().RowCount
|
|
}
|
|
|
|
func getFakeStats(schema *expression.Schema) *property.StatsInfo {
|
|
profile := &property.StatsInfo{
|
|
RowCount: 1,
|
|
ColNDVs: make(map[int64]float64, schema.Len()),
|
|
}
|
|
for _, col := range schema.Columns {
|
|
profile.ColNDVs[col.UniqueID] = 1
|
|
}
|
|
return profile
|
|
}
|
|
|
|
// RecursiveDeriveStats4Test is a exporter just for test.
|
|
func RecursiveDeriveStats4Test(p base.LogicalPlan) (*property.StatsInfo, error) {
|
|
return p.RecursiveDeriveStats(nil)
|
|
}
|
|
|
|
// GetStats4Test is a exporter just for test.
|
|
func GetStats4Test(p base.LogicalPlan) *property.StatsInfo {
|
|
return p.StatsInfo()
|
|
}
|
|
|
|
func (ds *DataSource) getGroupNDVs(colGroups [][]*expression.Column) []property.GroupNDV {
|
|
if colGroups == nil {
|
|
return nil
|
|
}
|
|
tbl := ds.TableStats.HistColl
|
|
ndvs := make([]property.GroupNDV, 0, len(colGroups))
|
|
tbl.ForEachIndexImmutable(func(idxID int64, idx *statistics.Index) bool {
|
|
colsLen := len(tbl.Idx2ColUniqueIDs[idxID])
|
|
// tbl.Idx2ColUniqueIDs may only contain the prefix of index columns.
|
|
// But it may exceeds the total index since the index would contain the handle column if it's not a unique index.
|
|
// We append the handle at fillIndexPath.
|
|
if colsLen < len(idx.Info.Columns) {
|
|
return false
|
|
} else if colsLen > len(idx.Info.Columns) {
|
|
colsLen--
|
|
}
|
|
idxCols := make([]int64, colsLen)
|
|
copy(idxCols, tbl.Idx2ColUniqueIDs[idxID])
|
|
slices.Sort(idxCols)
|
|
for _, g := range colGroups {
|
|
// We only want those exact matches.
|
|
if len(g) != colsLen {
|
|
return false
|
|
}
|
|
match := true
|
|
for i, col := range g {
|
|
// Both slices are sorted according to UniqueID.
|
|
if col.UniqueID != idxCols[i] {
|
|
match = false
|
|
break
|
|
}
|
|
}
|
|
if match {
|
|
ndv := property.GroupNDV{
|
|
Cols: idxCols,
|
|
NDV: float64(idx.NDV),
|
|
}
|
|
ndvs = append(ndvs, ndv)
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
})
|
|
return ndvs
|
|
}
|
|
|
|
// getTblInfoForUsedStatsByPhysicalID get table name, partition name and HintedTable that will be used to record used stats.
|
|
func getTblInfoForUsedStatsByPhysicalID(sctx base.PlanContext, id int64) (fullName string, tblInfo *model.TableInfo) {
|
|
fullName = "tableID " + strconv.FormatInt(id, 10)
|
|
|
|
is := domain.GetDomain(sctx).InfoSchema()
|
|
var tbl table.Table
|
|
var partDef *model.PartitionDefinition
|
|
|
|
tbl, partDef = infoschema.FindTableByTblOrPartID(is, id)
|
|
if tbl == nil || tbl.Meta() == nil {
|
|
return
|
|
}
|
|
tblInfo = tbl.Meta()
|
|
fullName = tblInfo.Name.O
|
|
if partDef != nil {
|
|
fullName += " " + partDef.Name.O
|
|
} else if pi := tblInfo.GetPartitionInfo(); pi != nil && len(pi.Definitions) > 0 {
|
|
fullName += " global"
|
|
}
|
|
return
|
|
}
|
|
|
|
func (ds *DataSource) initStats(colGroups [][]*expression.Column) {
|
|
if ds.TableStats != nil {
|
|
// Reload GroupNDVs since colGroups may have changed.
|
|
ds.TableStats.GroupNDVs = ds.getGroupNDVs(colGroups)
|
|
return
|
|
}
|
|
if ds.StatisticTable == nil {
|
|
ds.StatisticTable = getStatsTable(ds.SCtx(), ds.TableInfo, ds.PhysicalTableID)
|
|
}
|
|
tableStats := &property.StatsInfo{
|
|
RowCount: float64(ds.StatisticTable.RealtimeCount),
|
|
ColNDVs: make(map[int64]float64, ds.Schema().Len()),
|
|
HistColl: ds.StatisticTable.GenerateHistCollFromColumnInfo(ds.TableInfo, ds.TblCols),
|
|
StatsVersion: ds.StatisticTable.Version,
|
|
}
|
|
if ds.StatisticTable.Pseudo {
|
|
tableStats.StatsVersion = statistics.PseudoVersion
|
|
}
|
|
|
|
statsRecord := ds.SCtx().GetSessionVars().StmtCtx.GetUsedStatsInfo(true)
|
|
name, tblInfo := getTblInfoForUsedStatsByPhysicalID(ds.SCtx(), ds.PhysicalTableID)
|
|
statsRecord.RecordUsedInfo(ds.PhysicalTableID, &stmtctx.UsedStatsInfoForTable{
|
|
Name: name,
|
|
TblInfo: tblInfo,
|
|
Version: tableStats.StatsVersion,
|
|
RealtimeCount: tableStats.HistColl.RealtimeCount,
|
|
ModifyCount: tableStats.HistColl.ModifyCount,
|
|
ColAndIdxStatus: ds.StatisticTable.ColAndIdxExistenceMap,
|
|
})
|
|
|
|
for _, col := range ds.Schema().Columns {
|
|
tableStats.ColNDVs[col.UniqueID] = cardinality.EstimateColumnNDV(ds.StatisticTable, col.ID)
|
|
}
|
|
ds.TableStats = tableStats
|
|
ds.TableStats.GroupNDVs = ds.getGroupNDVs(colGroups)
|
|
ds.TblColHists = ds.StatisticTable.ID2UniqueID(ds.TblCols)
|
|
for _, col := range ds.TableInfo.Columns {
|
|
if col.State != model.StatePublic {
|
|
continue
|
|
}
|
|
// If we enable lite stats init or we just found out the meta info of the column is missed, we need to register columns for async load.
|
|
_, isLoadNeeded, _ := ds.StatisticTable.ColumnIsLoadNeeded(col.ID, false)
|
|
if isLoadNeeded {
|
|
asyncload.AsyncLoadHistogramNeededItems.Insert(model.TableItemID{
|
|
TableID: ds.TableInfo.ID,
|
|
ID: col.ID,
|
|
IsIndex: false,
|
|
IsSyncLoadFailed: ds.SCtx().GetSessionVars().StmtCtx.StatsLoad.Timeout > 0,
|
|
}, false)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (ds *DataSource) deriveStatsByFilter(conds expression.CNFExprs, filledPaths []*util.AccessPath) *property.StatsInfo {
|
|
if ds.SCtx().GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
|
|
debugtrace.EnterContextCommon(ds.SCtx())
|
|
defer debugtrace.LeaveContextCommon(ds.SCtx())
|
|
}
|
|
selectivity, _, err := cardinality.Selectivity(ds.SCtx(), ds.TableStats.HistColl, conds, filledPaths)
|
|
if err != nil {
|
|
logutil.BgLogger().Debug("something wrong happened, use the default selectivity", zap.Error(err))
|
|
selectivity = cost.SelectionFactor
|
|
}
|
|
// TODO: remove NewHistCollBySelectivity later on.
|
|
// if ds.SCtx().GetSessionVars().OptimizerSelectivityLevel >= 1 {
|
|
// Only '0' is suggested, see https://docs.pingcap.com/zh/tidb/stable/system-variables#tidb_optimizer_selectivity_level.
|
|
// stats.HistColl = stats.HistColl.NewHistCollBySelectivity(ds.SCtx(), nodes)
|
|
// }
|
|
return ds.TableStats.Scale(selectivity)
|
|
}
|
|
|
|
// We bind logic of derivePathStats and tryHeuristics together. When some path matches the heuristic rule, we don't need
|
|
// to derive stats of subsequent paths. In this way we can save unnecessary computation of derivePathStats.
|
|
func (ds *DataSource) derivePathStatsAndTryHeuristics() error {
|
|
if ds.SCtx().GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
|
|
debugtrace.EnterContextCommon(ds.SCtx())
|
|
defer debugtrace.LeaveContextCommon(ds.SCtx())
|
|
}
|
|
uniqueIdxsWithDoubleScan := make([]*util.AccessPath, 0, len(ds.PossibleAccessPaths))
|
|
singleScanIdxs := make([]*util.AccessPath, 0, len(ds.PossibleAccessPaths))
|
|
var (
|
|
selected, uniqueBest, refinedBest *util.AccessPath
|
|
isRefinedPath bool
|
|
)
|
|
// step1: if user prefer tiFlash store type, tiFlash path should always be built anyway ahead.
|
|
var tiflashPath *util.AccessPath
|
|
if ds.PreferStoreType&h.PreferTiFlash != 0 {
|
|
for _, path := range ds.PossibleAccessPaths {
|
|
if path.StoreType == kv.TiFlash {
|
|
err := ds.deriveTablePathStats(path, ds.PushedDownConds, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
path.IsSingleScan = true
|
|
tiflashPath = path
|
|
break
|
|
}
|
|
}
|
|
}
|
|
// step2: kv path should follow the heuristic rules.
|
|
for _, path := range ds.PossibleAccessPaths {
|
|
if path.IsTablePath() {
|
|
err := ds.deriveTablePathStats(path, ds.PushedDownConds, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
path.IsSingleScan = true
|
|
} else {
|
|
ds.deriveIndexPathStats(path, ds.PushedDownConds, false)
|
|
path.IsSingleScan = ds.isSingleScan(path.FullIdxCols, path.FullIdxColLens)
|
|
}
|
|
// step: 3
|
|
// Try some heuristic rules to select access path.
|
|
// tiFlash path also have table-range-scan (range point like here) to be heuristic treated.
|
|
if len(path.Ranges) == 0 {
|
|
selected = path
|
|
break
|
|
}
|
|
if path.OnlyPointRange(ds.SCtx().GetSessionVars().StmtCtx.TypeCtx()) {
|
|
if path.IsTablePath() || path.Index.Unique {
|
|
if path.IsSingleScan {
|
|
selected = path
|
|
break
|
|
}
|
|
uniqueIdxsWithDoubleScan = append(uniqueIdxsWithDoubleScan, path)
|
|
}
|
|
} else if path.IsSingleScan {
|
|
singleScanIdxs = append(singleScanIdxs, path)
|
|
}
|
|
}
|
|
if selected == nil && len(uniqueIdxsWithDoubleScan) > 0 {
|
|
uniqueIdxAccessCols := make([]util.Col2Len, 0, len(uniqueIdxsWithDoubleScan))
|
|
for _, uniqueIdx := range uniqueIdxsWithDoubleScan {
|
|
uniqueIdxAccessCols = append(uniqueIdxAccessCols, uniqueIdx.GetCol2LenFromAccessConds(ds.SCtx()))
|
|
// Find the unique index with the minimal number of ranges as `uniqueBest`.
|
|
/*
|
|
If the number of scan ranges are equal, choose the one with the least table predicates - meaning the unique index with the most index predicates.
|
|
Because the most index predicates means that it is more likely to fetch 0 index rows.
|
|
Example in the test "TestPointgetIndexChoosen".
|
|
*/
|
|
if uniqueBest == nil || len(uniqueIdx.Ranges) < len(uniqueBest.Ranges) ||
|
|
(len(uniqueIdx.Ranges) == len(uniqueBest.Ranges) && len(uniqueIdx.TableFilters) < len(uniqueBest.TableFilters)) {
|
|
uniqueBest = uniqueIdx
|
|
}
|
|
}
|
|
// `uniqueBest` may not always be the best.
|
|
// ```
|
|
// create table t(a int, b int, c int, unique index idx_b(b), index idx_b_c(b, c));
|
|
// select b, c from t where b = 5 and c > 10;
|
|
// ```
|
|
// In the case, `uniqueBest` is `idx_b`. However, `idx_b_c` is better than `idx_b`.
|
|
// Hence, for each index in `singleScanIdxs`, we check whether it is better than some index in `uniqueIdxsWithDoubleScan`.
|
|
// If yes, the index is a refined one. We find the refined index with the minimal number of ranges as `refineBest`.
|
|
for _, singleScanIdx := range singleScanIdxs {
|
|
col2Len := singleScanIdx.GetCol2LenFromAccessConds(ds.SCtx())
|
|
for _, uniqueIdxCol2Len := range uniqueIdxAccessCols {
|
|
accessResult, comparable1 := util.CompareCol2Len(col2Len, uniqueIdxCol2Len)
|
|
if comparable1 && accessResult == 1 {
|
|
if refinedBest == nil || len(singleScanIdx.Ranges) < len(refinedBest.Ranges) {
|
|
refinedBest = singleScanIdx
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// `refineBest` may not always be better than `uniqueBest`.
|
|
// ```
|
|
// create table t(a int, b int, c int, d int, unique index idx_a(a), unique index idx_b_c(b, c), unique index idx_b_c_a_d(b, c, a, d));
|
|
// select a, b, c from t where a = 1 and b = 2 and c in (1, 2, 3, 4, 5);
|
|
// ```
|
|
// In the case, `refinedBest` is `idx_b_c_a_d` and `uniqueBest` is `a`. `idx_b_c_a_d` needs to access five points while `idx_a`
|
|
// only needs one point access and one table access.
|
|
// Hence we should compare `len(refinedBest.Ranges)` and `2*len(uniqueBest.Ranges)` to select the better one.
|
|
if refinedBest != nil && (uniqueBest == nil || len(refinedBest.Ranges) < 2*len(uniqueBest.Ranges)) {
|
|
selected = refinedBest
|
|
isRefinedPath = true
|
|
} else {
|
|
selected = uniqueBest
|
|
}
|
|
}
|
|
// heuristic rule pruning other path should consider hint prefer.
|
|
// If no hints and some path matches a heuristic rule, just remove other possible paths.
|
|
if selected != nil {
|
|
ds.PossibleAccessPaths[0] = selected
|
|
ds.PossibleAccessPaths = ds.PossibleAccessPaths[:1]
|
|
// if user wanna tiFlash read, while current heuristic choose a TiKV path. so we shouldn't prune tiFlash path.
|
|
keep := ds.PreferStoreType&h.PreferTiFlash != 0 && selected.StoreType != kv.TiFlash
|
|
if keep {
|
|
// also keep tiflash path as well.
|
|
ds.PossibleAccessPaths = append(ds.PossibleAccessPaths, tiflashPath)
|
|
return nil
|
|
}
|
|
var tableName string
|
|
if ds.TableAsName.O == "" {
|
|
tableName = ds.TableInfo.Name.O
|
|
} else {
|
|
tableName = ds.TableAsName.O
|
|
}
|
|
var sb strings.Builder
|
|
if selected.IsTablePath() {
|
|
// TODO: primary key / handle / real name?
|
|
fmt.Fprintf(&sb, "handle of %s is selected since the path only has point ranges", tableName)
|
|
} else {
|
|
if selected.Index.Unique {
|
|
sb.WriteString("unique ")
|
|
}
|
|
sb.WriteString(fmt.Sprintf("index %s of %s is selected since the path", selected.Index.Name.O, tableName))
|
|
if isRefinedPath {
|
|
sb.WriteString(" only fetches limited number of rows")
|
|
} else {
|
|
sb.WriteString(" only has point ranges")
|
|
}
|
|
if selected.IsSingleScan {
|
|
sb.WriteString(" with single scan")
|
|
} else {
|
|
sb.WriteString(" with double scan")
|
|
}
|
|
}
|
|
if ds.SCtx().GetSessionVars().StmtCtx.InVerboseExplain {
|
|
ds.SCtx().GetSessionVars().StmtCtx.AppendNote(errors.NewNoStackError(sb.String()))
|
|
} else {
|
|
ds.SCtx().GetSessionVars().StmtCtx.AppendExtraNote(errors.NewNoStackError(sb.String()))
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DeriveStats implement LogicalPlan DeriveStats interface.
|
|
func (ds *DataSource) DeriveStats(_ []*property.StatsInfo, _ *expression.Schema, _ []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error) {
|
|
if ds.StatsInfo() != nil && len(colGroups) == 0 {
|
|
return ds.StatsInfo(), nil
|
|
}
|
|
ds.initStats(colGroups)
|
|
if ds.StatsInfo() != nil {
|
|
// Just reload the GroupNDVs.
|
|
selectivity := ds.StatsInfo().RowCount / ds.TableStats.RowCount
|
|
ds.SetStats(ds.TableStats.Scale(selectivity))
|
|
return ds.StatsInfo(), nil
|
|
}
|
|
if ds.SCtx().GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
|
|
debugtrace.EnterContextCommon(ds.SCtx())
|
|
defer debugtrace.LeaveContextCommon(ds.SCtx())
|
|
}
|
|
// two preprocess here.
|
|
// 1: PushDownNot here can convert query 'not (a != 1)' to 'a = 1'.
|
|
// 2: EliminateNoPrecisionCast here can convert query 'cast(c<int> as bigint) = 1' to 'c = 1' to leverage access range.
|
|
exprCtx := ds.SCtx().GetExprCtx()
|
|
for i, expr := range ds.PushedDownConds {
|
|
ds.PushedDownConds[i] = expression.PushDownNot(exprCtx, expr)
|
|
ds.PushedDownConds[i] = expression.EliminateNoPrecisionLossCast(exprCtx, ds.PushedDownConds[i])
|
|
}
|
|
for _, path := range ds.PossibleAccessPaths {
|
|
if path.IsTablePath() {
|
|
continue
|
|
}
|
|
err := ds.fillIndexPath(path, ds.PushedDownConds)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
// TODO: Can we move ds.deriveStatsByFilter after pruning by heuristics? In this way some computation can be avoided
|
|
// when ds.PossibleAccessPaths are pruned.
|
|
ds.SetStats(ds.deriveStatsByFilter(ds.PushedDownConds, ds.PossibleAccessPaths))
|
|
err := ds.derivePathStatsAndTryHeuristics()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := ds.generateIndexMergePath(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if ds.SCtx().GetSessionVars().StmtCtx.EnableOptimizerDebugTrace {
|
|
debugTraceAccessPaths(ds.SCtx(), ds.PossibleAccessPaths)
|
|
}
|
|
ds.AccessPathMinSelectivity = getMinSelectivityFromPaths(ds.PossibleAccessPaths, float64(ds.TblColHists.RealtimeCount))
|
|
|
|
return ds.StatsInfo(), nil
|
|
}
|
|
|
|
func getMinSelectivityFromPaths(paths []*util.AccessPath, totalRowCount float64) float64 {
|
|
minSelectivity := 1.0
|
|
if totalRowCount <= 0 {
|
|
return minSelectivity
|
|
}
|
|
for _, path := range paths {
|
|
// For table path and index merge path, AccessPath.CountAfterIndex is not set and meaningless,
|
|
// but we still consider their AccessPath.CountAfterAccess.
|
|
if path.IsTablePath() || path.PartialIndexPaths != nil {
|
|
minSelectivity = min(minSelectivity, path.CountAfterAccess/totalRowCount)
|
|
continue
|
|
}
|
|
minSelectivity = min(minSelectivity, path.CountAfterIndex/totalRowCount)
|
|
}
|
|
return minSelectivity
|
|
}
|
|
|
|
func deriveLimitStats(childProfile *property.StatsInfo, limitCount float64) *property.StatsInfo {
|
|
stats := &property.StatsInfo{
|
|
RowCount: math.Min(limitCount, childProfile.RowCount),
|
|
ColNDVs: make(map[int64]float64, len(childProfile.ColNDVs)),
|
|
}
|
|
for id, c := range childProfile.ColNDVs {
|
|
stats.ColNDVs[id] = math.Min(c, stats.RowCount)
|
|
}
|
|
return stats
|
|
}
|
|
|
|
func (p *LogicalJoin) getGroupNDVs(colGroups [][]*expression.Column, childStats []*property.StatsInfo) []property.GroupNDV {
|
|
outerIdx := int(-1)
|
|
if p.JoinType == LeftOuterJoin || p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
|
|
outerIdx = 0
|
|
} else if p.JoinType == RightOuterJoin {
|
|
outerIdx = 1
|
|
}
|
|
if outerIdx >= 0 && len(colGroups) > 0 {
|
|
return childStats[outerIdx].GroupNDVs
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DeriveStats implement LogicalPlan DeriveStats interface.
|
|
// If the type of join is SemiJoin, the selectivity of it will be same as selection's.
|
|
// If the type of join is LeftOuterSemiJoin, it will not add or remove any row. The last column is a boolean value, whose NDV should be two.
|
|
// If the type of join is inner/outer join, the output of join(s, t) should be N(s) * N(t) / (V(s.key) * V(t.key)) * Min(s.key, t.key).
|
|
// N(s) stands for the number of rows in relation s. V(s.key) means the NDV of join key in s.
|
|
// This is a quite simple strategy: We assume every bucket of relation which will participate join has the same number of rows, and apply cross join for
|
|
// every matched bucket.
|
|
func (p *LogicalJoin) DeriveStats(childStats []*property.StatsInfo, selfSchema *expression.Schema, childSchema []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error) {
|
|
if p.StatsInfo() != nil {
|
|
// Reload GroupNDVs since colGroups may have changed.
|
|
p.StatsInfo().GroupNDVs = p.getGroupNDVs(colGroups, childStats)
|
|
return p.StatsInfo(), nil
|
|
}
|
|
leftProfile, rightProfile := childStats[0], childStats[1]
|
|
leftJoinKeys, rightJoinKeys, _, _ := p.GetJoinKeys()
|
|
p.EqualCondOutCnt = cardinality.EstimateFullJoinRowCount(p.SCtx(),
|
|
0 == len(p.EqualConditions),
|
|
leftProfile, rightProfile,
|
|
leftJoinKeys, rightJoinKeys,
|
|
childSchema[0], childSchema[1],
|
|
nil, nil)
|
|
if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin {
|
|
p.SetStats(&property.StatsInfo{
|
|
RowCount: leftProfile.RowCount * cost.SelectionFactor,
|
|
ColNDVs: make(map[int64]float64, len(leftProfile.ColNDVs)),
|
|
})
|
|
for id, c := range leftProfile.ColNDVs {
|
|
p.StatsInfo().ColNDVs[id] = c * cost.SelectionFactor
|
|
}
|
|
return p.StatsInfo(), nil
|
|
}
|
|
if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
|
|
p.SetStats(&property.StatsInfo{
|
|
RowCount: leftProfile.RowCount,
|
|
ColNDVs: make(map[int64]float64, selfSchema.Len()),
|
|
})
|
|
for id, c := range leftProfile.ColNDVs {
|
|
p.StatsInfo().ColNDVs[id] = c
|
|
}
|
|
p.StatsInfo().ColNDVs[selfSchema.Columns[selfSchema.Len()-1].UniqueID] = 2.0
|
|
p.StatsInfo().GroupNDVs = p.getGroupNDVs(colGroups, childStats)
|
|
return p.StatsInfo(), nil
|
|
}
|
|
count := p.EqualCondOutCnt
|
|
if p.JoinType == LeftOuterJoin {
|
|
count = math.Max(count, leftProfile.RowCount)
|
|
} else if p.JoinType == RightOuterJoin {
|
|
count = math.Max(count, rightProfile.RowCount)
|
|
}
|
|
colNDVs := make(map[int64]float64, selfSchema.Len())
|
|
for id, c := range leftProfile.ColNDVs {
|
|
colNDVs[id] = math.Min(c, count)
|
|
}
|
|
for id, c := range rightProfile.ColNDVs {
|
|
colNDVs[id] = math.Min(c, count)
|
|
}
|
|
p.SetStats(&property.StatsInfo{
|
|
RowCount: count,
|
|
ColNDVs: colNDVs,
|
|
})
|
|
p.StatsInfo().GroupNDVs = p.getGroupNDVs(colGroups, childStats)
|
|
return p.StatsInfo(), nil
|
|
}
|
|
|
|
// ExtractColGroups implements LogicalPlan ExtractColGroups interface.
|
|
func (p *LogicalJoin) ExtractColGroups(colGroups [][]*expression.Column) [][]*expression.Column {
|
|
leftJoinKeys, rightJoinKeys, _, _ := p.GetJoinKeys()
|
|
extracted := make([][]*expression.Column, 0, 2+len(colGroups))
|
|
if len(leftJoinKeys) > 1 && (p.JoinType == InnerJoin || p.JoinType == LeftOuterJoin || p.JoinType == RightOuterJoin) {
|
|
extracted = append(extracted, expression.SortColumns(leftJoinKeys), expression.SortColumns(rightJoinKeys))
|
|
}
|
|
var outerSchema *expression.Schema
|
|
if p.JoinType == LeftOuterJoin || p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
|
|
outerSchema = p.Children()[0].Schema()
|
|
} else if p.JoinType == RightOuterJoin {
|
|
outerSchema = p.Children()[1].Schema()
|
|
}
|
|
if len(colGroups) == 0 || outerSchema == nil {
|
|
return extracted
|
|
}
|
|
_, offsets := outerSchema.ExtractColGroups(colGroups)
|
|
if len(offsets) == 0 {
|
|
return extracted
|
|
}
|
|
for _, offset := range offsets {
|
|
extracted = append(extracted, colGroups[offset])
|
|
}
|
|
return extracted
|
|
}
|
|
|
|
func (la *LogicalApply) getGroupNDVs(colGroups [][]*expression.Column, childStats []*property.StatsInfo) []property.GroupNDV {
|
|
if len(colGroups) > 0 && (la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin || la.JoinType == LeftOuterJoin) {
|
|
return childStats[0].GroupNDVs
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DeriveStats implement LogicalPlan DeriveStats interface.
|
|
func (la *LogicalApply) DeriveStats(childStats []*property.StatsInfo, selfSchema *expression.Schema, childSchema []*expression.Schema, colGroups [][]*expression.Column) (*property.StatsInfo, error) {
|
|
if la.StatsInfo() != nil {
|
|
// Reload GroupNDVs since colGroups may have changed.
|
|
la.StatsInfo().GroupNDVs = la.getGroupNDVs(colGroups, childStats)
|
|
return la.StatsInfo(), nil
|
|
}
|
|
leftProfile := childStats[0]
|
|
la.SetStats(&property.StatsInfo{
|
|
RowCount: leftProfile.RowCount,
|
|
ColNDVs: make(map[int64]float64, selfSchema.Len()),
|
|
})
|
|
for id, c := range leftProfile.ColNDVs {
|
|
la.StatsInfo().ColNDVs[id] = c
|
|
}
|
|
if la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin {
|
|
la.StatsInfo().ColNDVs[selfSchema.Columns[selfSchema.Len()-1].UniqueID] = 2.0
|
|
} else {
|
|
for i := childSchema[0].Len(); i < selfSchema.Len(); i++ {
|
|
la.StatsInfo().ColNDVs[selfSchema.Columns[i].UniqueID] = leftProfile.RowCount
|
|
}
|
|
}
|
|
la.StatsInfo().GroupNDVs = la.getGroupNDVs(colGroups, childStats)
|
|
return la.StatsInfo(), nil
|
|
}
|
|
|
|
// ExtractColGroups implements LogicalPlan ExtractColGroups interface.
|
|
func (la *LogicalApply) ExtractColGroups(colGroups [][]*expression.Column) [][]*expression.Column {
|
|
var outerSchema *expression.Schema
|
|
// Apply doesn't have RightOuterJoin.
|
|
if la.JoinType == LeftOuterJoin || la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin {
|
|
outerSchema = la.Children()[0].Schema()
|
|
}
|
|
if len(colGroups) == 0 || outerSchema == nil {
|
|
return nil
|
|
}
|
|
_, offsets := outerSchema.ExtractColGroups(colGroups)
|
|
if len(offsets) == 0 {
|
|
return nil
|
|
}
|
|
extracted := make([][]*expression.Column, len(offsets))
|
|
for i, offset := range offsets {
|
|
extracted[i] = colGroups[offset]
|
|
}
|
|
return extracted
|
|
}
|
|
|
|
// Exists and MaxOneRow produce at most one row, so we set the RowCount of stats one.
|
|
func getSingletonStats(schema *expression.Schema) *property.StatsInfo {
|
|
ret := &property.StatsInfo{
|
|
RowCount: 1.0,
|
|
ColNDVs: make(map[int64]float64, schema.Len()),
|
|
}
|
|
for _, col := range schema.Columns {
|
|
ret.ColNDVs[col.UniqueID] = 1
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// loadTableStats loads the stats of the table and store it in the statement `UsedStatsInfo` if it didn't exist
|
|
func loadTableStats(ctx sessionctx.Context, tblInfo *model.TableInfo, pid int64) {
|
|
statsRecord := ctx.GetSessionVars().StmtCtx.GetUsedStatsInfo(true)
|
|
if statsRecord.GetUsedInfo(pid) != nil {
|
|
return
|
|
}
|
|
|
|
pctx := ctx.GetPlanCtx()
|
|
tableStats := getStatsTable(pctx, tblInfo, pid)
|
|
|
|
name := tblInfo.Name.O
|
|
partInfo := tblInfo.GetPartitionInfo()
|
|
if partInfo != nil {
|
|
for _, p := range partInfo.Definitions {
|
|
if p.ID == pid {
|
|
name += " " + p.Name.O
|
|
}
|
|
}
|
|
}
|
|
usedStats := &stmtctx.UsedStatsInfoForTable{
|
|
Name: name,
|
|
TblInfo: tblInfo,
|
|
RealtimeCount: tableStats.HistColl.RealtimeCount,
|
|
ModifyCount: tableStats.HistColl.ModifyCount,
|
|
Version: tableStats.Version,
|
|
}
|
|
if tableStats.Pseudo {
|
|
usedStats.Version = statistics.PseudoVersion
|
|
}
|
|
statsRecord.RecordUsedInfo(pid, usedStats)
|
|
}
|