mirror of
https://github.com/trapexit/mergerfs.git
synced 2025-05-03 10:24:04 +08:00
Merge pull request #1238 from trapexit/boundedqueue
Change threadpool to use concurrentqueue
This commit is contained in:
commit
69de4de53f
@ -7,3 +7,4 @@
|
|||||||
* ghc::filesystem: https://github.com/gulrak/filesystem
|
* ghc::filesystem: https://github.com/gulrak/filesystem
|
||||||
* nonstd::optional: https://github.com/martinmoene/optional-lite
|
* nonstd::optional: https://github.com/martinmoene/optional-lite
|
||||||
* fmt: https://github.com/fmtlib/fmt
|
* fmt: https://github.com/fmtlib/fmt
|
||||||
|
* concurrentqueue: https://github.com/cameron314/concurrentqueue
|
||||||
|
@ -1,166 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include <condition_variable>
|
|
||||||
#include <mutex>
|
|
||||||
#include <queue>
|
|
||||||
#include <utility>
|
|
||||||
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
class BoundedQueue
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
explicit
|
|
||||||
BoundedQueue(std::size_t max_size_,
|
|
||||||
bool block_ = true)
|
|
||||||
: _block(block_),
|
|
||||||
_max_size(max_size_ ? max_size_ : 1)
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
BoundedQueue(const BoundedQueue&) = delete;
|
|
||||||
BoundedQueue(BoundedQueue&&) = default;
|
|
||||||
|
|
||||||
bool
|
|
||||||
push(const T& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
_condition_push.wait(guard, [&]() { return _queue.size() < _max_size || !_block; });
|
|
||||||
|
|
||||||
if(_queue.size() == _max_size)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
_queue.push(item_);
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition_pop.notify_one();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
push(T&& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
_condition_push.wait(guard, [&]() { return _queue.size() < _max_size || !_block; });
|
|
||||||
|
|
||||||
if(_queue.size() == _max_size)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
_queue.push(std::move(item_));
|
|
||||||
}
|
|
||||||
_condition_pop.notify_one();
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename... Args>
|
|
||||||
bool
|
|
||||||
emplace(Args&&... args_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
_condition_push.wait(guard, [&]() { return _queue.size() < _max_size || !_block; });
|
|
||||||
|
|
||||||
if(_queue.size() == _max_size)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
_queue.emplace(std::forward<Args>(args_)...);
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition_pop.notify_one();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
pop(T& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
_condition_pop.wait(guard, [&]() { return !_queue.empty() || !_block; });
|
|
||||||
if(_queue.empty())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
item_ = std::move(_queue.front());
|
|
||||||
|
|
||||||
_queue.pop();
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition_push.notify_one();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::size_t
|
|
||||||
size() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _queue.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
std::size_t
|
|
||||||
capacity() const
|
|
||||||
{
|
|
||||||
return _max_size;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
empty() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _queue.empty();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
full() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> lock(_queue_lock);
|
|
||||||
|
|
||||||
return (_queue.size() == capacity());
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
block()
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_block = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
unblock()
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_block = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition_push.notify_all();
|
|
||||||
_condition_pop.notify_all();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
blocking() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _block;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
mutable std::mutex _queue_lock;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool _block;
|
|
||||||
std::queue<T> _queue;
|
|
||||||
const std::size_t _max_size;
|
|
||||||
std::condition_variable _condition_push;
|
|
||||||
std::condition_variable _condition_pop;
|
|
||||||
};
|
|
@ -1,57 +1,44 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "bounded_queue.hpp"
|
#include "moodycamel/blockingconcurrentqueue.h"
|
||||||
#include "make_unique.hpp"
|
#include "syslog.h"
|
||||||
|
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
#include <csignal>
|
#include <csignal>
|
||||||
#include <functional>
|
#include <cstring>
|
||||||
#include <future>
|
#include <future>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
#include <stdexcept>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <tuple>
|
|
||||||
#include <type_traits>
|
|
||||||
#include <utility>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
struct BoundedThreadPoolTraits : public moodycamel::ConcurrentQueueDefaultTraits
|
||||||
|
{
|
||||||
|
static const int MAX_SEMA_SPINS = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
class BoundedThreadPool
|
class BoundedThreadPool
|
||||||
{
|
{
|
||||||
private:
|
private:
|
||||||
using Proc = std::function<void(void)>;
|
using Func = std::function<void(void)>;
|
||||||
using Queue = BoundedQueue<Proc>;
|
using Queue = moodycamel::BlockingConcurrentQueue<Func,BoundedThreadPoolTraits>;
|
||||||
using Queues = std::vector<std::unique_ptr<Queue>>;
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
explicit
|
explicit
|
||||||
BoundedThreadPool(std::size_t const thread_count_ = std::thread::hardware_concurrency(),
|
BoundedThreadPool(std::size_t const thread_count_ = std::thread::hardware_concurrency(),
|
||||||
std::size_t const queue_depth_ = 1,
|
std::size_t const queue_depth_ = 1,
|
||||||
std::string const name_ = {})
|
std::string const name_ = {})
|
||||||
: _queues(),
|
: _queue(queue_depth_,thread_count_,thread_count_),
|
||||||
_count(thread_count_)
|
_done(false),
|
||||||
|
_name(name_)
|
||||||
{
|
{
|
||||||
for(std::size_t i = 0; i < thread_count_; i++)
|
syslog_debug("threadpool: spawning %zu threads of queue depth %zu named '%s'",
|
||||||
_queues.emplace_back(std::make_unique<Queue>(queue_depth_));
|
thread_count_,
|
||||||
|
queue_depth_,
|
||||||
auto worker = [this](std::size_t i)
|
_name.c_str());
|
||||||
{
|
|
||||||
while(true)
|
|
||||||
{
|
|
||||||
Proc f;
|
|
||||||
|
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
|
||||||
{
|
|
||||||
if(_queues[(i + n) % _count]->pop(f))
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!f && !_queues[i]->pop(f))
|
|
||||||
break;
|
|
||||||
|
|
||||||
f();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
sigset_t oldset;
|
sigset_t oldset;
|
||||||
sigset_t newset;
|
sigset_t newset;
|
||||||
@ -61,50 +48,109 @@ public:
|
|||||||
|
|
||||||
_threads.reserve(thread_count_);
|
_threads.reserve(thread_count_);
|
||||||
for(std::size_t i = 0; i < thread_count_; ++i)
|
for(std::size_t i = 0; i < thread_count_; ++i)
|
||||||
_threads.emplace_back(worker, i);
|
|
||||||
if(!name_.empty())
|
|
||||||
{
|
{
|
||||||
for(auto &t : _threads)
|
int rv;
|
||||||
pthread_setname_np(t.native_handle(),name_.c_str());
|
pthread_t t;
|
||||||
|
|
||||||
|
rv = pthread_create(&t,NULL,BoundedThreadPool::start_routine,this);
|
||||||
|
if(rv != 0)
|
||||||
|
{
|
||||||
|
syslog_warning("threadpool: error spawning thread - %d (%s)",
|
||||||
|
rv,
|
||||||
|
strerror(rv));
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!_name.empty())
|
||||||
|
pthread_setname_np(t,_name.c_str());
|
||||||
|
|
||||||
|
_threads.push_back(t);
|
||||||
}
|
}
|
||||||
|
|
||||||
pthread_sigmask(SIG_SETMASK,&oldset,NULL);
|
pthread_sigmask(SIG_SETMASK,&oldset,NULL);
|
||||||
|
|
||||||
|
if(_threads.empty())
|
||||||
|
throw std::runtime_error("threadpool: failed to spawn any threads");
|
||||||
}
|
}
|
||||||
|
|
||||||
~BoundedThreadPool()
|
~BoundedThreadPool()
|
||||||
{
|
{
|
||||||
for(auto &queue : _queues)
|
syslog_debug("threadpool: destroying %zu threads named '%s'",
|
||||||
queue->unblock();
|
_threads.size(),
|
||||||
for(auto &thread : _threads)
|
_name.c_str());
|
||||||
pthread_cancel(thread.native_handle());
|
|
||||||
for(auto &thread : _threads)
|
_done.store(true,std::memory_order_relaxed);
|
||||||
thread.join();
|
|
||||||
|
for(auto t : _threads)
|
||||||
|
pthread_cancel(t);
|
||||||
|
|
||||||
|
Func f;
|
||||||
|
while(_queue.try_dequeue(f))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
for(auto t : _threads)
|
||||||
|
pthread_join(t,NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename F>
|
private:
|
||||||
|
static
|
||||||
|
void*
|
||||||
|
start_routine(void *arg_)
|
||||||
|
{
|
||||||
|
BoundedThreadPool *btp = static_cast<BoundedThreadPool*>(arg_);
|
||||||
|
BoundedThreadPool::Func func;
|
||||||
|
std::atomic<bool> &done = btp->_done;
|
||||||
|
BoundedThreadPool::Queue &q = btp->_queue;
|
||||||
|
moodycamel::ConsumerToken ctok(btp->_queue);
|
||||||
|
|
||||||
|
while(!done.load(std::memory_order_relaxed))
|
||||||
|
{
|
||||||
|
q.wait_dequeue(ctok,func);
|
||||||
|
|
||||||
|
func();
|
||||||
|
}
|
||||||
|
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
template<typename FuncType>
|
||||||
void
|
void
|
||||||
enqueue_work(F&& f_)
|
enqueue_work(moodycamel::ProducerToken &ptok_,
|
||||||
|
FuncType &&f_)
|
||||||
{
|
{
|
||||||
auto i = _index.fetch_add(1,std::memory_order_relaxed);
|
timespec ts = {0,10};
|
||||||
|
while(true)
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
|
||||||
{
|
{
|
||||||
if(_queues[(i + n) % _count]->push(f_))
|
if(_queue.try_enqueue(ptok_,f_))
|
||||||
return;
|
return;
|
||||||
|
::nanosleep(&ts,NULL);
|
||||||
|
ts.tv_nsec += 10;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
_queues[i % _count]->push(std::move(f_));
|
template<typename FuncType>
|
||||||
}
|
void
|
||||||
|
enqueue_work(FuncType &&f_)
|
||||||
template<typename F>
|
|
||||||
[[nodiscard]]
|
|
||||||
std::future<typename std::result_of<F()>::type>
|
|
||||||
enqueue_task(F&& f_)
|
|
||||||
{
|
{
|
||||||
using TaskReturnType = typename std::result_of<F()>::type;
|
timespec ts = {0,10};
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
if(_queue.try_enqueue(f_))
|
||||||
|
return;
|
||||||
|
::nanosleep(&ts,NULL);
|
||||||
|
ts.tv_nsec += 10;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename FuncType>
|
||||||
|
[[nodiscard]]
|
||||||
|
std::future<typename std::result_of<FuncType()>::type>
|
||||||
|
enqueue_task(FuncType&& f_)
|
||||||
|
{
|
||||||
|
using TaskReturnType = typename std::result_of<FuncType()>::type;
|
||||||
using Promise = std::promise<TaskReturnType>;
|
using Promise = std::promise<TaskReturnType>;
|
||||||
|
|
||||||
auto i = _index.fetch_add(1,std::memory_order_relaxed);
|
|
||||||
auto promise = std::make_shared<Promise>();
|
auto promise = std::make_shared<Promise>();
|
||||||
auto future = promise->get_future();
|
auto future = promise->get_future();
|
||||||
auto work = [=]()
|
auto work = [=]()
|
||||||
@ -113,38 +159,37 @@ public:
|
|||||||
promise->set_value(rv);
|
promise->set_value(rv);
|
||||||
};
|
};
|
||||||
|
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
timespec ts = {0,10};
|
||||||
|
while(true)
|
||||||
{
|
{
|
||||||
if(_queues[(i + n) % _count]->push(work))
|
if(_queue.try_enqueue(work))
|
||||||
return future;
|
break;
|
||||||
|
::nanosleep(&ts,NULL);
|
||||||
|
ts.tv_nsec += 10;
|
||||||
}
|
}
|
||||||
|
|
||||||
_queues[i % _count]->push(std::move(work));
|
|
||||||
|
|
||||||
return future;
|
return future;
|
||||||
}
|
}
|
||||||
|
|
||||||
public:
|
public:
|
||||||
std::vector<pthread_t>
|
std::vector<pthread_t>
|
||||||
threads()
|
threads() const
|
||||||
{
|
{
|
||||||
std::vector<pthread_t> rv;
|
return _threads;
|
||||||
|
}
|
||||||
|
|
||||||
for(auto &thread : _threads)
|
public:
|
||||||
rv.push_back(thread.native_handle());
|
Queue&
|
||||||
|
queue()
|
||||||
return rv;
|
{
|
||||||
|
return _queue;
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
Queues _queues;
|
Queue _queue;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::vector<std::thread> _threads;
|
std::atomic<bool> _done;
|
||||||
|
std::string const _name;
|
||||||
private:
|
std::vector<pthread_t> _threads;
|
||||||
const std::size_t _count;
|
|
||||||
std::atomic_uint _index;
|
|
||||||
|
|
||||||
static const unsigned int K = 2;
|
|
||||||
};
|
};
|
||||||
|
@ -5,6 +5,7 @@
|
|||||||
#include "bounded_thread_pool.hpp"
|
#include "bounded_thread_pool.hpp"
|
||||||
#include "cpu.hpp"
|
#include "cpu.hpp"
|
||||||
#include "fmt/core.h"
|
#include "fmt/core.h"
|
||||||
|
#include "make_unique.hpp"
|
||||||
#include "scope_guard.hpp"
|
#include "scope_guard.hpp"
|
||||||
#include "syslog.h"
|
#include "syslog.h"
|
||||||
|
|
||||||
@ -87,6 +88,7 @@ struct AsyncWorker
|
|||||||
DEFER{ fuse_session_exit(_se); };
|
DEFER{ fuse_session_exit(_se); };
|
||||||
DEFER{ sem_post(_finished); };
|
DEFER{ sem_post(_finished); };
|
||||||
|
|
||||||
|
moodycamel::ProducerToken ptok(_process_tp->queue());
|
||||||
while(!fuse_session_exited(_se))
|
while(!fuse_session_exited(_se))
|
||||||
{
|
{
|
||||||
int rv;
|
int rv;
|
||||||
@ -107,10 +109,13 @@ struct AsyncWorker
|
|||||||
return handle_receive_error(rv,msgbuf);
|
return handle_receive_error(rv,msgbuf);
|
||||||
} while(false);
|
} while(false);
|
||||||
|
|
||||||
_process_tp->enqueue_work([=] {
|
auto const func = [=]
|
||||||
|
{
|
||||||
_se->process_buf(_se,msgbuf);
|
_se->process_buf(_se,msgbuf);
|
||||||
msgbuf_free(msgbuf);
|
msgbuf_free(msgbuf);
|
||||||
});
|
};
|
||||||
|
|
||||||
|
_process_tp->enqueue_work(ptok,func);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
582
libfuse/lib/moodycamel/blockingconcurrentqueue.h
Normal file
582
libfuse/lib/moodycamel/blockingconcurrentqueue.h
Normal file
@ -0,0 +1,582 @@
|
|||||||
|
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
|
||||||
|
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
|
||||||
|
// BSD license, available at the top of concurrentqueue.h.
|
||||||
|
// Also dual-licensed under the Boost Software License (see LICENSE.md)
|
||||||
|
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||||
|
// separate zlib license, see lightweightsemaphore.h).
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "concurrentqueue.h"
|
||||||
|
#include "lightweightsemaphore.h"
|
||||||
|
|
||||||
|
#include <type_traits>
|
||||||
|
#include <cerrno>
|
||||||
|
#include <memory>
|
||||||
|
#include <chrono>
|
||||||
|
#include <ctime>
|
||||||
|
|
||||||
|
namespace moodycamel
|
||||||
|
{
|
||||||
|
// This is a blocking version of the queue. It has an almost identical interface to
|
||||||
|
// the normal non-blocking version, with the addition of various wait_dequeue() methods
|
||||||
|
// and the removal of producer-specific dequeue methods.
|
||||||
|
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
|
||||||
|
class BlockingConcurrentQueue
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
|
||||||
|
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
|
||||||
|
|
||||||
|
public:
|
||||||
|
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
|
||||||
|
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
|
||||||
|
|
||||||
|
typedef typename ConcurrentQueue::index_t index_t;
|
||||||
|
typedef typename ConcurrentQueue::size_t size_t;
|
||||||
|
typedef typename std::make_signed<size_t>::type ssize_t;
|
||||||
|
|
||||||
|
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
|
||||||
|
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
|
||||||
|
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
|
||||||
|
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
|
||||||
|
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
|
||||||
|
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
|
||||||
|
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
|
||||||
|
|
||||||
|
public:
|
||||||
|
// Creates a queue with at least `capacity` element slots; note that the
|
||||||
|
// actual number of elements that can be inserted without additional memory
|
||||||
|
// allocation depends on the number of producers and the block size (e.g. if
|
||||||
|
// the block size is equal to `capacity`, only a single block will be allocated
|
||||||
|
// up-front, which means only a single producer will be able to enqueue elements
|
||||||
|
// without an extra allocation -- blocks aren't shared between producers).
|
||||||
|
// This method is not thread safe -- it is up to the user to ensure that the
|
||||||
|
// queue is fully constructed before it starts being used by other threads (this
|
||||||
|
// includes making the memory effects of construction visible, possibly with a
|
||||||
|
// memory barrier).
|
||||||
|
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
|
||||||
|
: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||||
|
{
|
||||||
|
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||||
|
if (!sema) {
|
||||||
|
MOODYCAMEL_THROW(std::bad_alloc());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
|
||||||
|
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||||
|
{
|
||||||
|
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||||
|
if (!sema) {
|
||||||
|
MOODYCAMEL_THROW(std::bad_alloc());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Disable copying and copy assignment
|
||||||
|
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
// Moving is supported, but note that it is *not* a thread-safe operation.
|
||||||
|
// Nobody can use the queue while it's being moved, and the memory effects
|
||||||
|
// of that move must be propagated to other threads before they can use it.
|
||||||
|
// Note: When a queue is moved, its tokens are still valid but can only be
|
||||||
|
// used with the destination queue (i.e. semantically they are moved along
|
||||||
|
// with the queue itself).
|
||||||
|
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
: inner(std::move(other.inner)), sema(std::move(other.sema))
|
||||||
|
{ }
|
||||||
|
|
||||||
|
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
return swap_internal(other);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Swaps this queue's state with the other's. Not thread-safe.
|
||||||
|
// Swapping two queues does not invalidate their tokens, however
|
||||||
|
// the tokens that were created for one queue must be used with
|
||||||
|
// only the swapped queue (i.e. the tokens are tied to the
|
||||||
|
// queue's movable state, not the object itself).
|
||||||
|
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
swap_internal(other);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
|
||||||
|
{
|
||||||
|
if (this == &other) {
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
inner.swap(other.inner);
|
||||||
|
sema.swap(other.sema);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
// Enqueues a single item (by copying it).
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||||
|
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(T const& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible).
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||||
|
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(T&& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(std::move(item)))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(producer_token_t const& token, T const& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(token, item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(producer_token_t const& token, T&& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||||
|
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool enqueue_bulk(It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails
|
||||||
|
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it).
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||||
|
// is 0).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(T const& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(item)) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible).
|
||||||
|
// Does not allocate memory (except for one-time implicit producer).
|
||||||
|
// Fails if not enough room to enqueue (or implicit production is
|
||||||
|
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(T&& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(std::move(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(producer_token_t const& token, T const& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(token, item)) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(producer_token_t const& token, T&& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(token, std::move(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items.
|
||||||
|
// Does not allocate memory (except for one-time implicit producer).
|
||||||
|
// Fails if not enough room to enqueue (or implicit production is
|
||||||
|
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool try_enqueue_bulk(It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Attempts to dequeue from the queue.
|
||||||
|
// Returns false if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool try_dequeue(U& item)
|
||||||
|
{
|
||||||
|
if (sema->tryWait()) {
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue from the queue using an explicit consumer token.
|
||||||
|
// Returns false if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool try_dequeue(consumer_token_t& token, U& item)
|
||||||
|
{
|
||||||
|
if (sema->tryWait()) {
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued.
|
||||||
|
// Returns 0 if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued.
|
||||||
|
// Returns 0 if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Blocks the current thread until there's something to dequeue, then
|
||||||
|
// dequeues it.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline void wait_dequeue(U& item)
|
||||||
|
{
|
||||||
|
while (!sema->wait()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout (specified in microseconds) expires. Returns false
|
||||||
|
// without setting `item` if the timeout expires, otherwise assigns
|
||||||
|
// to `item` and returns true.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
if (!sema->wait(timeout_usecs)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout expires. Returns false without setting `item` if the
|
||||||
|
// timeout expires, otherwise assigns to `item` and returns true.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U, typename Rep, typename Period>
|
||||||
|
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until there's something to dequeue, then
|
||||||
|
// dequeues it using an explicit consumer token.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline void wait_dequeue(consumer_token_t& token, U& item)
|
||||||
|
{
|
||||||
|
while (!sema->wait()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout (specified in microseconds) expires. Returns false
|
||||||
|
// without setting `item` if the timeout expires, otherwise assigns
|
||||||
|
// to `item` and returns true.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
if (!sema->wait(timeout_usecs)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout expires. Returns false without setting `item` if the
|
||||||
|
// timeout expires, otherwise assigns to `item` and returns true.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U, typename Rep, typename Period>
|
||||||
|
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which will
|
||||||
|
// always be at least one (this method blocks until the queue
|
||||||
|
// is non-empty) and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It, typename Rep, typename Period>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which will
|
||||||
|
// always be at least one (this method blocks until the queue
|
||||||
|
// is non-empty) and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It, typename Rep, typename Period>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Returns an estimate of the total number of elements currently in the queue. This
|
||||||
|
// estimate is only accurate if the queue has completely stabilized before it is called
|
||||||
|
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
|
||||||
|
// visible on the calling thread, and no further operations start while this method is
|
||||||
|
// being called).
|
||||||
|
// Thread-safe.
|
||||||
|
inline size_t size_approx() const
|
||||||
|
{
|
||||||
|
return (size_t)sema->availableApprox();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Returns true if the underlying atomic variables used by
|
||||||
|
// the queue are lock-free (they should be on most platforms).
|
||||||
|
// Thread-safe.
|
||||||
|
static constexpr bool is_lock_free()
|
||||||
|
{
|
||||||
|
return ConcurrentQueue::is_lock_free();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
template<typename U, typename A1, typename A2>
|
||||||
|
static inline U* create(A1&& a1, A2&& a2)
|
||||||
|
{
|
||||||
|
void* p = (Traits::malloc)(sizeof(U));
|
||||||
|
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename U>
|
||||||
|
static inline void destroy(U* p)
|
||||||
|
{
|
||||||
|
if (p != nullptr) {
|
||||||
|
p->~U();
|
||||||
|
}
|
||||||
|
(Traits::free)(p);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
ConcurrentQueue inner;
|
||||||
|
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<typename T, typename Traits>
|
||||||
|
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
a.swap(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // end namespace moodycamel
|
3747
libfuse/lib/moodycamel/concurrentqueue.h
Normal file
3747
libfuse/lib/moodycamel/concurrentqueue.h
Normal file
File diff suppressed because it is too large
Load Diff
427
libfuse/lib/moodycamel/lightweightsemaphore.h
Normal file
427
libfuse/lib/moodycamel/lightweightsemaphore.h
Normal file
@ -0,0 +1,427 @@
|
|||||||
|
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||||
|
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||||
|
// under the terms of its separate zlib license) that has been adapted and
|
||||||
|
// extended by Cameron Desrochers.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstddef> // For std::size_t
|
||||||
|
#include <atomic>
|
||||||
|
#include <type_traits> // For std::make_signed<T>
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
// Avoid including windows.h in a header; we only need a handful of
|
||||||
|
// items, so we'll redeclare them here (this is relatively safe since
|
||||||
|
// the API generally has to remain stable between Windows versions).
|
||||||
|
// I know this is an ugly hack but it still beats polluting the global
|
||||||
|
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||||
|
extern "C" {
|
||||||
|
struct _SECURITY_ATTRIBUTES;
|
||||||
|
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||||
|
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||||
|
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||||
|
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||||
|
}
|
||||||
|
#elif defined(__MACH__)
|
||||||
|
#include <mach/mach.h>
|
||||||
|
#elif defined(__MVS__)
|
||||||
|
#include <zos-semaphore.h>
|
||||||
|
#elif defined(__unix__)
|
||||||
|
#include <semaphore.h>
|
||||||
|
|
||||||
|
#if defined(__GLIBC_PREREQ) && defined(_GNU_SOURCE)
|
||||||
|
#if __GLIBC_PREREQ(2,30)
|
||||||
|
#define MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace moodycamel
|
||||||
|
{
|
||||||
|
namespace details
|
||||||
|
{
|
||||||
|
|
||||||
|
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||||
|
// portable + lightweight semaphore implementations, originally from
|
||||||
|
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||||
|
// LICENSE:
|
||||||
|
// Copyright (c) 2015 Jeff Preshing
|
||||||
|
//
|
||||||
|
// This software is provided 'as-is', without any express or implied
|
||||||
|
// warranty. In no event will the authors be held liable for any damages
|
||||||
|
// arising from the use of this software.
|
||||||
|
//
|
||||||
|
// Permission is granted to anyone to use this software for any purpose,
|
||||||
|
// including commercial applications, and to alter it and redistribute it
|
||||||
|
// freely, subject to the following restrictions:
|
||||||
|
//
|
||||||
|
// 1. The origin of this software must not be misrepresented; you must not
|
||||||
|
// claim that you wrote the original software. If you use this software
|
||||||
|
// in a product, an acknowledgement in the product documentation would be
|
||||||
|
// appreciated but is not required.
|
||||||
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||||
|
// misrepresented as being the original software.
|
||||||
|
// 3. This notice may not be removed or altered from any source distribution.
|
||||||
|
#if defined(_WIN32)
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
void* m_hSema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
const long maxLong = 0x7fffffff;
|
||||||
|
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||||
|
assert(m_hSema);
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
CloseHandle(m_hSema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
const unsigned long infinite = 0xffffffff;
|
||||||
|
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t usecs)
|
||||||
|
{
|
||||||
|
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count = 1)
|
||||||
|
{
|
||||||
|
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#elif defined(__MACH__)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// Semaphore (Apple iOS and OSX)
|
||||||
|
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
semaphore_t m_sema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||||
|
assert(rc == KERN_SUCCESS);
|
||||||
|
(void)rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
semaphore_destroy(mach_task_self(), m_sema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
return timed_wait(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
mach_timespec_t ts;
|
||||||
|
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||||
|
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
|
||||||
|
|
||||||
|
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||||
|
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||||
|
return rc == KERN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal()
|
||||||
|
{
|
||||||
|
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count)
|
||||||
|
{
|
||||||
|
while (count-- > 0)
|
||||||
|
{
|
||||||
|
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#elif defined(__unix__) || defined(__MVS__)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// Semaphore (POSIX, Linux, zOS)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
sem_t m_sema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
|
||||||
|
assert(rc == 0);
|
||||||
|
(void)rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
sem_destroy(&m_sema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
rc = sem_wait(&m_sema);
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
rc = sem_trywait(&m_sema);
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t usecs)
|
||||||
|
{
|
||||||
|
struct timespec ts;
|
||||||
|
const int usecs_in_1_sec = 1000000;
|
||||||
|
const int nsecs_in_1_sec = 1000000000;
|
||||||
|
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||||
|
#else
|
||||||
|
clock_gettime(CLOCK_REALTIME, &ts);
|
||||||
|
#endif
|
||||||
|
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
|
||||||
|
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
|
||||||
|
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||||
|
// so we have to clean things up before passing it in
|
||||||
|
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||||
|
ts.tv_nsec -= nsecs_in_1_sec;
|
||||||
|
++ts.tv_sec;
|
||||||
|
}
|
||||||
|
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
rc = sem_clockwait(&m_sema, CLOCK_MONOTONIC, &ts);
|
||||||
|
#else
|
||||||
|
rc = sem_timedwait(&m_sema, &ts);
|
||||||
|
#endif
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal()
|
||||||
|
{
|
||||||
|
while (sem_post(&m_sema) == -1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count)
|
||||||
|
{
|
||||||
|
while (count-- > 0)
|
||||||
|
{
|
||||||
|
while (sem_post(&m_sema) == -1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
#error Unsupported platform! (No semaphore wrapper available)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
} // end namespace details
|
||||||
|
|
||||||
|
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// LightweightSemaphore
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class LightweightSemaphore
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::atomic<ssize_t> m_count;
|
||||||
|
details::Semaphore m_sema;
|
||||||
|
int m_maxSpins;
|
||||||
|
|
||||||
|
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||||
|
{
|
||||||
|
ssize_t oldCount;
|
||||||
|
int spin = m_maxSpins;
|
||||||
|
while (--spin >= 0)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return true;
|
||||||
|
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||||
|
}
|
||||||
|
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||||
|
if (oldCount > 0)
|
||||||
|
return true;
|
||||||
|
if (timeout_usecs < 0)
|
||||||
|
{
|
||||||
|
if (m_sema.wait())
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||||
|
return true;
|
||||||
|
// At this point, we've timed out waiting for the semaphore, but the
|
||||||
|
// count is still decremented indicating we may still be waiting on
|
||||||
|
// it. So we have to re-adjust the count, but only if the semaphore
|
||||||
|
// wasn't signaled enough times for us too since then. If it was, we
|
||||||
|
// need to release the semaphore too.
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_acquire);
|
||||||
|
if (oldCount >= 0 && m_sema.try_wait())
|
||||||
|
return true;
|
||||||
|
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||||
|
{
|
||||||
|
assert(max > 0);
|
||||||
|
ssize_t oldCount;
|
||||||
|
int spin = m_maxSpins;
|
||||||
|
while (--spin >= 0)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
if (oldCount > 0)
|
||||||
|
{
|
||||||
|
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||||
|
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return oldCount - newCount;
|
||||||
|
}
|
||||||
|
std::atomic_signal_fence(std::memory_order_acquire);
|
||||||
|
}
|
||||||
|
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||||
|
if (oldCount <= 0)
|
||||||
|
{
|
||||||
|
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
|
||||||
|
{
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_acquire);
|
||||||
|
if (oldCount >= 0 && m_sema.try_wait())
|
||||||
|
break;
|
||||||
|
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (max > 1)
|
||||||
|
return 1 + tryWaitMany(max - 1);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
assert(maxSpins >= 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool tryWait()
|
||||||
|
{
|
||||||
|
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
while (oldCount > 0)
|
||||||
|
{
|
||||||
|
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
return tryWait() || waitWithPartialSpinning();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait(std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Acquires between 0 and (greedily) max, inclusive
|
||||||
|
ssize_t tryWaitMany(ssize_t max)
|
||||||
|
{
|
||||||
|
assert(max >= 0);
|
||||||
|
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
while (oldCount > 0)
|
||||||
|
{
|
||||||
|
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||||
|
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return oldCount - newCount;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Acquires at least one, and (greedily) at most max
|
||||||
|
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
assert(max >= 0);
|
||||||
|
ssize_t result = tryWaitMany(max);
|
||||||
|
if (result == 0 && max > 0)
|
||||||
|
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
ssize_t waitMany(ssize_t max)
|
||||||
|
{
|
||||||
|
ssize_t result = waitMany(max, -1);
|
||||||
|
assert(result > 0);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(ssize_t count = 1)
|
||||||
|
{
|
||||||
|
assert(count >= 0);
|
||||||
|
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||||
|
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||||
|
if (toRelease > 0)
|
||||||
|
{
|
||||||
|
m_sema.signal((int)toRelease);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::size_t availableApprox() const
|
||||||
|
{
|
||||||
|
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||||
|
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // end namespace moodycamel
|
@ -58,6 +58,17 @@ syslog_log(const int priority_,
|
|||||||
va_end(valist);
|
va_end(valist);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
syslog_debug(const char *format_,
|
||||||
|
...)
|
||||||
|
{
|
||||||
|
va_list valist;
|
||||||
|
|
||||||
|
va_start(valist,format_);
|
||||||
|
syslog_vlog(LOG_DEBUG,format_,valist);
|
||||||
|
va_end(valist);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
syslog_info(const char *format_,
|
syslog_info(const char *format_,
|
||||||
...)
|
...)
|
||||||
|
@ -23,6 +23,7 @@
|
|||||||
|
|
||||||
void syslog_open();
|
void syslog_open();
|
||||||
void syslog_log(const int priority, const char *format, ...);
|
void syslog_log(const int priority, const char *format, ...);
|
||||||
|
void syslog_debug(const char *format, ...);
|
||||||
void syslog_info(const char *format, ...);
|
void syslog_info(const char *format, ...);
|
||||||
void syslog_notice(const char *format, ...);
|
void syslog_notice(const char *format, ...);
|
||||||
void syslog_warning(const char *format, ...);
|
void syslog_warning(const char *format, ...);
|
||||||
|
@ -117,7 +117,7 @@ namespace l
|
|||||||
|
|
||||||
static
|
static
|
||||||
std::vector<int>
|
std::vector<int>
|
||||||
concurrent_readdir(ThreadPool &tp_,
|
concurrent_readdir(UnboundedThreadPool &tp_,
|
||||||
const Branches::CPtr &branches_,
|
const Branches::CPtr &branches_,
|
||||||
const char *dirname_,
|
const char *dirname_,
|
||||||
fuse_dirents_t *buf_,
|
fuse_dirents_t *buf_,
|
||||||
@ -171,7 +171,7 @@ namespace l
|
|||||||
|
|
||||||
static
|
static
|
||||||
int
|
int
|
||||||
readdir(ThreadPool &tp_,
|
readdir(UnboundedThreadPool &tp_,
|
||||||
const Branches::CPtr &branches_,
|
const Branches::CPtr &branches_,
|
||||||
const char *dirname_,
|
const char *dirname_,
|
||||||
fuse_dirents_t *buf_,
|
fuse_dirents_t *buf_,
|
||||||
|
@ -34,6 +34,6 @@ namespace FUSE
|
|||||||
fuse_dirents_t *buf);
|
fuse_dirents_t *buf);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
ThreadPool _tp;
|
UnboundedThreadPool _tp;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@ -63,7 +63,7 @@ namespace l
|
|||||||
static
|
static
|
||||||
inline
|
inline
|
||||||
std::vector<std::future<DIR*>>
|
std::vector<std::future<DIR*>>
|
||||||
opendir(ThreadPool &tp_,
|
opendir(UnboundedThreadPool &tp_,
|
||||||
const Branches::CPtr &branches_,
|
const Branches::CPtr &branches_,
|
||||||
char const *dirname_,
|
char const *dirname_,
|
||||||
uid_t const uid_,
|
uid_t const uid_,
|
||||||
@ -148,7 +148,7 @@ namespace l
|
|||||||
static
|
static
|
||||||
inline
|
inline
|
||||||
int
|
int
|
||||||
readdir(ThreadPool &tp_,
|
readdir(UnboundedThreadPool &tp_,
|
||||||
const Branches::CPtr &branches_,
|
const Branches::CPtr &branches_,
|
||||||
const char *dirname_,
|
const char *dirname_,
|
||||||
fuse_dirents_t *buf_,
|
fuse_dirents_t *buf_,
|
||||||
|
@ -34,6 +34,6 @@ namespace FUSE
|
|||||||
fuse_dirents_t *buf);
|
fuse_dirents_t *buf);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
ThreadPool _tp;
|
UnboundedThreadPool _tp;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
582
src/moodycamel/blockingconcurrentqueue.h
Normal file
582
src/moodycamel/blockingconcurrentqueue.h
Normal file
@ -0,0 +1,582 @@
|
|||||||
|
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
|
||||||
|
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
|
||||||
|
// BSD license, available at the top of concurrentqueue.h.
|
||||||
|
// Also dual-licensed under the Boost Software License (see LICENSE.md)
|
||||||
|
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||||
|
// separate zlib license, see lightweightsemaphore.h).
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "concurrentqueue.h"
|
||||||
|
#include "lightweightsemaphore.h"
|
||||||
|
|
||||||
|
#include <type_traits>
|
||||||
|
#include <cerrno>
|
||||||
|
#include <memory>
|
||||||
|
#include <chrono>
|
||||||
|
#include <ctime>
|
||||||
|
|
||||||
|
namespace moodycamel
|
||||||
|
{
|
||||||
|
// This is a blocking version of the queue. It has an almost identical interface to
|
||||||
|
// the normal non-blocking version, with the addition of various wait_dequeue() methods
|
||||||
|
// and the removal of producer-specific dequeue methods.
|
||||||
|
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
|
||||||
|
class BlockingConcurrentQueue
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
|
||||||
|
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
|
||||||
|
|
||||||
|
public:
|
||||||
|
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
|
||||||
|
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
|
||||||
|
|
||||||
|
typedef typename ConcurrentQueue::index_t index_t;
|
||||||
|
typedef typename ConcurrentQueue::size_t size_t;
|
||||||
|
typedef typename std::make_signed<size_t>::type ssize_t;
|
||||||
|
|
||||||
|
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
|
||||||
|
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
|
||||||
|
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
|
||||||
|
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
|
||||||
|
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
|
||||||
|
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
|
||||||
|
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
|
||||||
|
|
||||||
|
public:
|
||||||
|
// Creates a queue with at least `capacity` element slots; note that the
|
||||||
|
// actual number of elements that can be inserted without additional memory
|
||||||
|
// allocation depends on the number of producers and the block size (e.g. if
|
||||||
|
// the block size is equal to `capacity`, only a single block will be allocated
|
||||||
|
// up-front, which means only a single producer will be able to enqueue elements
|
||||||
|
// without an extra allocation -- blocks aren't shared between producers).
|
||||||
|
// This method is not thread safe -- it is up to the user to ensure that the
|
||||||
|
// queue is fully constructed before it starts being used by other threads (this
|
||||||
|
// includes making the memory effects of construction visible, possibly with a
|
||||||
|
// memory barrier).
|
||||||
|
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
|
||||||
|
: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||||
|
{
|
||||||
|
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||||
|
if (!sema) {
|
||||||
|
MOODYCAMEL_THROW(std::bad_alloc());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
|
||||||
|
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||||
|
{
|
||||||
|
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||||
|
if (!sema) {
|
||||||
|
MOODYCAMEL_THROW(std::bad_alloc());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Disable copying and copy assignment
|
||||||
|
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
// Moving is supported, but note that it is *not* a thread-safe operation.
|
||||||
|
// Nobody can use the queue while it's being moved, and the memory effects
|
||||||
|
// of that move must be propagated to other threads before they can use it.
|
||||||
|
// Note: When a queue is moved, its tokens are still valid but can only be
|
||||||
|
// used with the destination queue (i.e. semantically they are moved along
|
||||||
|
// with the queue itself).
|
||||||
|
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
: inner(std::move(other.inner)), sema(std::move(other.sema))
|
||||||
|
{ }
|
||||||
|
|
||||||
|
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
return swap_internal(other);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Swaps this queue's state with the other's. Not thread-safe.
|
||||||
|
// Swapping two queues does not invalidate their tokens, however
|
||||||
|
// the tokens that were created for one queue must be used with
|
||||||
|
// only the swapped queue (i.e. the tokens are tied to the
|
||||||
|
// queue's movable state, not the object itself).
|
||||||
|
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
swap_internal(other);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
|
||||||
|
{
|
||||||
|
if (this == &other) {
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
inner.swap(other.inner);
|
||||||
|
sema.swap(other.sema);
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
// Enqueues a single item (by copying it).
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||||
|
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(T const& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible).
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||||
|
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(T&& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(std::move(item)))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(producer_token_t const& token, T const& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(token, item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool enqueue(producer_token_t const& token, T&& item)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||||
|
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||||
|
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool enqueue_bulk(It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items using an explicit producer token.
|
||||||
|
// Allocates memory if required. Only fails if memory allocation fails
|
||||||
|
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it).
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
|
||||||
|
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||||
|
// is 0).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(T const& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(item)) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible).
|
||||||
|
// Does not allocate memory (except for one-time implicit producer).
|
||||||
|
// Fails if not enough room to enqueue (or implicit production is
|
||||||
|
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(T&& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(std::move(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(producer_token_t const& token, T const& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(token, item)) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Thread-safe.
|
||||||
|
inline bool try_enqueue(producer_token_t const& token, T&& item)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue(token, std::move(item))) {
|
||||||
|
sema->signal();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items.
|
||||||
|
// Does not allocate memory (except for one-time implicit producer).
|
||||||
|
// Fails if not enough room to enqueue (or implicit production is
|
||||||
|
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool try_enqueue_bulk(It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enqueues several items using an explicit producer token.
|
||||||
|
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||||
|
// Note: Use std::make_move_iterator if the elements should be moved
|
||||||
|
// instead of copied.
|
||||||
|
// Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||||
|
{
|
||||||
|
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
|
||||||
|
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Attempts to dequeue from the queue.
|
||||||
|
// Returns false if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool try_dequeue(U& item)
|
||||||
|
{
|
||||||
|
if (sema->tryWait()) {
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue from the queue using an explicit consumer token.
|
||||||
|
// Returns false if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool try_dequeue(consumer_token_t& token, U& item)
|
||||||
|
{
|
||||||
|
if (sema->tryWait()) {
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued.
|
||||||
|
// Returns 0 if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued.
|
||||||
|
// Returns 0 if all producer streams appeared empty at the time they
|
||||||
|
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Blocks the current thread until there's something to dequeue, then
|
||||||
|
// dequeues it.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline void wait_dequeue(U& item)
|
||||||
|
{
|
||||||
|
while (!sema->wait()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout (specified in microseconds) expires. Returns false
|
||||||
|
// without setting `item` if the timeout expires, otherwise assigns
|
||||||
|
// to `item` and returns true.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
if (!sema->wait(timeout_usecs)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout expires. Returns false without setting `item` if the
|
||||||
|
// timeout expires, otherwise assigns to `item` and returns true.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U, typename Rep, typename Period>
|
||||||
|
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until there's something to dequeue, then
|
||||||
|
// dequeues it using an explicit consumer token.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline void wait_dequeue(consumer_token_t& token, U& item)
|
||||||
|
{
|
||||||
|
while (!sema->wait()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout (specified in microseconds) expires. Returns false
|
||||||
|
// without setting `item` if the timeout expires, otherwise assigns
|
||||||
|
// to `item` and returns true.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U>
|
||||||
|
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
if (!sema->wait(timeout_usecs)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
while (!inner.try_dequeue(token, item)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Blocks the current thread until either there's something to dequeue
|
||||||
|
// or the timeout expires. Returns false without setting `item` if the
|
||||||
|
// timeout expires, otherwise assigns to `item` and returns true.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename U, typename Rep, typename Period>
|
||||||
|
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which will
|
||||||
|
// always be at least one (this method blocks until the queue
|
||||||
|
// is non-empty) and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It, typename Rep, typename Period>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which will
|
||||||
|
// always be at least one (this method blocks until the queue
|
||||||
|
// is non-empty) and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Using a negative timeout indicates an indefinite timeout,
|
||||||
|
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
size_t count = 0;
|
||||||
|
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||||
|
while (count != max) {
|
||||||
|
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||||
|
// Returns the number of items actually dequeued, which can
|
||||||
|
// be 0 if the timeout expires while waiting for elements,
|
||||||
|
// and at most max.
|
||||||
|
// Never allocates. Thread-safe.
|
||||||
|
template<typename It, typename Rep, typename Period>
|
||||||
|
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||||
|
{
|
||||||
|
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Returns an estimate of the total number of elements currently in the queue. This
|
||||||
|
// estimate is only accurate if the queue has completely stabilized before it is called
|
||||||
|
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
|
||||||
|
// visible on the calling thread, and no further operations start while this method is
|
||||||
|
// being called).
|
||||||
|
// Thread-safe.
|
||||||
|
inline size_t size_approx() const
|
||||||
|
{
|
||||||
|
return (size_t)sema->availableApprox();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Returns true if the underlying atomic variables used by
|
||||||
|
// the queue are lock-free (they should be on most platforms).
|
||||||
|
// Thread-safe.
|
||||||
|
static constexpr bool is_lock_free()
|
||||||
|
{
|
||||||
|
return ConcurrentQueue::is_lock_free();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
template<typename U, typename A1, typename A2>
|
||||||
|
static inline U* create(A1&& a1, A2&& a2)
|
||||||
|
{
|
||||||
|
void* p = (Traits::malloc)(sizeof(U));
|
||||||
|
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename U>
|
||||||
|
static inline void destroy(U* p)
|
||||||
|
{
|
||||||
|
if (p != nullptr) {
|
||||||
|
p->~U();
|
||||||
|
}
|
||||||
|
(Traits::free)(p);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
ConcurrentQueue inner;
|
||||||
|
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<typename T, typename Traits>
|
||||||
|
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
|
||||||
|
{
|
||||||
|
a.swap(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // end namespace moodycamel
|
3747
src/moodycamel/concurrentqueue.h
Normal file
3747
src/moodycamel/concurrentqueue.h
Normal file
File diff suppressed because it is too large
Load Diff
427
src/moodycamel/lightweightsemaphore.h
Normal file
427
src/moodycamel/lightweightsemaphore.h
Normal file
@ -0,0 +1,427 @@
|
|||||||
|
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||||
|
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||||
|
// under the terms of its separate zlib license) that has been adapted and
|
||||||
|
// extended by Cameron Desrochers.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstddef> // For std::size_t
|
||||||
|
#include <atomic>
|
||||||
|
#include <type_traits> // For std::make_signed<T>
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
// Avoid including windows.h in a header; we only need a handful of
|
||||||
|
// items, so we'll redeclare them here (this is relatively safe since
|
||||||
|
// the API generally has to remain stable between Windows versions).
|
||||||
|
// I know this is an ugly hack but it still beats polluting the global
|
||||||
|
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||||
|
extern "C" {
|
||||||
|
struct _SECURITY_ATTRIBUTES;
|
||||||
|
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||||
|
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||||
|
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||||
|
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||||
|
}
|
||||||
|
#elif defined(__MACH__)
|
||||||
|
#include <mach/mach.h>
|
||||||
|
#elif defined(__MVS__)
|
||||||
|
#include <zos-semaphore.h>
|
||||||
|
#elif defined(__unix__)
|
||||||
|
#include <semaphore.h>
|
||||||
|
|
||||||
|
#if defined(__GLIBC_PREREQ) && defined(_GNU_SOURCE)
|
||||||
|
#if __GLIBC_PREREQ(2,30)
|
||||||
|
#define MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace moodycamel
|
||||||
|
{
|
||||||
|
namespace details
|
||||||
|
{
|
||||||
|
|
||||||
|
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||||
|
// portable + lightweight semaphore implementations, originally from
|
||||||
|
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||||
|
// LICENSE:
|
||||||
|
// Copyright (c) 2015 Jeff Preshing
|
||||||
|
//
|
||||||
|
// This software is provided 'as-is', without any express or implied
|
||||||
|
// warranty. In no event will the authors be held liable for any damages
|
||||||
|
// arising from the use of this software.
|
||||||
|
//
|
||||||
|
// Permission is granted to anyone to use this software for any purpose,
|
||||||
|
// including commercial applications, and to alter it and redistribute it
|
||||||
|
// freely, subject to the following restrictions:
|
||||||
|
//
|
||||||
|
// 1. The origin of this software must not be misrepresented; you must not
|
||||||
|
// claim that you wrote the original software. If you use this software
|
||||||
|
// in a product, an acknowledgement in the product documentation would be
|
||||||
|
// appreciated but is not required.
|
||||||
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||||
|
// misrepresented as being the original software.
|
||||||
|
// 3. This notice may not be removed or altered from any source distribution.
|
||||||
|
#if defined(_WIN32)
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
void* m_hSema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
const long maxLong = 0x7fffffff;
|
||||||
|
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||||
|
assert(m_hSema);
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
CloseHandle(m_hSema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
const unsigned long infinite = 0xffffffff;
|
||||||
|
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t usecs)
|
||||||
|
{
|
||||||
|
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count = 1)
|
||||||
|
{
|
||||||
|
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#elif defined(__MACH__)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// Semaphore (Apple iOS and OSX)
|
||||||
|
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
semaphore_t m_sema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||||
|
assert(rc == KERN_SUCCESS);
|
||||||
|
(void)rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
semaphore_destroy(mach_task_self(), m_sema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
return timed_wait(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
mach_timespec_t ts;
|
||||||
|
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||||
|
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
|
||||||
|
|
||||||
|
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||||
|
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||||
|
return rc == KERN_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal()
|
||||||
|
{
|
||||||
|
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count)
|
||||||
|
{
|
||||||
|
while (count-- > 0)
|
||||||
|
{
|
||||||
|
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#elif defined(__unix__) || defined(__MVS__)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// Semaphore (POSIX, Linux, zOS)
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class Semaphore
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
sem_t m_sema;
|
||||||
|
|
||||||
|
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||||
|
|
||||||
|
public:
|
||||||
|
Semaphore(int initialCount = 0)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
|
||||||
|
assert(rc == 0);
|
||||||
|
(void)rc;
|
||||||
|
}
|
||||||
|
|
||||||
|
~Semaphore()
|
||||||
|
{
|
||||||
|
sem_destroy(&m_sema);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
rc = sem_wait(&m_sema);
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool try_wait()
|
||||||
|
{
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
rc = sem_trywait(&m_sema);
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool timed_wait(std::uint64_t usecs)
|
||||||
|
{
|
||||||
|
struct timespec ts;
|
||||||
|
const int usecs_in_1_sec = 1000000;
|
||||||
|
const int nsecs_in_1_sec = 1000000000;
|
||||||
|
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||||
|
#else
|
||||||
|
clock_gettime(CLOCK_REALTIME, &ts);
|
||||||
|
#endif
|
||||||
|
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
|
||||||
|
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
|
||||||
|
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||||
|
// so we have to clean things up before passing it in
|
||||||
|
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||||
|
ts.tv_nsec -= nsecs_in_1_sec;
|
||||||
|
++ts.tv_sec;
|
||||||
|
}
|
||||||
|
|
||||||
|
int rc;
|
||||||
|
do {
|
||||||
|
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||||
|
rc = sem_clockwait(&m_sema, CLOCK_MONOTONIC, &ts);
|
||||||
|
#else
|
||||||
|
rc = sem_timedwait(&m_sema, &ts);
|
||||||
|
#endif
|
||||||
|
} while (rc == -1 && errno == EINTR);
|
||||||
|
return rc == 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal()
|
||||||
|
{
|
||||||
|
while (sem_post(&m_sema) == -1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(int count)
|
||||||
|
{
|
||||||
|
while (count-- > 0)
|
||||||
|
{
|
||||||
|
while (sem_post(&m_sema) == -1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
#error Unsupported platform! (No semaphore wrapper available)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
} // end namespace details
|
||||||
|
|
||||||
|
|
||||||
|
//---------------------------------------------------------
|
||||||
|
// LightweightSemaphore
|
||||||
|
//---------------------------------------------------------
|
||||||
|
class LightweightSemaphore
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::atomic<ssize_t> m_count;
|
||||||
|
details::Semaphore m_sema;
|
||||||
|
int m_maxSpins;
|
||||||
|
|
||||||
|
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||||
|
{
|
||||||
|
ssize_t oldCount;
|
||||||
|
int spin = m_maxSpins;
|
||||||
|
while (--spin >= 0)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return true;
|
||||||
|
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||||
|
}
|
||||||
|
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||||
|
if (oldCount > 0)
|
||||||
|
return true;
|
||||||
|
if (timeout_usecs < 0)
|
||||||
|
{
|
||||||
|
if (m_sema.wait())
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||||
|
return true;
|
||||||
|
// At this point, we've timed out waiting for the semaphore, but the
|
||||||
|
// count is still decremented indicating we may still be waiting on
|
||||||
|
// it. So we have to re-adjust the count, but only if the semaphore
|
||||||
|
// wasn't signaled enough times for us too since then. If it was, we
|
||||||
|
// need to release the semaphore too.
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_acquire);
|
||||||
|
if (oldCount >= 0 && m_sema.try_wait())
|
||||||
|
return true;
|
||||||
|
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||||
|
{
|
||||||
|
assert(max > 0);
|
||||||
|
ssize_t oldCount;
|
||||||
|
int spin = m_maxSpins;
|
||||||
|
while (--spin >= 0)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
if (oldCount > 0)
|
||||||
|
{
|
||||||
|
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||||
|
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return oldCount - newCount;
|
||||||
|
}
|
||||||
|
std::atomic_signal_fence(std::memory_order_acquire);
|
||||||
|
}
|
||||||
|
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||||
|
if (oldCount <= 0)
|
||||||
|
{
|
||||||
|
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
|
||||||
|
{
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
oldCount = m_count.load(std::memory_order_acquire);
|
||||||
|
if (oldCount >= 0 && m_sema.try_wait())
|
||||||
|
break;
|
||||||
|
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (max > 1)
|
||||||
|
return 1 + tryWaitMany(max - 1);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
|
||||||
|
{
|
||||||
|
assert(initialCount >= 0);
|
||||||
|
assert(maxSpins >= 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool tryWait()
|
||||||
|
{
|
||||||
|
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
while (oldCount > 0)
|
||||||
|
{
|
||||||
|
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait()
|
||||||
|
{
|
||||||
|
return tryWait() || waitWithPartialSpinning();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool wait(std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Acquires between 0 and (greedily) max, inclusive
|
||||||
|
ssize_t tryWaitMany(ssize_t max)
|
||||||
|
{
|
||||||
|
assert(max >= 0);
|
||||||
|
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||||
|
while (oldCount > 0)
|
||||||
|
{
|
||||||
|
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||||
|
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||||
|
return oldCount - newCount;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Acquires at least one, and (greedily) at most max
|
||||||
|
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||||
|
{
|
||||||
|
assert(max >= 0);
|
||||||
|
ssize_t result = tryWaitMany(max);
|
||||||
|
if (result == 0 && max > 0)
|
||||||
|
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
ssize_t waitMany(ssize_t max)
|
||||||
|
{
|
||||||
|
ssize_t result = waitMany(max, -1);
|
||||||
|
assert(result > 0);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void signal(ssize_t count = 1)
|
||||||
|
{
|
||||||
|
assert(count >= 0);
|
||||||
|
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||||
|
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||||
|
if (toRelease > 0)
|
||||||
|
{
|
||||||
|
m_sema.signal((int)toRelease);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::size_t availableApprox() const
|
||||||
|
{
|
||||||
|
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||||
|
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // end namespace moodycamel
|
@ -56,6 +56,17 @@ syslog_log(const int priority_,
|
|||||||
va_end(valist);
|
va_end(valist);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
syslog_debug(const char *format_,
|
||||||
|
...)
|
||||||
|
{
|
||||||
|
va_list valist;
|
||||||
|
|
||||||
|
va_start(valist,format_);
|
||||||
|
syslog_log(LOG_DEBUG,format_,valist);
|
||||||
|
va_end(valist);
|
||||||
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
syslog_info(const char *format_,
|
syslog_info(const char *format_,
|
||||||
...)
|
...)
|
||||||
|
@ -23,6 +23,7 @@
|
|||||||
|
|
||||||
void syslog_open();
|
void syslog_open();
|
||||||
void syslog_log(const int priority, const char *format, ...);
|
void syslog_log(const int priority, const char *format, ...);
|
||||||
|
void syslog_debug(const char *format, ...);
|
||||||
void syslog_info(const char *format, ...);
|
void syslog_info(const char *format, ...);
|
||||||
void syslog_notice(const char *format, ...);
|
void syslog_notice(const char *format, ...);
|
||||||
void syslog_warning(const char *format, ...);
|
void syslog_warning(const char *format, ...);
|
||||||
|
@ -1,161 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
#include <condition_variable>
|
|
||||||
#include <mutex>
|
|
||||||
#include <queue>
|
|
||||||
#include <utility>
|
|
||||||
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
class UnboundedQueue
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
explicit
|
|
||||||
UnboundedQueue(bool block_ = true)
|
|
||||||
: _block(block_)
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
push(const T& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_queue.push(item_);
|
|
||||||
}
|
|
||||||
_condition.notify_one();
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
push(T&& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_queue.push(std::move(item_));
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition.notify_one();
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename... Args>
|
|
||||||
void
|
|
||||||
emplace(Args&&... args_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_queue.emplace(std::forward<Args>(args_)...);
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition.notify_one();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
try_push(const T& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> lock(_queue_lock, std::try_to_lock);
|
|
||||||
if(!lock)
|
|
||||||
return false;
|
|
||||||
_queue.push(item_);
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition.notify_one();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
try_push(T&& item_)
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> lock(_queue_lock, std::try_to_lock);
|
|
||||||
if(!lock)
|
|
||||||
return false;
|
|
||||||
_queue.push(std::move(item_));
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition.notify_one();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
//TODO: push multiple T at once
|
|
||||||
|
|
||||||
bool
|
|
||||||
pop(T& item_)
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
_condition.wait(guard, [&]() { return !_queue.empty() || !_block; });
|
|
||||||
if(_queue.empty())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
item_ = std::move(_queue.front());
|
|
||||||
_queue.pop();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
try_pop(T& item_)
|
|
||||||
{
|
|
||||||
std::unique_lock<std::mutex> lock(_queue_lock, std::try_to_lock);
|
|
||||||
if(!lock || _queue.empty())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
item_ = std::move(_queue.front());
|
|
||||||
_queue.pop();
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::size_t
|
|
||||||
size() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _queue.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
empty() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _queue.empty();
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
block()
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_block = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
void
|
|
||||||
unblock()
|
|
||||||
{
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
_block = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
_condition.notify_all();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool
|
|
||||||
blocking() const
|
|
||||||
{
|
|
||||||
std::lock_guard<std::mutex> guard(_queue_lock);
|
|
||||||
|
|
||||||
return _block;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
mutable std::mutex _queue_lock;
|
|
||||||
|
|
||||||
private:
|
|
||||||
bool _block;
|
|
||||||
std::queue<T> _queue;
|
|
||||||
std::condition_variable _condition;
|
|
||||||
};
|
|
@ -1,54 +1,43 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "unbounded_queue.hpp"
|
#include "moodycamel/blockingconcurrentqueue.h"
|
||||||
|
|
||||||
#include "syslog.hpp"
|
#include "syslog.hpp"
|
||||||
|
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
#include <csignal>
|
#include <csignal>
|
||||||
#include <functional>
|
#include <cstring>
|
||||||
#include <future>
|
#include <future>
|
||||||
#include <memory>
|
#include <memory>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <string>
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <tuple>
|
|
||||||
#include <type_traits>
|
|
||||||
#include <utility>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
class ThreadPool
|
struct UnboundedThreadPoolTraits : public moodycamel::ConcurrentQueueDefaultTraits
|
||||||
{
|
{
|
||||||
|
static const int MAX_SEMA_SPINS = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class UnboundedThreadPool
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
using Func = std::function<void(void)>;
|
||||||
|
using Queue = moodycamel::BlockingConcurrentQueue<Func,UnboundedThreadPoolTraits>;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
explicit
|
explicit
|
||||||
ThreadPool(std::size_t const thread_count_ = std::thread::hardware_concurrency(),
|
UnboundedThreadPool(std::size_t const thread_count_ = std::thread::hardware_concurrency(),
|
||||||
std::string const name_ = {})
|
std::string const name_ = {})
|
||||||
: _queues(thread_count_),
|
: _queue(thread_count_,thread_count_,thread_count_),
|
||||||
_count(thread_count_),
|
_done(false),
|
||||||
_name(name_)
|
_name(name_)
|
||||||
{
|
{
|
||||||
syslog_info("threadpool: spawning %zu threads named '%s'",
|
syslog_debug("threadpool: spawning %zu threads named '%s'",
|
||||||
_count,
|
thread_count_,
|
||||||
_name.c_str());
|
_name.c_str());
|
||||||
|
|
||||||
auto worker = [this](std::size_t i)
|
|
||||||
{
|
|
||||||
while(true)
|
|
||||||
{
|
|
||||||
Proc f;
|
|
||||||
|
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
|
||||||
{
|
|
||||||
if(_queues[(i + n) % _count].try_pop(f))
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!f && !_queues[i].pop(f))
|
|
||||||
break;
|
|
||||||
|
|
||||||
f();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
sigset_t oldset;
|
sigset_t oldset;
|
||||||
sigset_t newset;
|
sigset_t newset;
|
||||||
|
|
||||||
@ -57,52 +46,95 @@ public:
|
|||||||
|
|
||||||
_threads.reserve(thread_count_);
|
_threads.reserve(thread_count_);
|
||||||
for(std::size_t i = 0; i < thread_count_; ++i)
|
for(std::size_t i = 0; i < thread_count_; ++i)
|
||||||
_threads.emplace_back(worker, i);
|
|
||||||
if(!_name.empty())
|
|
||||||
{
|
{
|
||||||
for(auto &t : _threads)
|
int rv;
|
||||||
pthread_setname_np(t.native_handle(),_name.c_str());
|
pthread_t t;
|
||||||
|
|
||||||
|
rv = pthread_create(&t,NULL,UnboundedThreadPool::start_routine,this);
|
||||||
|
if(rv != 0)
|
||||||
|
{
|
||||||
|
syslog_warning("threadpool: error spawning thread - %d (%s)",
|
||||||
|
rv,
|
||||||
|
strerror(rv));
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!_name.empty())
|
||||||
|
pthread_setname_np(t,_name.c_str());
|
||||||
|
|
||||||
|
_threads.push_back(t);
|
||||||
}
|
}
|
||||||
|
|
||||||
pthread_sigmask(SIG_SETMASK,&oldset,NULL);
|
pthread_sigmask(SIG_SETMASK,&oldset,NULL);
|
||||||
|
|
||||||
|
if(_threads.empty())
|
||||||
|
throw std::runtime_error("threadpool: failed to spawn any threads");
|
||||||
}
|
}
|
||||||
|
|
||||||
~ThreadPool()
|
~UnboundedThreadPool()
|
||||||
{
|
{
|
||||||
syslog_info("threadpool: destroying %zu threads named '%s'",
|
syslog_debug("threadpool: destroying %zu threads named '%s'",
|
||||||
_count,
|
_threads.size(),
|
||||||
_name.c_str());
|
_name.c_str());
|
||||||
|
|
||||||
for(auto& queue : _queues)
|
_done.store(true,std::memory_order_relaxed);
|
||||||
queue.unblock();
|
|
||||||
for(auto& thread : _threads)
|
for(auto t : _threads)
|
||||||
thread.join();
|
pthread_cancel(t);
|
||||||
|
|
||||||
|
Func f;
|
||||||
|
while(_queue.try_dequeue(f))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
for(auto t : _threads)
|
||||||
|
pthread_join(t,NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename F>
|
private:
|
||||||
|
static
|
||||||
|
void*
|
||||||
|
start_routine(void *arg_)
|
||||||
|
{
|
||||||
|
UnboundedThreadPool *btp = static_cast<UnboundedThreadPool*>(arg_);
|
||||||
|
UnboundedThreadPool::Func func;
|
||||||
|
std::atomic<bool> &done = btp->_done;
|
||||||
|
UnboundedThreadPool::Queue &q = btp->_queue;
|
||||||
|
moodycamel::ConsumerToken ctok(btp->_queue);
|
||||||
|
|
||||||
|
while(!done.load(std::memory_order_relaxed))
|
||||||
|
{
|
||||||
|
q.wait_dequeue(ctok,func);
|
||||||
|
|
||||||
|
func();
|
||||||
|
}
|
||||||
|
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
template<typename FuncType>
|
||||||
void
|
void
|
||||||
enqueue_work(F&& f_)
|
enqueue_work(moodycamel::ProducerToken &ptok_,
|
||||||
|
FuncType &&f_)
|
||||||
{
|
{
|
||||||
auto i = _index.fetch_add(1,std::memory_order_relaxed);
|
_queue.enqueue(ptok_,f_);
|
||||||
|
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
|
||||||
{
|
|
||||||
if(_queues[(i + n) % _count].try_push(f_))
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_queues[i % _count].push(std::move(f_));
|
template<typename FuncType>
|
||||||
|
void
|
||||||
|
enqueue_work(FuncType &&f_)
|
||||||
|
{
|
||||||
|
_queue.enqueue(f_);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename F>
|
template<typename FuncType>
|
||||||
[[nodiscard]]
|
[[nodiscard]]
|
||||||
std::future<typename std::result_of<F()>::type>
|
std::future<typename std::result_of<FuncType()>::type>
|
||||||
enqueue_task(F&& f_)
|
enqueue_task(FuncType&& f_)
|
||||||
{
|
{
|
||||||
using TaskReturnType = typename std::result_of<F()>::type;
|
using TaskReturnType = typename std::result_of<FuncType()>::type;
|
||||||
using Promise = std::promise<TaskReturnType>;
|
using Promise = std::promise<TaskReturnType>;
|
||||||
|
|
||||||
auto i = _index.fetch_add(1,std::memory_order_relaxed);
|
|
||||||
auto promise = std::make_shared<Promise>();
|
auto promise = std::make_shared<Promise>();
|
||||||
auto future = promise->get_future();
|
auto future = promise->get_future();
|
||||||
auto work = [=]()
|
auto work = [=]()
|
||||||
@ -111,42 +143,30 @@ public:
|
|||||||
promise->set_value(rv);
|
promise->set_value(rv);
|
||||||
};
|
};
|
||||||
|
|
||||||
for(std::size_t n = 0; n < (_count * K); ++n)
|
_queue.enqueue(work);
|
||||||
{
|
|
||||||
if(_queues[(i + n) % _count].try_push(work))
|
|
||||||
return future;
|
|
||||||
}
|
|
||||||
|
|
||||||
_queues[i % _count].push(std::move(work));
|
|
||||||
|
|
||||||
return future;
|
return future;
|
||||||
}
|
}
|
||||||
|
|
||||||
public:
|
public:
|
||||||
std::vector<pthread_t>
|
std::vector<pthread_t>
|
||||||
threads()
|
threads() const
|
||||||
{
|
{
|
||||||
std::vector<pthread_t> rv;
|
return _threads;
|
||||||
|
}
|
||||||
|
|
||||||
for(auto &thread : _threads)
|
public:
|
||||||
rv.push_back(thread.native_handle());
|
Queue&
|
||||||
|
queue()
|
||||||
return rv;
|
{
|
||||||
|
return _queue;
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
using Proc = std::function<void(void)>;
|
Queue _queue;
|
||||||
using Queue = UnboundedQueue<Proc>;
|
|
||||||
using Queues = std::vector<Queue>;
|
|
||||||
Queues _queues;
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::vector<std::thread> _threads;
|
std::atomic<bool> _done;
|
||||||
|
|
||||||
private:
|
|
||||||
std::size_t const _count;
|
|
||||||
std::atomic_uint _index;
|
|
||||||
std::string const _name;
|
std::string const _name;
|
||||||
|
std::vector<pthread_t> _threads;
|
||||||
static const unsigned int K = 2;
|
|
||||||
};
|
};
|
||||||
|
Loading…
x
Reference in New Issue
Block a user