Files
tidb/pkg/expression/column.go

919 lines
27 KiB
Go

// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
"cmp"
"fmt"
"slices"
"strings"
"unsafe"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/pkg/expression/exprctx"
"github.com/pingcap/tidb/pkg/meta/model"
"github.com/pingcap/tidb/pkg/parser/ast"
"github.com/pingcap/tidb/pkg/parser/charset"
"github.com/pingcap/tidb/pkg/parser/mysql"
"github.com/pingcap/tidb/pkg/planner/cascades/base"
"github.com/pingcap/tidb/pkg/types"
"github.com/pingcap/tidb/pkg/util/chunk"
"github.com/pingcap/tidb/pkg/util/codec"
"github.com/pingcap/tidb/pkg/util/size"
)
var (
_ base.HashEquals = &Column{}
_ base.HashEquals = &CorrelatedColumn{}
)
// CorrelatedColumn stands for a column in a correlated sub query.
type CorrelatedColumn struct {
Column
Data *types.Datum
}
// SafeToShareAcrossSession returns if the function can be shared across different sessions.
func (col *CorrelatedColumn) SafeToShareAcrossSession() bool {
// TODO: optimize this to make it's safe.
return false // due to col.Data
}
// Clone implements Expression interface.
func (col *CorrelatedColumn) Clone() Expression {
return &CorrelatedColumn{
Column: col.Column,
Data: col.Data,
}
}
// VecEvalInt evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalInt(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETInt, input, result)
}
// VecEvalReal evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalReal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETReal, input, result)
}
// VecEvalString evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalString(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETString, input, result)
}
// VecEvalDecimal evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalDecimal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETDecimal, input, result)
}
// VecEvalTime evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalTime(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETTimestamp, input, result)
}
// VecEvalDuration evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalDuration(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETDuration, input, result)
}
// VecEvalJSON evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalJSON(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETJson, input, result)
}
// VecEvalVectorFloat32 evaluates this expression in a vectorized manner.
func (col *CorrelatedColumn) VecEvalVectorFloat32(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
return genVecFromConstExpr(ctx, col, types.ETVectorFloat32, input, result)
}
// Traverse implements the TraverseDown interface.
func (col *CorrelatedColumn) Traverse(action TraverseAction) Expression {
return action.Transform(col)
}
// Eval implements Expression interface.
func (col *CorrelatedColumn) Eval(_ EvalContext, _ chunk.Row) (types.Datum, error) {
return *col.Data, nil
}
// EvalInt returns int representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalInt(ctx EvalContext, row chunk.Row) (int64, bool, error) {
if col.Data.IsNull() {
return 0, true, nil
}
if col.GetType(ctx).Hybrid() {
res, err := col.Data.ToInt64(typeCtx(ctx))
return res, err != nil, err
}
return col.Data.GetInt64(), false, nil
}
// EvalReal returns real representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalReal(ctx EvalContext, row chunk.Row) (float64, bool, error) {
if col.Data.IsNull() {
return 0, true, nil
}
return col.Data.GetFloat64(), false, nil
}
// EvalString returns string representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalString(ctx EvalContext, row chunk.Row) (string, bool, error) {
if col.Data.IsNull() {
return "", true, nil
}
res, err := col.Data.ToString()
return res, err != nil, err
}
// EvalDecimal returns decimal representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalDecimal(ctx EvalContext, row chunk.Row) (*types.MyDecimal, bool, error) {
if col.Data.IsNull() {
return nil, true, nil
}
return col.Data.GetMysqlDecimal(), false, nil
}
// EvalTime returns DATE/DATETIME/TIMESTAMP representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalTime(ctx EvalContext, row chunk.Row) (types.Time, bool, error) {
if col.Data.IsNull() {
return types.ZeroTime, true, nil
}
return col.Data.GetMysqlTime(), false, nil
}
// EvalDuration returns Duration representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalDuration(ctx EvalContext, row chunk.Row) (types.Duration, bool, error) {
if col.Data.IsNull() {
return types.Duration{}, true, nil
}
return col.Data.GetMysqlDuration(), false, nil
}
// EvalJSON returns JSON representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalJSON(ctx EvalContext, row chunk.Row) (types.BinaryJSON, bool, error) {
if col.Data.IsNull() {
return types.BinaryJSON{}, true, nil
}
return col.Data.GetMysqlJSON(), false, nil
}
// EvalVectorFloat32 returns VectorFloat32 representation of CorrelatedColumn.
func (col *CorrelatedColumn) EvalVectorFloat32(ctx EvalContext, row chunk.Row) (types.VectorFloat32, bool, error) {
if col.Data.IsNull() {
return types.ZeroVectorFloat32, true, nil
}
return col.Data.GetVectorFloat32(), false, nil
}
// Equal implements Expression interface.
func (col *CorrelatedColumn) Equal(_ EvalContext, expr Expression) bool {
return col.EqualColumn(expr)
}
// EqualColumn returns whether two column is equal
func (col *CorrelatedColumn) EqualColumn(expr Expression) bool {
if cc, ok := expr.(*CorrelatedColumn); ok {
return col.Column.EqualColumn(&cc.Column)
}
return false
}
// IsCorrelated implements Expression interface.
func (col *CorrelatedColumn) IsCorrelated() bool {
return true
}
// ConstLevel returns the const level for the expression
func (col *CorrelatedColumn) ConstLevel() ConstLevel {
return ConstNone
}
// Decorrelate implements Expression interface.
func (col *CorrelatedColumn) Decorrelate(schema *Schema) Expression {
if !schema.Contains(&col.Column) {
return col
}
return &col.Column
}
// ResolveIndices implements Expression interface.
func (col *CorrelatedColumn) ResolveIndices(_ *Schema) (Expression, error) {
return col, nil
}
func (col *CorrelatedColumn) resolveIndices(_ *Schema) error {
return nil
}
// ResolveIndicesByVirtualExpr implements Expression interface.
func (col *CorrelatedColumn) ResolveIndicesByVirtualExpr(_ EvalContext, _ *Schema) (Expression, bool) {
return col, true
}
func (col *CorrelatedColumn) resolveIndicesByVirtualExpr(_ EvalContext, _ *Schema) bool {
return true
}
// MemoryUsage return the memory usage of CorrelatedColumn
func (col *CorrelatedColumn) MemoryUsage() (sum int64) {
if col == nil {
return
}
sum = col.Column.MemoryUsage() + size.SizeOfPointer
if col.Data != nil {
sum += col.Data.MemUsage()
}
return sum
}
// RemapColumn remaps columns with provided mapping and returns new expression
func (col *CorrelatedColumn) RemapColumn(m map[int64]*Column) (Expression, error) {
mapped := m[(&col.Column).UniqueID]
if mapped == nil {
return nil, errors.Errorf("Can't remap column for %s", col)
}
return &CorrelatedColumn{
Column: *mapped,
Data: col.Data,
}, nil
}
// Hash64 implements HashEquals.<0th> interface.
func (col *CorrelatedColumn) Hash64(h base.Hasher) {
// correlatedColumn flag here is used to distinguish correlatedColumn and Column.
h.HashByte(correlatedColumn)
col.Column.Hash64(h)
// since col.Datum is filled in the runtime, we can't use it to calculate hash now, correlatedColumn flag + column is enough.
}
// Equals implements HashEquals.<1st> interface.
func (col *CorrelatedColumn) Equals(other any) bool {
col2, ok := other.(*CorrelatedColumn)
if !ok {
return false
}
if col == nil {
return col2 == nil
}
if col2 == nil {
return false
}
return col.Column.Equals(&col2.Column)
}
// Column represents a column.
type Column struct {
RetType *types.FieldType `plan-cache-clone:"shallow"`
// ID is used to specify whether this column is ExtraHandleColumn or to access histogram.
// We'll try to remove it in the future.
ID int64
// UniqueID is the unique id of this column.
UniqueID int64
// Index is used for execution, to tell the column's position in the given row.
Index int
hashcode []byte
// VirtualExpr is used to save expression for virtual column
VirtualExpr Expression
OrigName string
IsHidden bool
// IsPrefix indicates whether this column is a prefix column in index.
//
// for example:
// pk(col1, col2), index(col1(10)), key: col1(10)_col1_col2 => index's col1 will be true
// pk(col1(10), col2), index(col1), key: col1_col1(10)_col2 => pk's col1 will be true
IsPrefix bool
// InOperand indicates whether this column is the inner operand of column equal condition converted
// from `[not] in (subq)`.
InOperand bool
collationInfo
CorrelatedColUniqueID int64
}
// SafeToShareAcrossSession returns if the function can be shared across different sessions.
func (col *Column) SafeToShareAcrossSession() bool {
return col.VirtualExpr == nil // for safety
}
// Equal implements Expression interface.
func (col *Column) Equal(_ EvalContext, expr Expression) bool {
return col.EqualColumn(expr)
}
// EqualColumn returns whether two column is equal
func (col *Column) EqualColumn(expr Expression) bool {
if newCol, ok := expr.(*Column); ok {
return newCol.UniqueID == col.UniqueID
}
return false
}
// EqualByExprAndID extends Equal by comparing virtual expression
func (col *Column) EqualByExprAndID(ctx EvalContext, expr Expression) bool {
if newCol, ok := expr.(*Column); ok {
expr, isOk := col.VirtualExpr.(*ScalarFunction)
isVirExprMatched := isOk && expr.Equal(ctx, newCol.VirtualExpr) && col.RetType.Equal(newCol.RetType)
return (newCol.UniqueID == col.UniqueID) || isVirExprMatched
}
return false
}
// VecEvalInt evaluates this expression in a vectorized manner.
func (col *Column) VecEvalInt(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
if col.RetType.Hybrid() {
it := chunk.NewIterator4Chunk(input)
result.ResizeInt64(0, false)
for row := it.Begin(); row != it.End(); row = it.Next() {
v, null, err := col.EvalInt(ctx, row)
if err != nil {
return err
}
if null {
result.AppendNull()
} else {
result.AppendInt64(v)
}
}
return nil
}
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalReal evaluates this expression in a vectorized manner.
func (col *Column) VecEvalReal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
n := input.NumRows()
src := input.Column(col.Index)
if col.GetType(ctx).GetType() == mysql.TypeFloat {
result.ResizeFloat64(n, false)
f32s := src.Float32s()
f64s := result.Float64s()
sel := input.Sel()
if sel != nil {
for i, j := range sel {
if src.IsNull(j) {
result.SetNull(i, true)
} else {
f64s[i] = float64(f32s[j])
}
}
return nil
}
result.MergeNulls(src)
for i := range f32s {
if result.IsNull(i) {
continue
}
f64s[i] = float64(f32s[i])
}
return nil
}
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalString evaluates this expression in a vectorized manner.
func (col *Column) VecEvalString(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
if col.RetType.Hybrid() {
it := chunk.NewIterator4Chunk(input)
result.ReserveString(input.NumRows())
for row := it.Begin(); row != it.End(); row = it.Next() {
v, null, err := col.EvalString(ctx, row)
if err != nil {
return err
}
if null {
result.AppendNull()
} else {
result.AppendString(v)
}
}
return nil
}
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalDecimal evaluates this expression in a vectorized manner.
func (col *Column) VecEvalDecimal(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalTime evaluates this expression in a vectorized manner.
func (col *Column) VecEvalTime(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalDuration evaluates this expression in a vectorized manner.
func (col *Column) VecEvalDuration(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalJSON evaluates this expression in a vectorized manner.
func (col *Column) VecEvalJSON(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
// VecEvalVectorFloat32 evaluates this expression in a vectorized manner.
func (col *Column) VecEvalVectorFloat32(ctx EvalContext, input *chunk.Chunk, result *chunk.Column) error {
input.Column(col.Index).CopyReconstruct(input.Sel(), result)
return nil
}
const columnPrefix = "Column#"
// StringWithCtx implements Expression interface.
func (col *Column) StringWithCtx(_ ParamValues, redact string) string {
return col.string(redact)
}
// String implements Stringer interface.
func (col *Column) String() string {
return col.string(errors.RedactLogDisable)
}
func (col *Column) string(redact string) string {
if col.IsHidden && col.VirtualExpr != nil {
// A hidden column without virtual expression indicates it's a stored type.
// a virtual column should be able to be stringified without context.
return col.VirtualExpr.StringWithCtx(exprctx.EmptyParamValues, redact)
}
if col.OrigName != "" {
return col.OrigName
}
var builder strings.Builder
fmt.Fprintf(&builder, "%s%d", columnPrefix, col.UniqueID)
return builder.String()
}
// GetType implements Expression interface.
func (col *Column) GetType(_ EvalContext) *types.FieldType {
return col.GetStaticType()
}
// GetStaticType returns the type without considering the context.
func (col *Column) GetStaticType() *types.FieldType {
return col.RetType
}
// Hash64 implements HashEquals.<0th> interface.
func (col *Column) Hash64(h base.Hasher) {
if col.RetType == nil {
h.HashByte(base.NilFlag)
} else {
h.HashByte(base.NotNilFlag)
col.RetType.Hash64(h)
}
h.HashInt64(col.ID)
h.HashInt64(col.UniqueID)
h.HashInt(col.Index)
if col.VirtualExpr == nil {
h.HashByte(base.NilFlag)
} else {
h.HashByte(base.NotNilFlag)
col.VirtualExpr.Hash64(h)
}
h.HashString(col.OrigName)
h.HashBool(col.IsHidden)
h.HashBool(col.IsPrefix)
h.HashBool(col.InOperand)
col.collationInfo.Hash64(h)
h.HashInt64(col.CorrelatedColUniqueID)
}
// Equals implements HashEquals.<1st> interface.
func (col *Column) Equals(other any) bool {
col2, ok := other.(*Column)
if !ok {
return false
}
if col == nil {
return col2 == nil
}
if col2 == nil {
return false
}
// when step into here, we could ensure that col1.RetType and col2.RetType are same type.
// and we should ensure col1.RetType and col2.RetType is not nil ourselves.
ok = col.RetType == nil && col2.RetType == nil || col.RetType != nil && col2.RetType != nil && col.RetType.Equal(col2.RetType)
ok = ok && (col.VirtualExpr == nil && col2.VirtualExpr == nil || col.VirtualExpr != nil && col2.VirtualExpr != nil && col.VirtualExpr.Equals(col2.VirtualExpr))
return ok &&
col.ID == col2.ID &&
col.UniqueID == col2.UniqueID &&
col.Index == col2.Index &&
col.OrigName == col2.OrigName &&
col.IsHidden == col2.IsHidden &&
col.IsPrefix == col2.IsPrefix &&
col.InOperand == col2.InOperand &&
col.collationInfo.Equals(&col2.collationInfo) &&
col.CorrelatedColUniqueID == col2.CorrelatedColUniqueID
}
// Traverse implements the TraverseDown interface.
func (col *Column) Traverse(action TraverseAction) Expression {
return action.Transform(col)
}
// Eval implements Expression interface.
func (col *Column) Eval(_ EvalContext, row chunk.Row) (types.Datum, error) {
return row.GetDatum(col.Index, col.RetType), nil
}
// EvalInt returns int representation of Column.
func (col *Column) EvalInt(ctx EvalContext, row chunk.Row) (int64, bool, error) {
if col.GetType(ctx).Hybrid() {
val := row.GetDatum(col.Index, col.RetType)
if val.IsNull() {
return 0, true, nil
}
if val.Kind() == types.KindMysqlBit {
val, err := val.GetBinaryLiteral().ToInt(typeCtx(ctx))
return int64(val), err != nil, err
}
res, err := val.ToInt64(typeCtx(ctx))
return res, err != nil, err
}
if row.IsNull(col.Index) {
return 0, true, nil
}
return row.GetInt64(col.Index), false, nil
}
// EvalReal returns real representation of Column.
func (col *Column) EvalReal(ctx EvalContext, row chunk.Row) (float64, bool, error) {
if row.IsNull(col.Index) {
return 0, true, nil
}
if col.GetType(ctx).GetType() == mysql.TypeFloat {
return float64(row.GetFloat32(col.Index)), false, nil
}
return row.GetFloat64(col.Index), false, nil
}
// EvalString returns string representation of Column.
func (col *Column) EvalString(ctx EvalContext, row chunk.Row) (string, bool, error) {
if row.IsNull(col.Index) {
return "", true, nil
}
// Specially handle the ENUM/SET/BIT input value.
if col.GetType(ctx).Hybrid() {
val := row.GetDatum(col.Index, col.RetType)
res, err := val.ToString()
return res, err != nil, err
}
val := row.GetString(col.Index)
return val, false, nil
}
// EvalDecimal returns decimal representation of Column.
func (col *Column) EvalDecimal(ctx EvalContext, row chunk.Row) (*types.MyDecimal, bool, error) {
if row.IsNull(col.Index) {
return nil, true, nil
}
return row.GetMyDecimal(col.Index), false, nil
}
// EvalTime returns DATE/DATETIME/TIMESTAMP representation of Column.
func (col *Column) EvalTime(ctx EvalContext, row chunk.Row) (types.Time, bool, error) {
if row.IsNull(col.Index) {
return types.ZeroTime, true, nil
}
return row.GetTime(col.Index), false, nil
}
// EvalDuration returns Duration representation of Column.
func (col *Column) EvalDuration(ctx EvalContext, row chunk.Row) (types.Duration, bool, error) {
if row.IsNull(col.Index) {
return types.Duration{}, true, nil
}
duration := row.GetDuration(col.Index, col.RetType.GetDecimal())
return duration, false, nil
}
// EvalJSON returns JSON representation of Column.
func (col *Column) EvalJSON(ctx EvalContext, row chunk.Row) (types.BinaryJSON, bool, error) {
if row.IsNull(col.Index) {
return types.BinaryJSON{}, true, nil
}
return row.GetJSON(col.Index), false, nil
}
// EvalVectorFloat32 returns VectorFloat32 representation of Column.
func (col *Column) EvalVectorFloat32(ctx EvalContext, row chunk.Row) (types.VectorFloat32, bool, error) {
if row.IsNull(col.Index) {
return types.ZeroVectorFloat32, true, nil
}
return row.GetVectorFloat32(col.Index), false, nil
}
// Clone implements Expression interface.
func (col *Column) Clone() Expression {
newCol := *col
if col.hashcode != nil {
newCol.hashcode = slices.Clone(col.hashcode)
}
return &newCol
}
// IsCorrelated implements Expression interface.
func (col *Column) IsCorrelated() bool {
return false
}
// ConstLevel returns the const level for the expression
func (col *Column) ConstLevel() ConstLevel {
return ConstNone
}
// Decorrelate implements Expression interface.
func (col *Column) Decorrelate(_ *Schema) Expression {
return col
}
// HashCode implements Expression interface.
func (col *Column) HashCode() []byte {
if len(col.hashcode) != 0 {
return col.hashcode
}
col.hashcode = make([]byte, 0, 9)
col.hashcode = append(col.hashcode, columnFlag)
col.hashcode = codec.EncodeInt(col.hashcode, col.UniqueID)
return col.hashcode
}
// CanonicalHashCode implements Expression interface.
func (col *Column) CanonicalHashCode() []byte {
return col.HashCode()
}
// CleanHashCode will clean the hashcode you may be cached before. It's used especially in schema-cloned & reallocated-uniqueID's cases.
func (col *Column) CleanHashCode() {
col.hashcode = make([]byte, 0, 9)
}
// ResolveIndices implements Expression interface.
func (col *Column) ResolveIndices(schema *Schema) (Expression, error) {
newCol := col.Clone()
err := newCol.resolveIndices(schema)
return newCol, err
}
func (col *Column) resolveIndices(schema *Schema) error {
col.Index = schema.ColumnIndex(col)
if col.Index == -1 {
return errors.Errorf("Can't find column %s in schema %s", col, schema)
}
return nil
}
// ResolveIndicesByVirtualExpr implements Expression interface.
func (col *Column) ResolveIndicesByVirtualExpr(ctx EvalContext, schema *Schema) (Expression, bool) {
newCol := col.Clone()
isOk := newCol.resolveIndicesByVirtualExpr(ctx, schema)
return newCol, isOk
}
func (col *Column) resolveIndicesByVirtualExpr(ctx EvalContext, schema *Schema) bool {
for i, c := range schema.Columns {
if c.EqualByExprAndID(ctx, col) {
col.Index = i
return true
}
}
return false
}
// RemapColumn remaps columns with provided mapping and returns new expression
func (col *Column) RemapColumn(m map[int64]*Column) (Expression, error) {
mapped := m[col.UniqueID]
if mapped == nil {
return nil, errors.Errorf("Can't remap column for %s", col)
}
return mapped, nil
}
// Vectorized returns if this expression supports vectorized evaluation.
func (col *Column) Vectorized() bool {
return true
}
// ToInfo converts the expression.Column to model.ColumnInfo for casting values,
// beware it doesn't fill all the fields of the model.ColumnInfo.
func (col *Column) ToInfo() *model.ColumnInfo {
return &model.ColumnInfo{
ID: col.ID,
FieldType: *col.RetType,
}
}
// Column2Exprs will transfer column slice to expression slice.
func Column2Exprs(cols []*Column) []Expression {
result := make([]Expression, 0, len(cols))
for _, col := range cols {
result = append(result, col)
}
return result
}
// ColInfo2Col finds the corresponding column of the ColumnInfo in a column slice.
func ColInfo2Col(cols []*Column, col *model.ColumnInfo) *Column {
for _, c := range cols {
if c.ID == col.ID {
return c
}
}
return nil
}
// IndexCol2Col finds the corresponding column of the IndexColumn in a column slice.
func IndexCol2Col(colInfos []*model.ColumnInfo, cols []*Column, col *model.IndexColumn) *Column {
for i, info := range colInfos {
if info.Name.L == col.Name.L {
if col.Length > 0 && info.FieldType.GetFlen() > col.Length {
c := *cols[i]
c.IsPrefix = true
return &c
}
return cols[i]
}
}
return nil
}
// IndexInfo2PrefixCols gets the corresponding []*Column of the indexInfo's []*IndexColumn,
// together with a []int containing their lengths.
// If this index has three IndexColumn that the 1st and 3rd IndexColumn has corresponding *Column,
// the return value will be only the 1st corresponding *Column and its length.
// TODO: Use a struct to represent {*Column, int}. And merge IndexInfo2PrefixCols and IndexInfo2Cols.
func IndexInfo2PrefixCols(colInfos []*model.ColumnInfo, cols []*Column, index *model.IndexInfo) ([]*Column, []int) {
retCols := make([]*Column, 0, len(index.Columns))
lengths := make([]int, 0, len(index.Columns))
for _, c := range index.Columns {
col := IndexCol2Col(colInfos, cols, c)
if col == nil {
return retCols, lengths
}
retCols = append(retCols, col)
if c.Length != types.UnspecifiedLength && c.Length == col.RetType.GetFlen() {
lengths = append(lengths, types.UnspecifiedLength)
} else {
lengths = append(lengths, c.Length)
}
}
return retCols, lengths
}
// IndexInfo2Cols gets the corresponding []*Column of the indexInfo's []*IndexColumn,
// together with a []int containing their lengths.
// If this index has three IndexColumn that the 1st and 3rd IndexColumn has corresponding *Column,
// the return value will be [col1, nil, col2].
func IndexInfo2Cols(colInfos []*model.ColumnInfo, cols []*Column, index *model.IndexInfo) ([]*Column, []int) {
retCols := make([]*Column, 0, len(index.Columns))
lens := make([]int, 0, len(index.Columns))
for _, c := range index.Columns {
col := IndexCol2Col(colInfos, cols, c)
if col == nil {
retCols = append(retCols, col)
lens = append(lens, types.UnspecifiedLength)
continue
}
retCols = append(retCols, col)
if c.Length != types.UnspecifiedLength && c.Length == col.RetType.GetFlen() {
lens = append(lens, types.UnspecifiedLength)
} else {
lens = append(lens, c.Length)
}
}
return retCols, lens
}
// FindPrefixOfIndex will find columns in index by checking the unique id.
// So it will return at once no matching column is found.
func FindPrefixOfIndex(cols []*Column, idxColIDs []int64) []*Column {
retCols := make([]*Column, 0, len(idxColIDs))
idLoop:
for _, id := range idxColIDs {
for _, col := range cols {
if col.UniqueID == id {
retCols = append(retCols, col)
continue idLoop
}
}
// If no matching column is found, just return.
return retCols
}
return retCols
}
// EvalVirtualColumn evals the virtual column
func (col *Column) EvalVirtualColumn(ctx EvalContext, row chunk.Row) (types.Datum, error) {
return col.VirtualExpr.Eval(ctx, row)
}
// Coercibility returns the coercibility value which is used to check collations.
func (col *Column) Coercibility() Coercibility {
if !col.HasCoercibility() {
col.SetCoercibility(deriveCoercibilityForColumn(col))
}
return col.collationInfo.Coercibility()
}
// Repertoire returns the repertoire value which is used to check collations.
func (col *Column) Repertoire() Repertoire {
if col.repertoire != 0 {
return col.repertoire
}
switch col.RetType.EvalType() {
case types.ETJson:
return UNICODE
case types.ETString:
if col.RetType.GetCharset() == charset.CharsetASCII {
return ASCII
}
return UNICODE
default:
return ASCII
}
}
// SortColumns sort columns based on UniqueID.
func SortColumns(cols []*Column) []*Column {
sorted := slices.Clone(cols)
slices.SortFunc(sorted, func(i, j *Column) int {
return cmp.Compare(i.UniqueID, j.UniqueID)
})
return sorted
}
// InColumnArray check whether the col is in the cols array
func (col *Column) InColumnArray(cols []*Column) bool {
return slices.ContainsFunc(cols, func(c *Column) bool {
return col.EqualColumn(c)
})
}
// GcColumnExprIsTidbShard check whether the expression is tidb_shard()
func GcColumnExprIsTidbShard(virtualExpr Expression) bool {
if virtualExpr == nil {
return false
}
f, ok := virtualExpr.(*ScalarFunction)
if !ok {
return false
}
if f.FuncName.L != ast.TiDBShard {
return false
}
return true
}
const emptyColumnSize = int64(unsafe.Sizeof(Column{}))
// MemoryUsage return the memory usage of Column
func (col *Column) MemoryUsage() (sum int64) {
if col == nil {
return
}
sum = emptyColumnSize + int64(cap(col.hashcode)) + int64(len(col.OrigName)+len(col.charset)+len(col.collation))
if col.RetType != nil {
sum += col.RetType.MemoryUsage()
}
if col.VirtualExpr != nil {
sum += col.VirtualExpr.MemoryUsage()
}
return
}