

w: www.mariadb.com

e: info@mariadb.com

Page: 1

MariaDB MaxScale

Configuration & Usage Scenarios

Mark Riddoch

w: www.mariadb.com

e: info@mariadb.com

Page: 2

Contents
Document History ... 5

Introduction ... 7

Terms .. 7

Configuration .. 9

Global Settings .. 9

Threads ... 9

Service .. 10

Router .. 10

Filters ... 11

Servers .. 11

User ... 11

Passwd .. 12

weightby .. 13

Server.. 14

Address ... 14

Port .. 14

Protocol ... 14

Monitoruser .. 15

MonitorPw .. 15

Listener ... 15

Service ... 15

Protocol ... 15

Address ... 16

Port .. 16

Filter .. 16

Module ... 17

Options .. 17

Other Parameters .. 17

Monitor .. 18

Module ... 19

w: www.mariadb.com

e: info@mariadb.com

Page: 3

Servers .. 19

User ... 19

Passwd .. 19

Protocol Modules .. 22

MySQLClient ... 22

MySQLBackend .. 22

Telnetd .. 22

maxscaled ... 22

HTTPD .. 22

Router Modules ... 23

Connection Based Routing .. 23

Statement Based Routing .. 23

Available Routing Modules .. 23

Readconnroute .. 23

Read/Write Split router ... 27

Debugcli ... 32

CLI ... 34

Monitor Modules ... 35

Mysqlmon .. 35

Galeramon .. 36

Filter Modules ... 39

Statement Counting Filter .. 39

Query Log All Filter .. 40

Regular Expression Filter .. 40

Tee Filter ... 41

Top Filter ... 42

Encrypting Passwords ... 43

Creating Encrypted Passwords ... 43

Configuration Updates .. 44

Limitations ... 44

Authentication ... 45

w: www.mariadb.com

e: info@mariadb.com

Page: 4

Wildcard Hosts .. 46

Limitations ... 46

Error Reporting ... 48

w: www.mariadb.com

e: info@mariadb.com

Page: 5

Document History

Date Change Who

21st July 2013 Initial version Mark Riddoch

23rd July 2013 Addition of default user and password for a
monitor and discussion of monitor user
requirements
New monitor documented for Galera
clusters
Addition of example Galera cluster
configuration

Mark Riddoch

13th November 2013 state for Galera Monitor is “synced” Massimiliano Pinto

2nd December 2013 Updated the description of the command
line arguments to match the code updates.
Improved descriptions and general
documentation.
Enhanced example configurations

Mark Riddoch

6th February 2014 Added “enable_root_user” as a service
parameter

Massimiliano Pinto

7th February 2014 Addition of bind address information
Clarification of user configuration required
for monitoring users and the user needed to
fetch the user data

Mark Riddoch

3rd March 2014 MySQL authentication with hostnames Massimiliano Pinto

3rd March 2014 Addition of section that describes
authentication requirements and the rules
for creating user credentials

Mark Riddoch

28th March 2014 Unix socket support Massimiliano Pinto

8th May 2014 Added “version_string” parameter in service Massimiliano Pinto

29th May 2014 Added troubleshooting section Massimiliano Pinto

2nd June 2014 Correction of some typos, clarification of the
meaning of session modification statements
and the default user for the CLI.
Addition of debugcli configuration option for
developer and user modes.

Mark Riddoch

w: www.mariadb.com

e: info@mariadb.com

Page: 6

4th June 2014 Addition of “monitor_interval” for monitors Massimiliano Pinto

6th June 2014 Addition of filters sections Mark Riddoch

27th June 2014 Addition of server weighting, the
configuration for the maxadmin client

Mark Riddoch

2nd July 2014 Addition of new readwritesplit router options
with description and examples.

Vilho Raatikka

28th August 2014 Addition of “detect_stale_master” option for
MySQL monitor

Massimiliano Pinto

26th September 2014 Addition of ‘localhost_match_wildcard_host’
service option

Massimiliano Pinto

24th October 2014 Addition of “disable_master_failback” option
for Galera monitor

Massimiliano Pinto

4th November 2014 Addition of timeouts for all monitors Massimiliano Pinto

11th November 2014 Addition of missing top filter Mark Riddoch

w: www.mariadb.com

e: info@mariadb.com

Page: 7

Introduction

The purpose of this document is to describe how to configure MaxScale and to discuss

some possible usage scenarios for MaxScale. MaxScale is designed with flexibility in mind,

and consists of an event processing core with various support functions and plugin modules

that tailor the behaviour of the MaxScale itself.

Terms

Term Description

service A service represents a set of databases with a specific access
mechanism that is offered to clients of MaxScale. The access
mechanism defines the algorithm that MaxScale will use to direct
particular requests to the individual databases.

server A server represents an individual database server to which a
client can be connected via MaxScale.

router A router is a module within MaxScale that will route client
requests to the various database servers which MaxScale
provides a service interface to.

connection routing Connection routing is a method of handling requests in which
MaxScale will accept connections from a client and route data on
that connection to a single database using a single connection.
Connection based routing will not examine individual requests on
a connection and it will not move that connection once it is
established.

statement routing Statement routing is a method of handling requests in which each
request within a connection will be handled individually. Requests
may be sent to one or more servers and connections may be
dynamically added or removed from the session.

protocol A protocol is a module of software that is used to communicate
with another software entity within the system. MaxScale supports
the dynamic loading of protocol modules to allow for increased
flexibility.

module A module is a separate code entity that may be loaded
dynamically into MaxScale to increase the available functionality.
Modules are implemented as run-time loadable shared objects.

w: www.mariadb.com

e: info@mariadb.com

Page: 8

monitor A monitor is a module that can be executed within MaxScale to
monitor the state of a set of database. The use of an internal
monitor is optional, monitoring may be performed externally to
MaxScale.

listener A listener is the network endpoint that is used to listen for
connections to MaxScale from the client applications. A listener is
associated to a single service, however a service may have many
listeners.

connection failover When a connection currently being used between MaxScale and
the database server fails a replacement will be automatically
created to another server by MaxScale without client intervention

backend database A term used to refer to a database that sits behind MaxScale and
is accessed by applications via MaxScale.

filter A module that can be placed between the client and the
MaxScale router module. All client data passes through the filter
module and may be examined or modified by the filter modules.

Filters may be chained together to form processing pipelines.

w: www.mariadb.com

e: info@mariadb.com

Page: 9

Configuration

The MaxScale configuration is read from a file which can be located in a number of placing,

MaxScale will search for the configuration file in a number of locations.

1. If the environment variable MAXSCALE_HOME is set then MaxScale will look for a

configuration file called MaxScale.cnf in the directory $MAXSCALE_HOME/etc

2. If MAXSCALE_HOME is not set or the configuration file is not in the location above

MaxScale will look for a file in /etc/MaxScale.cnf

Alternatively MaxScale can be started with the -c flag and the path of the MaxScale home

directory tree.

An explicit path to a configuration file can be passed by using the -f option to MaxScale.

The configuration file itself is based on the “ini” file format and consists of various sections

that are used to build the configuration, these sections define services, servers, listeners,

monitors and global settings.

Global Settings

The global settings, in a section named [MaxScale], allow various parameters that affect

MaxScale as a whole to be tuned. Currently the only setting that is supported is the number

of threads to use to handle the network traffic. MaxScale will also accept the section name of

[gateway] for global settings. This is for backward compatibility with versions prior to the

naming of MaxScale.

Threads

To control the number of threads that poll for network traffic set the parameter threads to a

number. It is recommended that you start with a single thread and add more as you find the

performance is not satisfactory. MaxScale is implemented to be very thread efficient, so a

small number of threads is usually adequate to support reasonably heavy workloads.

Adding more threads may not improve performance and can consume resources needlessly.

Valid options are:

threads=<number of epoll threads>

[MaxScale]

threads=1

It should be noted that additional threads will be created to execute other internal services

within MaxScale, this setting is merely used to configure the number of threads that will be

w: www.mariadb.com

e: info@mariadb.com

Page: 10

used to manage the user connections.

Service

A service represents the database service that MaxScale offers to the clients. In general a

service consists of a set of backend database servers and a routing algorithm that

determines how MaxScale decides to send statements or route connections to those

backend servers.

A service may be considered as a virtual database server that MaxScale makes available to

its clients.

Several different services may be defined using the same set of backend servers. For

example a connection based routing service might be used by clients that already performed

internal read/write splitting, whilst a different statement based router may be used by clients

that are not written with this functionality in place. Both sets of applications could access the

same data in the same databases.

A service is identified by a service name, which is the name of the configuration file section

and a type parameter of service

[Test Service]

type=service

In order for MaxScale to forward any requests it must have at least one service defined

within the configuration file. The definition of a service alone is not enough to allow

MaxScale to forward requests however, the service is merely present to link together the

other configuration elements.

Router

The router parameter of a service defines the name of the router module that will be used to

implement the routing algorithm between the client of MaxScale and the backend databases.

Additionally routers may also be passed a comma separated list of options that are used to

control the behaviour of the routing algorithm. The two parameters that control the routing

choice are router and router_options. The router options are specific to a particular

router and are used to modify the behaviour of the router. The read connection router can be

passed options of master, slave or synced, an example of configuring a service to use this

router and limiting the choice of servers to those in slave state would be as follows.

router=readconnroute

router_options=slave

To change the router to connect on to servers in the master state as well as slave servers,

w: www.mariadb.com

e: info@mariadb.com

Page: 11

the router options can be modified to include the master state.

router=readconnroute

router_options=master,slave

A more complete description of router options and what is available for a given router is

included with the documentation of the router itself.

Filters

The filters option allow a set of filters to be defined for a service; requests from the client

are passed through these filters before being sent to the router for dispatch to the backend

server. The filters parameter takes one or more filter names, as defined within the filter

definition section of the configuration file. Multiple filters are separated using the | character.

filters=counter | QLA

The requests pass through the filters from left to right in the order defined in the

configuration parameter.

Servers

The servers parameter in a service definition provides a comma separated list of the

backend servers that comprise the service. The server names are those used in the name

section of a block with a type parameter of server (sLast Updated: 29th November 2014

ee below).

servers=server1,server2,server3

User

The user parameter, along with the passwd parameter are used to define the credentials

used to connect to the backend servers to extract the list of database users from the

backend database that is used for the client authentication.

user=maxscale

passwd=Mhu87p2D

Authentication of incoming connections is performed by MaxScale itself rather than by the

database server to which the client is connected. The client will authenticate itself with

MaxScale, using the username, hostname and password information that MaxScale has

extracted from the backend database servers. For a detailed discussion of how this impacts

the authentication process please see the “Authentication” section below.

The host matching criteria is restricted to IPv4, IPv6 will be added in a future release.

w: www.mariadb.com

e: info@mariadb.com

Page: 12

Existing user configuration in the backend databases must be checked and may be updated

before successful MaxScale authentication:

In order for MaxScale to obtain all the data it must be given a username it can use to

connect to the database and retrieve that data. This is the parameter that gives MaxScale

the username to use for this purpose.

The account used must be able to select from the mysql.user table, the following is an

example showing how to create this user.

MariaDB [mysql]> create user 'maxscale'@'maxscalehost'

identified by 'Mhu87p2D';

Query OK, 0 rows affected (0.01 sec)

MariaDB [mysql]> grant SELECT on mysql.user to

'maxscale'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

Additionally, GRANT SELECT on the mysql.db table and SHOW DATABASES privileges are

required in order to load databases name and grants suitable for database name

authorization.

MariaDB [(none)]> GRANT SELECT ON mysql.db TO

'username'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> GRANT SHOW DATABASES ON *.* TO

'username'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

Passwd

The passwd parameter provides the password information for the above user and may be

either a plain text password or it may be an encrypted password. See the section on

encrypting passwords for use in the MaxScale.cnf file. This user must be capable of

connecting to the backend database and executing the SQL statement “SELECT user, host,

password,Select_priv FROM mysql.user”

and additionally these SQL statements loading database names and database grants.

- “SELECT user, host, db FROM mysql.db”

w: www.mariadb.com

e: info@mariadb.com

Page: 13

- “SELECT * FROM INFORMATION_SCHEMA.SCHEMATA”

- “SELECT GRANTEE,PRIVILEGE_TYPE FROM

INFORMATION_SCHEMA.USER_PRIVILEGES”

enable_root_user

This parameter controls the ability of the root user to connect to MaxScale and hence

onwards to the backend servers via MaxScale.

The default value is 0, disabling the ability of the root user to connect to MaxScale.

Example for enabling root user:

enable_root_user=1

Values of “on” or “true” may also be given to enable the root user and “off” or “false” may be

given to disable the use of the root user.

enable_root_user=true

localhost_match_wildcard_host

This parameter enables matching of ‘127.0.0.1’ (localhost) against ‘%’ wildcard host for

MySQL protocol authentication. The default value is 0, therefore in order to authenticate a

connection from the same machine as the one which MaxScale is running on an explicit

user@lcoalhost entry will be required in the MySQL user table.

version_string

This parameter sets a custom version string that is sent in the MySQL Handshake from

MaxScale to clients.

Example:

version_string=5.5.37-MariaDB-RWsplit

If not set, the default value is the server version of the embedded MySQL/MariaDB library.

Example: 5.5.35-MariaDB

weightby

The weightby parameter is used in conjunction with server parameters in order to control the

load balancing applied in the router in use by the service. This allows varying weights to be

applied to each server to create a non-uniform distribution of the load amongst the servers.

An example of this might be to define a parameter for each server that represents the

amount of resource available on the server, we could call this serversize. Every server

w: www.mariadb.com

e: info@mariadb.com

Page: 14

should then have a serversize parameter set for the server.

serversize=10

The service would then have the parameter weightby set. If there are 4 servers defined in

the service, serverA, serverB, serverC and serverD, with the serversize set as shown in the

table below, the connections would balanced using the percentages in this table.

Server serversize % connections

serverA 10 18%

serverB 15 27%

serverC 10 18%

serverD 20 36%

Server

Server sections are used to define the backend database servers that can be formed into a

service. A server may be a member of one or more services within MaxScale. Servers are

identified by a server name which is the section name in the configuration file. Servers have

a type parameter of server, plus address port and protocol parameters.

[server1]

type=server

address=127.0.0.1

port=3000

protocol=MySQLBackend

Address

The IP address or hostname of the machine running the database server that is being

defined. MaxScale will use this address to connect to the backend database server.

Port

The port on which the database listens for incoming connections. MaxScale will use this port

to connect to the database server.

Protocol

The name for the protocol module to use to connect MaxScale to the database. Currently

only one backend protocol is supported, the MySQLBackend module.

w: www.mariadb.com

e: info@mariadb.com

Page: 15

Monitoruser

The monitor has a username and password that is used to connect to all servers for

monitoring purposes, this may be overridden by supplying a monitoruser statement for each

individual server

monitoruser=mymonitoruser

MonitorPw

The monitor has a username and password that is used to connect to all servers for

monitoring purposes, this may be overridden by supplying a monpasswd statement for the

individual servers

monitorpw=mymonitorpasswd

The monpasswd parameter may be either a plain text password or it may be an encrypted

password. See the section on encrypting passwords for use in the MaxScale.cnf file.

Listener

The listener defines a port and protocol pair that is used to listen for connections to a

service. A service may have multiple listeners associated with it, either to support multiple

protocols or multiple ports. As with other elements of the configuration the section name is

the listener name and it can be selected freely. A type parameter is used to identify the

section as a listener definition. Address is optional and it allows the user to limit connections

to certain interface only. Socket is also optional and used for Unix socket connections.

[<Listener name>]

type=listener

service=<Service name>]

protocol=[MySQLClient|HTTPD]

address=[IP|hostname]

port=<Listen port number>

socket=<Socket path>

Service

The service to which the listener is associated. This is the name of a service that is defined

elsewhere in the configuration file.

Protocol

w: www.mariadb.com

e: info@mariadb.com

Page: 16

The name of the protocol module that is used for the communication between the client and

MaxScale itself.

Address

The address option sets the address that will be used to bind the listening socket. The

address may be specified as an IP address in ‘dot notation’ or as a hostname. If the address

option is not included in the listener definition the listener will bind to all network interfaces.

Port

The port to use to listen for incoming connections to MaxScale from the clients. If the port is

omitted from the configuration a default port for the protocol will be used.

Socket

The socket option may be included in a listener definition, this configures the listener to use

Unix domain sockets to listen for incoming connections. The parameter value given is the

name of the socket to use.

If a socket option and an address option is given then the listener will listen on both the

specific IP address and the Unix socket.

Filter

Filters provide a means to manipulate or process requests as they pass through MaxScale

between the client side protocol and the query router. A filter should be defined in a section

with a type of filter.

[QLA]

type=filter

module=qlafilter

options=/tmp/QueryLog

The section name may then be used in one or more services by using the filters=

parameter in the service section. In order to use the above filter for a service called “QLA

Service”, an entry of the following form would exist for that service.

[QLA Service]

type=service

router=readconnroute

router_options=slave

servers=server1,server2,server3,server4

user=massi

passwd=6628C50E07CCE1F0392EDEEB9D1203F3

w: www.mariadb.com

e: info@mariadb.com

Page: 17

filters=QLA

See the Services section for more details on how to configure the various options of a

service. Note that some filters require parsing of the statement which makes them

compatible with statement-based routers only, such as Read/Write Split router.

Module

The module parameter defines the name of the loadable module that implements the filter.

Options

The options parameter is used to pass options to the filter to control the actions the filter will

perform. The values that can be passed differ between filter implementation, the inclusion of

an options parameter is optional.

Other Parameters

Any other parameters present in the filters section will be passed to the filter to be

interpreted by the filter. An example of this is the regexfilter that requires the two parameters

w: www.mariadb.com

e: info@mariadb.com

Page: 18

match and replace

[regex]

type=filter

module=regexfilter

match=form

replace=from

Monitor

In order for the various router modules to function correctly they require information about

the state of the servers that are part of the service they provide. MaxScale has the ability to

internally monitor the state of the back-end database servers or that state may be feed into

MaxScale from external monitoring systems. If automated monitoring and failover of services

is required this is achieved by running a monitor module that is designed for the particular

database architecture that is in use.

Monitors are defined in much the same way as other elements in the configuration file, with

the section name being the name of the monitor instance and the type being set to monitor.

[MySQL Monitor]

type=monitor

module=mysqlmon

servers=server1,server2,server3

user=dbmonitoruser

passwd=dbmonitorpwd

monitor_interval=8000

backend_connect_timeout=3

backend_read_timeout=1

backend_write_timeout=2

mysqlmon specific options

detect_replication_lag=0

detect_stale_master=0

[Galera Monitor]

type=monitor

module=galeramon

servers=server1,server2,server3

user=dbmonitoruser

passwd=dbmonitorpwd

w: www.mariadb.com

e: info@mariadb.com

Page: 19

monitor_interval=8000

backend_connect_timeout=3

backend_read_timeout=1

backend_write_timeout=2

galeramon specific options

disable_master_failback=0

Module

The module parameter defines the name of the loadable module that implements the

monitor. This module is loaded and executed on a separate thread within MaxScale.

Servers

The servers parameter is a comma separated list of server names to monitor, these are the

names defined elsewhere in the configuration file. The set of servers monitored by a single

monitor need not be the same as the set of servers used within any particular server, a

single monitor instance may monitor servers in multiple servers.

User

The user parameter defines the username that the monitor will use to connect to the

monitored databases. Depending on the monitoring module used this user will require

specific privileges in order to determine the state of the nodes, details of those privileges can

be found in the sections on each of the monitor modules.

Individual servers may define override values for the user and password the monitor uses by

setting the monuser and monpasswd parameters in the server section.

Passwd

The password parameter may be either a plain text password or it may be an encrypted

password. See the section on encrypting passwords for use in the MaxScale.cnf file.

Monitor_interval

The monitor_interval parameter sets the sampling interval in milliseconds for each monitor,

the default value is 10000 milliseconds.

Detect_replication_lag

This options if set to 1 will allow MySQL monitor to collect the replication lag among all

configured slaves by checking the content of

maxscale_schema.replication_heartbeat table. The master server writes in and

slaves fetch a UNIX timestamp from that there.

This timestamp is updated in each node server struct and it’s used to calculate the

w: www.mariadb.com

e: info@mariadb.com

Page: 20

replication lag.

That value is also used by the Read / Write split module via

max_slave_replication_lag and LEAST_BEHIND_MASTER options.

Replication lag is measured by writing to a table, replication_heartbeat in the

maxscale_schema, updates to this table will be observed on the slave in order to

determine the lag between the slave and the master on which it was written. If the slave is

many minutes behind the master and MaxScale is then started the information in the slave

table is not available and that slave may be excluded from the routing decision.

A specific grant for the monitor user might be required in order to create schema/table and

for read/write operations.

This monitor option is not enabled by default.

Detect_stale_master

This options if set to 1 will allow MySQL monitor to select the previous selected Master for

next operations even if no slaves at all are found by the monitor polling.

This is such a case when the replication on all slave has been stopped via STOP SLAVE or

the current configuration was removed by RESET SLAVE ALL.

As there are no slaves the replication topology cannot be computed and MaxScale can only

check if the current monitored server was the master before: if that’s the case

MySQL monitor adds to the server status field the SERVER_STALE_STATUS bit and a log

entry appears in the Message Log file.

If MaxScale or monitor is restarted and the Replication is still not configured or started there

will not be any master server available even with this option enabled.

This option is not enabled by default and should be used at the administrator risk.

Disable_master_failback

This option if set to 1 will allow Galera monitor to keep the existing selected master even if

another node,after joining back the cluster may be selected as candidate master.

The master role assignment currently follows one rule: take the server with lowest

wsrep_local_index value.

By default, if a node takes a lower index than the current master one the monitor will set the

master role to that node: this monitor option, if set, prevents the master change.

The server status field may have the SERVER_MASTER_STICKINESS bit, meaning the

current master selection is not based on the available rules but it’s the one previously

w: www.mariadb.com

e: info@mariadb.com

Page: 21

selected and then kept, accordingly to option value equal 1.

Anyway, a new master will be selected in case of current master failure, regardless the

option value.

Backend_connect_timeout

This option, with default value of 3 sets the monitor connect timeout to backends.

Backend_read_timeout

Default value is 1. Read Timeout is the timeout in seconds for each attempt to read from the

server. There are retries if necessary, so the total effective timeout value is three times the

option value. That’s for mysql_real_connect C API.

Backend_write_timeout

Default value is 2. Write Timeout is the timeout in seconds for each attempt to write to the

server. There is a retry if necessary, so the total effective timeout value is two times the

option value. That’s for mysql_real_connect C API.

w: www.mariadb.com

e: info@mariadb.com

Page: 22

Protocol Modules
The protocols supported by MaxScale are implemented as external modules that are loaded

dynamically into the MaxScale core. These modules reside in the directory

$MAXSCALE_HOME/modules, if the environment variable $MAXSCALE_HOME is not set it

defaults to /usr/local/skysql/MaxScale. It may also be set by passing the -c option on the

MaxScale command line.

MySQLClient

This is the implementation of the MySQL protocol that is used by clients of MaxScale to

connect to MaxScale.

MySQLBackend

The MySQLBackend protocol module is the implementation of the protocol that MaxScale

uses to connect to the backend MySQL, MariaDB and Percona Server databases. This

implementation is tailored for the MaxScale to MySQL Database traffic and is not a general

purpose implementation of the MySQL protocol.

Telnetd

The telnetd protocol module is used for connections to MaxScale itself for the purposes of

creating interactive user sessions with the MaxScale instance itself. Currently this is used in

conjunction with a special router implementation, the debugcli.

maxscaled

The protocol used used by the maxadmin client application in order to connect to MaxScale

and access the command line interface.

HTTPD

This protocol module is currently still under development, it provides a means to create

HTTP connections to MaxScale for use by web browsers or RESTful API clients.

w: www.mariadb.com

e: info@mariadb.com

Page: 23

Router Modules
The main task of MaxScale is to accept database connections from client applications and

route the connections or the statements sent over those connections to the various services

supported by MaxScale.

There are two flavours of routing that MaxScale can perform, connection based routing and

statement based routine. These each have their own characteristics and costs associated

with them.

Connection Based Routing

Connection based routing is a mechanism by which MaxScale will, for each incoming

connection decide on an appropriate outbound server and will forward all statements to that

server without examining the internals of the statement. Once an inbound connection is

associated to a particular backend database it will remain connected to that server until the

connection is closed or the server fails. The Read Connection Router is an example of

connection-based routing.

Statement Based Routing

Statement based routing is somewhat different, the routing modules examine every

statement the client sends and determines, on a per statement basis, which of the set of

backend servers in the service is best to execute the statement. This gives better dynamic

balancing of the load within the cluster but comes at a cost. The query router must

understand the statement that is being routing and may have to parse the statement in order

to achieve this.

Parsing within the router adds overhead to the cost of routing and makes this type of router

best suitable for loads in which the gains outweigh this added cost. The added cost from

statement parsing also gives the possibility to create and use new type of filters which are

based on statement processing. In contrast to the added processing cost, statement-based

routing may increase the performance of the cluster by offloading statements away from the

master when possible.

Available Routing Modules

Currently a small number of query routers are available, these are in different stages of

completion and offer different facilities.

Readconnroute

This is a connection based query router that was originally targeted at environments in which

the clients already performed splitting of read and write queries into separate connections.

w: www.mariadb.com

e: info@mariadb.com

Page: 24

Whenever a new connection is received the router will examine the state of all the servers

that form part of the service and route the connection to the server with least connections

currently that matches the filter constraints given in the router options. This results in a

balancing of the active connections, however different connections may have different

lifetimes and the connections may become unbalanced when later viewed.

The read connection router can be configured to balance the connections from the clients

across all the backend servers that are running, just those backend servers that are currently

replication slaves or those that are replication masters when routing to a master slave

replication environment. When a Galera cluster environment is in use the servers can be

filtered to just the set that are part of the cluster and in the ‘synced’ state. These options are

configurable via the router_options that can be set within a service. The router_option strings

supported are “master”, “slave” and “synced”.

Master/Slave Replication Setup

To setup MaxScale to route connections evenly between all the current slave servers in a

replication cluster, a service entry of the form shown below is required.

[Read Service]

type=service

router=readconnroute

router_options=slave

servers=server1,server2,server3,server4

user=maxscale

passwd=thepasswd

With the addition of a listener for this service, which defines the port and protocol that

MaxScale uses

[Read Listener]

type=listener

service=Read Service

protocol=MySQLClient

port=4006

the client can now connect to port 4006 on the host which is running MaxScale. Statements

sent using this connection will then be routed to one of the slaves in the server set defined in

the Read Service. Exactly which is selected will be determined by balancing the number of

connections to each of those whose current state is “slave”.

w: www.mariadb.com

e: info@mariadb.com

Page: 25

Altering the router options to be slave, master would result in the connections being

balanced between all the servers within the cluster.

It is assumed that the client will have a separate connection to the master server, however

this can be routed via MaxScale, allowing MaxScale to manage the determination of which

server is master. To do this you would add a second service and listener definition for the

master server.

[Write Service]

type=service

router=readconnroute

router_options=master

servers=server1,server2,server3,server4

user=maxscale

passwd=thepasswd

[Write Listener]

type=listener

service=Write Service

protocol=MySQLClient

port=4007

This allows the clients to direct write requests to port 4007 and read requests to port 4006 of

the MaxScale host without the clients needing to understand the configuration of the

Master/Slave replication cluster.

Connections to port 4007 would automatically be directed to the server that is the master for

replication at the time connection is opened. Whilst this is a simple mapping to a single

server it does give the advantage that the clients have no requirement to track which server

is currently the master, devolving responsibility for managing the failover to MaxScale.

In order for MaxScale to be able to determine the state of these servers the mysqlmon

monitor module should be run against the set of servers that comprise the service.

Galera Cluster Configuration for Read Connection router

Although not primarily designed for a multi-master replication setup, it is possible to use the

readconnroute in this situation. The readconnroute connection router can be used to

balance the connections across a Galera cluster. A special monitor is available that detects if

nodes are joined to a Galera Cluster, with the addition of a router option to only route

connections to nodes marked as synced. MaxScale can ensure that users are never

connected to a node that is not a full cluster member.

w: www.mariadb.com

e: info@mariadb.com

Page: 26

[Galera Service]

type=service

router=readconnroute

router_options=synced

servers=server1,server2,server3,server4

user=maxscale

passwd=thepasswd

[Galera Listener]

type=listener

service=Galera Service

protocol=MySQLClient

port=3336

[Galera Monitor]

type=monitor

module=galeramon

servers=server1,server2,server3,server4

user=galeramon

passwd=galeramon

The specialized Galera monitor can also select one of the node in the cluster as

master, the others will be marked as slave. These roles are only assigned to synced

nodes.

It then possible to have services/listeners with router_options=master or slave

accessing a subset of all galera nodes. The “synced” simply means: access all

nodes. Examples of different readconn router configurations for Galera:

[Galera Master Service]

type=service

router=readconnroute

router_options=master

[Galera Slave Service]

type=service

router=readconnroute

router_options=slave

w: www.mariadb.com

e: info@mariadb.com

Page: 27

Read/Write Split router

The Read/Write Split router is implemented in readwritesplit module. It is a statement-based

router that has been designed for use within Master/Slave replication environments. It

examines and optionally parses every statement to find out whether the statement can be

routed to slave instead of master.

Starting a readwritesplit router session

When client connects to readwritesplit service for the first time, client is authenticated

against user data loaded from backend database. After successful authentication connection

for client queries is created and followed by that, a readwritesplit router session is initialized.

Router session processes its specific configuration parameters and establishes connections

to master and slaves. The number of slaves in each session depends on the value of

max_slave_connections parameter (default is 1) and the availability of slaves. Most

suitable number of slaves varies as it depends on the number of clients, and the backend

servers and the type of load. In Figure below Server 1 is the master and Servers 2-7 are the

available slaves. In this example max_slave_connections=3.

Routing to master

Routing to master is important for data consistency and because majority of writes are

written to binlog and thus become replicated to slaves.

w: www.mariadb.com

e: info@mariadb.com

Page: 28

The following operations are routed to master:

● write statements,

● all statements within an open transaction,

● stored procedure calls, and

● user-defined function calls.

● DDL statements (DROP|CREATE|ALTER TABLE … etc.)

● EXECUTE (prepared) statements

● all statements using temporary tables

In addition to these, if readwritesplit service is configured with max_slave_replication_lag

parameter, and if all slaves suffer from too long replication lag, then statements will be

routed to master. (There might be other similar configuration parameters in the future which

limit the number of statements that will be routed to slaves.)

Routing to slaves

Ability to route some statements to slaves is important because it also decreases the load

targeted to master. Moreover, it is possible to have multiple slaves to share the load in

contrast to single master.

Queries which can be routed to slaves must be auto committed and belong to one of the

following group:

● read-only database queries,

● read-only queries to system, or user-defined variables,

● SHOW statements, and

● system function calls.

Routing to every session backend

Third class of statements includes those, which modify session data, such as session

system variables, user-defined variables, the database being used etc. We call them session

commands, and they must be replicated as they affect the future results of read and write

operations, so they must be executed on all servers that could execute statements on behalf

of this client.

Session commands include for example:

● SET statements

● USE <dbname>

● embedded system/user-defined variable assignments (SELECT (@myvar := 5)) in

read-only statements

● PREPARE statements

● QUIT, PING, STMT RESET, CHANGE USER, etc. commands

w: www.mariadb.com

e: info@mariadb.com

Page: 29

Note: if variable assignment is embedded in write statement it is routed to master only. For

example, INSERT INTO t1 values(@myvar:=5, 7) would be routed to master only.

Configuring Read/Write Split router

Read/Write Split router-specific settings are specified in the configuration file of MaxScale in

its specific section. The section can be freely named but the name is used latter as a

reference from listener section.

The configuration consists of mandatory and optional parameters.

Mandatory parameters

type specifies the type of service. For readwritesplit module the type is:

type=router

service specifies the router module to be used. For readwritesplit the value is:

 service=readwritesplit

servers provide a list of servers, which must include one master and available slaves.

Syntax for servers is:

 servers=<srv1, srv2,...,srvN>

Note that each server on the list must have its own section in the configuration file where it is

defined.

user is assigned with the username which router session uses for accessing backends for

loading the content of mysql.user table (and mysql.db and database names as well) and

optionally for creating, and using maxscale_schema.replication_heartbeat table.

passwd specifies corresponding password for the user. Syntax for user and passwd is:

user=<username>

passwd=<password>

w: www.mariadb.com

e: info@mariadb.com

Page: 30

Optional parameters

max_slave_connections sets the maximum number of slaves a router session uses at any

moment. Default value is 1. Syntax for max_slave_connections is:

 max_slave_connections=<max. number, or % of available slaves>

max_slave_replication_lag specifies how many seconds a slave is allowed to be behind

the master. If the lag is bigger than configured value a slave can’t be used for routing.

Syntax for max_slave_replication_lag is:

 max_slave_replication_lag=<allowed lag in seconds>

This applies to Master/Slave replication with MySQL monitor and

detect_replication_lag=1 options set

router_options may include multiple readwritesplit-specific options. Values are either

singular or parameter-value pairs. Currently available is a single option which specifies the

criteria used in slave selection both in initialization of router session and per each query.

Note, that due to the current monitor implementations, the value specified here should be

twice the monitor interval + 1.

 options=slave_selection_criteria=<criteria>

where <criteria> is one of the following:

 /** slave with least connections in total */

 LEAST_GLOBAL_CONNECTIONS

 /** slave with least connections from this router */

 LEAST_ROUTER_CONNECTIONS

 /** slave with smallest replication lag */

 LEAST_BEHIND_MASTER

 /** slave with least active operations */

 LEAST_CURRENT_OPERATIONS (default)

use_sql_variables_in specifies where should queries, which read session variable, be

routed. The syntax for use_sql_variable_in is:

 use_sql_variables_in=[master|all]

When value all is used, queries reading session variables can be routed to any available

w: www.mariadb.com

e: info@mariadb.com

Page: 31

slave (depending on selection criteria). Note, that queries modifying session variables are

routed to all backend servers by default, excluding write queries with embedded session

variable modifications, such as:

 INSERT INTO test.t1 VALUES (@myid:=@myid+1)

In above-mentioned case the user-defined variable would only be updated in the master

where query would be routed due to INSERT statement.

An example of Read/Write Split router configuration :

[RWSplit Service]

type=service

router=readwritesplit

router_options=slave_selection_criteria=LEAST_BEHIND_MASTER

max_slave_connections=50%

max_slave_replication_lag=61

servers=server1,server2,server3,server4

user=myuser

passwd=mypass

filters=qla|fetch|from

In addition to this, readwritesplit needs configuration for a listener, for all servers listed, and

for each filter. Listener, server - and filter configurations are described in their own sections

in this document.

Below is a listener example for the “RWSplit Service” defined above:

[RWSplit Listener]

type=listener

service=RWSplit Service

protocol=MySQLClient

port=4044

The client would merely connect to port 4044 on the MaxScale host and statements would

be directed to the master, slave or all backends as appropriate. Determination of the master

or slave status may be done via a monitor module within MaxScale or externally. In this latter

case the server flags would need to be set via the MaxScale debug interface, in future

versions an API will be available for this purpose.

w: www.mariadb.com

e: info@mariadb.com

Page: 32

Galera Cluster Configuration for Read/Write Split router

Galera monitor assigns Master and Slave roles to appropriate sync’ed Galera nodes. Using

readwritesplit with Galera is seamless; only change needed to the configuration above is

replacing the list of MySQL replication servers with list of Galera nodes. With the same

example as above:

Simply configure a Split Service with galera nodes:

[RWSplit Service]

type=service

router=readwritesplit

max_slave_connections=50%

servers=galera_node1,galera_node2,galera_node3

user=myuser

passwd=mypass

filters=qla|fetch|from

Debugcli

The debugcli is a special case of a statement based router. Rather than direct the

statements at an external data source they are handled internally. These statements are

simple text commands and the results are the output of debug commands within MaxScale.

The service and listener definitions for a debug cli service only differ from other services in

that they require no backend server definitions.

Debug CLI Configuration

The definition of the debug cli service is illustrated below

[Debug Service]

type=service

router=debugcli

[Debug Listener]

type=listener

service=Debug Service

protocol=telnetd

port=4442

Connections using the telnet protocol to port 4442 of the MaxScale host will result in a new

w: www.mariadb.com

e: info@mariadb.com

Page: 33

debug CLI session. A default username and password are used for this module, new users

may be created using the add user command. As soon as any users are explicitly created

the default username will no longer continue to work. The default username is admin with a

password of skysql.

The debugcli supports two modes of operation, developer mode and user mode. The mode

is set via the router_options parameter of the debugcli. The user mode is more suited to end-

users and administrators, whilst the develop mode is explicitly targeted to software

developing adding or maintaining the MaxScale code base. Details of the differences

between the modes can be found in the debugging guide for MaxScale. The default mode

for the debugcli is user mode. The following service definition would enable a developer

version of the debugcli.

[Debug Service]

type=service

router=debugcli

router_options=developer

It should be noted that both a user and a developer version of the debugcli may be defined

within the same instance of MaxScale, however they must be defined as two distinct

services, each with a distinct listener.

[Debug Service]

type=service

router=debugcli

router_options=developer

[Debug Listener]

type=listener

service=Debug Service

protocol=telnetd

port=4442

[Admin Service]

type=service

router=debugcli

[Admin Listener]

type=listener

service=Debug Service

protocol=telnetd

w: www.mariadb.com

e: info@mariadb.com

Page: 34

port=4242

CLI

The command line interface as used by maxadmin. This is a variant of the debugcli that is

built slightly differently so that it may be accessed by the client application maxadmin. The

CLI requires the use of the maxscaled protocol.

CLI Configuration

There are two components to the definition required in order to run the command line

interface to use with MaxAdmin; a service and a listener.

The default entries required are shown below.

[CLI]

type=service

router=cli

[CLI Listener]

type=listener

service=CLI

protocol=maxscaled

address=localhost

port=6603

Note that this uses the default port of 6603 and confines the connections to localhost

connections only. Remove the address= entry to allow connections from any machine on

your network. Changing the port from 6603 will mean that you must allows pass a -p option

to the MaxAdmin command.

w: www.mariadb.com

e: info@mariadb.com

Page: 35

Monitor Modules
Monitor modules are used by MaxScale to internally monitor the state of the backend

databases in order to set the server flags for each of those servers. The router modules then

use these flags to determine if the particular server is a suitable destination for routing

connections for particular query classifications. The monitors are run within separate threads

of MaxScale and do not affect the MaxScale performance.

The use of monitors is optional, it is possible to run MaxScale with external monitoring, in

which case arrangements must be made for an external entity to set the status of each of the

servers that MaxScale can route to.

Parameters that apply to all monitors are:

● monitor_interval

● backend_connect_timeout

● backend_read_timeout

● backend_write_timeout

Other parameters are monitor specific.

Mysqlmon

The MySQLMon monitor is a simple monitor designed for use with MySQL Master/Slave

replication cluster. To execute the mysqlmon monitor an entry as shown below should be

added to the MaxScale configuration file.

[MySQL Monitor]

type=monitor

module=mysqlmon

servers=server1,server2,server3,server4

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of

running or failed and master or slave for each of the servers.

The monitor uses the username given in the monitor section or the server specific user that

is given in the server section to connect to the server. This user must have sufficient

permissions on the database to determine the state of replication. The roles that must be

granted to this user are REPLICATION SLAVE and REPLICATION CLIENT.

To create a user that can be used to monitor the state of the cluster, the following

commands could be used, assuming that MaxScale is running on the host ‘maxscalehost’

w: www.mariadb.com

e: info@mariadb.com

Page: 36

MariaDB [mysql]> create user 'maxscalemon'@'maxscalehost'

identified by 'Ha79hjds';

Query OK, 0 rows affected (0.01 sec)

MariaDB [mysql]> grant REPLICATION SLAVE on *.* to

'maxscalemon'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

MariaDB [mysql]> grant REPLICATION CLIENT on *.* to

'maxscalemon'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

MariaDB [mysql]>

MySQL monitor fetches the @@server_id variable and other informations from SHOW

SLAVE STATUS in order to compute the replication topology tree that may include

intermediate master servers, called relay servers.

The Master server used by router modules is the so called “root master”: a server that has

the SERVER_MASTER status bit set and it’s at the lowest level of the replication depth.

MySQL monitor may optionally (detect_replication_lag=1) detect the replication lag

among servers by using the maxscale_schema.replication_heartbeat table: the

monitor user must have rights to create it and write into.

Another option (detect_stale_master=1) may also allow to set a Stale Master when the

replication has been stopped or the configuration doesn’t allow to have both IO and SQL

replication threads running on all slaves: the previous detected working Master will be

selected for read and write operations.

Please note, those two options are not enabled by default.

Galeramon

The Galeramon monitor is a simple router designed for use with MySQL Galera cluster. To

execute the galeramon monitor an entry as shown below should be added to the MaxScale

configuration file.

[Galera Monitor]

type=monitor

w: www.mariadb.com

e: info@mariadb.com

Page: 37

module=galeramon

servers=galera_node1,galera_node2,galera_node3

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of

running or failed and joined for those servers that reported the Galera JOINED status.

The user that is configured for use with the Galera monitor must have sufficient privileges to

select from the information_schema database and GLOBAL_STATUS table within that

database.

To create a user that can be used to monitor the state of the cluster, the following

commands could be used, assuming that MaxScale is running on the host maxscalehost.

MariaDB [mysql]> create user 'maxscalemon'@'maxscalehost'

identified by 'Ha79hjds';

Query OK, 0 rows affected (0.01 sec)

MariaDB [mysql]>

The Galera monitor can also assign Master and Slave roles to the configured nodes:

among the set of synced servers, the one with the lowest value of ‘wsrep_local_index’ is

selected as the current master while the others are slaves: that’s the only available master

selection rule right now.

This way is possible to configure the node access based not only on ‘synced’ state but even

on Master and Slave role enabling the use of Read Write split operation on a Galera cluster

and avoiding any possible write conflict.

It may happen that after a node failure or reboot or node joining back the cluster, the

‘wsrep_local_index’ in the cluster nodes changes.

This might result in monitor assigning the Master role to another server.

In order to avoid such situation the disable_master_failback=1 configuration option

helps keeping the current master regardless ‘wsrep_local_index’ value.

The option it’s not enabled by default.

Example status for a Galera server node is:

w: www.mariadb.com

e: info@mariadb.com

Page: 38

Server 0x261fe50 (server2)

 Server: 192.168.1.101

 Status: Master, Synced, Running

Protocol: MySQLBackend

Port: 3306

 Server Version: 5.5.40-MariaDB-wsrep-log

 Node Id: 0

Server 0x2d1b3c0 (server4)

 Server: 192.168.122.144

 Status: Slave, Synced, Running

 Protocol: MySQLBackend

 Port: 3306

 Server Version: 5.5.40-MariaDB-wsrep-log

 Node Id: 1

w: www.mariadb.com

e: info@mariadb.com

Page: 39

Filter Modules
Currently four example filters are included in the MaxScale distribution

Module Description

testfilter Statement counting Filter - a simple filter that counts the number of

SQL statements executed within a session. Results may be viewed

via the debug interface.

qlafilter Query Logging Filter - a simple query logging filter that write all
statements for a session into a log file for that session.

regexfilter Query Rewrite Filter - an example of how filters can alter the query
contents. This filter allows a regular expression to be defined, along
with replacement text that should be substituted for every match of
that regular expression.

tee A filter that duplicates SQL requests and sends the duplicates to
another service within MaxScale.

topfilter A filter that records the top running queries in terms of execution
time. The number of queries to maintain is configurable, upon
completion of a session a log file is written with the details of those
top queries.

These filters are merely examples of what may be achieved with the filter API and are not

sophisticated or consider as suitable for production use, they merely illustrate the

functionality possible.

Statement Counting Filter

The statement counting filter is implemented in the module names testfilter and merely

keeps a count of the number of SQL statements executed. The filter requires no options to

be passed and takes no parameters. The statement count can be viewed via the diagnostic

and debug interface of MaxScale.

In order to add this filter to an existing service create a filter section to name the filter as

follows

[counter]

type=filter

module=testfilter

Then add the filter to your service by including the filters= parameter in the service section.

w: www.mariadb.com

e: info@mariadb.com

Page: 40

filters=counter

Query Log All Filter

The QLA filter simply writes all SQL statements to a log file along with a timestamp for the

statement. An example of the file produced by the QLA filter is shown below

00:36:04.922 5/06/2014, select @@version_comment limit 1

00:36:12.663 5/06/2014, SELECT DATABASE()

00:36:12.664 5/06/2014, show databases

00:36:12.665 5/06/2014, show tables

A new file is created for each client connection, the name of the logfile can be controlled by

the use of the router options. No parameters are used by the QLA filter. The filter is

implemented by the loadable module qlafilter.

To add the QLA filter to a service you must create a filter section to name the filter,

associated the loadable module and define the filename option.

[QLA]

type=filter

module=qlafilter

options=/tmp/QueryLog

Then add the filters= parameter into the service that you wish to log by adding this

parameter to the service section

filters=QLA

A log file will be created for each client connection, the name of that log file will be

/tmp/QueryLog.<number>

Regular Expression Filter

The regular expression filter is a simple text based query rewriting filter. It allows a regular

expression to be used to match text in a SQL query and then a string replacement to be

made against that match. The filter is implemented by the regexfilter loadable module

and is passed two parameters, a match string and a replacement string.

To add the filter to your service you must first create a filter section to name the filter and

w: www.mariadb.com

e: info@mariadb.com

Page: 41

give the match and replacement strings. Here we define a filter that will convert to MariaDB

10 command show all slaves status to the older form of show slave status for MariaDB 5.5.

[slavestatus]

type=filter

module=regexfilter

match=show *all *slaves

replace=show slave

You must then add this filter to your service by adding the filters= option

filters=slavestatus

Another example would be a filter to convert from the MySQL 5.1 create table syntax

that used the TYPE keyword to the newer ENGINE keyword.

[EnginerFilter]

type=filter

module=regexfilter

match=TYPE

replace=ENGINE

This would then change the SQL sent by a client application written to work with MySQL 5.1

into SQL that was compliant with MySQL 5.5. The statement

create table supplier(id integer, name varchar(80))

type=innodb

would be replaced with

create table supplier(id integer, name varchar(80))

ENGINE=innodb

before being sent to the server. Note that the text in the match string is case independent.

Tee Filter

The tee filter is a filter module for MaxScale is a “plumbing” fitting in the MaxScale filter

toolkit. It can be used in a filter pipeline of a service to make a copy of requests from the

client and dispatch a copy of the request to another service within MaxScale.

w: www.mariadb.com

e: info@mariadb.com

Page: 42

The configuration block for the TEE filter requires the minimal filter parameters in it’s section

within the MaxScale.cnf file that defines the filter to load and the service to send the

duplicates to.

[ArchiveFilter]

type=filter

module=tee

service=Archive

In addition parameters may be added to define patterns to match against to either include or

exclude particular SQL statements to be duplicated. You may also define that the filter is

only active for connections from a particular source or when a particular user is connected.

Top Filter

The top filter is a filter module for MaxScale that monitors every SQL statement that passes

through the filter. It measures the duration of that statement, the time between the statement

being sent and the first result being returned. The top N times are kept, along with the SQL

text itself and a list sorted on the execution times of the query is written to a file upon closure

of the client session.

The configuration block for the TOP filter requires the minimal filter options in it’s section

within the MaxScale.cnf file, stored in $MAXSCALE_HOME/etc/MaxScale.cnf.

[MyLogFilter]

type=filter

module=topfilter

filebase=/var/log/Top10Queries

count=10

In addition parameters may be added to define patterns to match against to either include or

exclude particular SQL statements to be duplicated. You may also define that the filter is

only active for connections from a particular source or when a particular user is connected.

w: www.mariadb.com

e: info@mariadb.com

Page: 43

Encrypting Passwords

Passwords stored in the MaxScale.cnf file may optionally be encrypted for added security.

This is done by creation of an encryption key on installation of MaxScale. Encryption keys

may be created manually by executing the maxkeys utility with the argument of the filename

to store the key.

maxkeys $MAXSCALE_HOME/etc/.secrets

Changing the encryption key for MaxScale will invalidate any currently encrypted keys stored

in the MaxScale.cnf file.

Creating Encrypted Passwords

Encrypted passwords are created by executing the maxpasswd command with the

password you require to encrypt as an argument. The environment variable

MAXSCALE_HOME must be set, or MaxScale must be installed in the default location

before maxpasswd can be executed.

maxpasswd MaxScalePw001

61DD955512C39A4A8BC4BB1E5F116705

The output of the maxpasswd command is a hexadecimal string, this should be inserted into

the MaxScale.cnf file in place of the ordinary, plain text, password. MaxScale will determine

this as an encrypted password and automatically decrypt it before sending it the database

server.

[Split Service]

type=service

router=readwritesplit

servers=server1,server2,server3,server4

user=maxscale

password=61DD955512C39A4A8BC4BB1E5F116705

w: www.mariadb.com

e: info@mariadb.com

Page: 44

Configuration Updates
The current MaxScale configuration may be updating by editing the configuration file and

then forcing MaxScale to reread the configuration file. To force MaxScale to reread the

configuration file a SIGTERM signal is sent to the MaxScale process.

Some changes in configuration can not be dynamically applied and require a complete

restart of MaxScale, whilst others will take some time to be applied.

Limitations

Services that are removed via the configuration update mechanism can not be physically

removed from MaxScale until there are no longer any connections using the service.

When the number of threads is decreased the threads will not actually be terminated until

such time as they complete the current operation of that thread.

Monitors can not be completely removed from the running MaxScale.

w: www.mariadb.com

e: info@mariadb.com

Page: 45

Authentication
MySQL uses username, passwords and the client host in order to authenticate a user, so a

typical user would be defined as user X at host Y and would be given a password to

connect. MaxScale uses exactly the same rules as MySQL when users connect to the

MaxScale instance, i.e. it will check the address from which the client is connecting and treat

this in exactly the same way that MySQL would. MaxScale will pull the authentication data

from one of the backend servers and use this to match the incoming connections, the

assumption being that all the backend servers for a particular service will share the same set

of user credentials.

It is important to understand, however, that when MaxScale itself makes connections to the

backend servers the backend server will see all connections as originating from the host that

runs MaxScale and not the original host from which the client connected to MaxScale.

Therefore the backend servers should be configured to allow connections from the

MaxScale host for every user that can connect from any host. Since there is only a single

password within the database server for a given host, this limits the configuration such that a

given user name must have the same password for every host from which they can connect.

To clarify, if a user X is defined as using password pass1 from host a and pass2 from host b

then there must be an entry in the user table for user X form the MaxScale host, say pass1.

This would result in rows in the user table as follows

Username Password Client Host

X pass1 a

X pass2 b

X pass1 MaxScale

In this case the user X would be able to connect to MaxScale from host a giving the

password of pass1. In addition MaxScale would be able to create connections for this user to

the backend servers using the username X and password pass1, since the MaxScale host is

also defined to have password pass1. User X would not however be able to connect from

host b since they would need to provide the password pass2 in order to connect to

MaxScale, but then MaxScale would not be able to connect to the backends as it would also

use the password pass2 for these connections.

w: www.mariadb.com

e: info@mariadb.com

Page: 46

Wildcard Hosts

Hostname mapping in MaxScale works in exactly the same way as for MySQL, if the

wildcard is used for the host then any host other than the localhost (127.0.0.1) will match. It

is important to consider that the localhost check will be performed at the MaxScale level and

at the MySQL server level.

If MaxScale and the databases are on separate hosts there are two important changes in

behaviour to consider:

1. Clients running on the same machine as the backend database now may access the

database using the wildcard entry. The localhost check between the client and

MaxScale will allow the use of the wildcard, since the client is not running on the

MaxScale host. Also the wildcard entry can be used on the database host as

MaxScale is making that connection and it is not running on the same host as the

database.

2. Clients running on the same host as MaxScale can not access the database via

MaxScale using the wildcard entry since the connection to MaxScale will be from the

localhost. These clients are able to access the database directly, as they will use the

wildcard entry.

If MaxScale is running on the same host as one or more of the database nodes to which it is

acting as a proxy then the wildcard host entries can be used to connect to MaxScale but not

to connect onwards to the database running on the same node.

In all these cases the issue may be solved by adding an explicit entry for the localhost

address that has the same password as the wildcard entry. This may be done using a

statement as below for each of the databases that are required:

MariaDB [mysql]> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,

DROP ON employee.* 'user1'@'localhost' IDENTIFIED BY ‘xxx’;

Query OK, 0 rows affected (0.00 sec)

Limitations

At the time of writing the authentication mechanism within MaxScale does not support IPV6

address matching in connections rules. This is also in line with the current protocol modules

that do not support IPV6.

Wildcard address supported in the current version of MaxScale are:

w: www.mariadb.com

e: info@mariadb.com

Page: 47

192.168.3.%

192.168.%.%

192.%.%.%

and short notations

192.%

192.%.%

192.168.%

w: www.mariadb.com

e: info@mariadb.com

Page: 48

Error Reporting
MaxScale is designed to be executed as a service, therefore all error reports, including

configuration errors, are written to the MaxScale error log file. MaxScale will log to a set of

files in the directory $MAXSCALE_HOME/log, the only exception to this is if the log directory

is not writable, in which case a message is sent to the standard error descriptor.

Troubleshooting

MaxScale binds on TCP ports and UNIX sockets as well.

If there is a local firewall in the server where MaxScale is installed, the IP and port must be

configured in order to receive connections from outside.

If the firewall is a network facility among all the involved servers, a configuration update is

required as well.

Example:

[Galera Listener]

type=listener

 address=192.1681.3.33

 port=4408

 socket=/servers/maxscale/galera.sock

TCP/IP Traffic must be permitted to 192.1681.3.33 port 4408

For Unix socket, the socket file path (example: /servers/maxscale/galera.sock)

must be writable by the Unix user MaxScale runs as.

	Document History
	Introduction
	Terms

	Configuration
	Global Settings
	Threads

	Service
	Router
	Filters
	Servers
	User
	Passwd
	weightby

	Server
	Address
	Port
	Protocol
	Monitoruser
	MonitorPw

	Listener
	Service
	Protocol
	Address
	Port

	Filter
	Module
	Options
	Other Parameters

	Monitor
	Module
	Servers
	User
	Passwd

	Protocol Modules
	MySQLClient
	MySQLBackend
	Telnetd
	maxscaled
	HTTPD

	Router Modules
	Connection Based Routing
	Statement Based Routing
	Available Routing Modules
	Readconnroute
	Master/Slave Replication Setup
	Galera Cluster Configuration for Read Connection router

	Read/Write Split router
	Starting a readwritesplit router session
	Routing to master
	Routing to slaves
	Routing to every session backend
	Configuring Read/Write Split router
	Mandatory parameters
	Optional parameters

	Debugcli
	Debug CLI Configuration

	CLI
	CLI Configuration

	Monitor Modules
	Mysqlmon
	Galeramon

	Filter Modules
	Statement Counting Filter
	Query Log All Filter
	Regular Expression Filter
	Tee Filter
	Top Filter

	Encrypting Passwords
	Creating Encrypted Passwords

	Configuration Updates
	Limitations

	Authentication
	Wildcard Hosts
	Limitations

	Error Reporting

