

w: www.mariadb.com

e: info@mariadb.com

Page: 1

Limitations and Known Issues within MariaDB MaxScale
The purpose of this documentation is to provide a central location that will document known

issues and limitations within the MaxScale product and the plugins that form part of that product.

Since limitations may be related to specific plugins or to MaxScale as a whole this document is

divided into a number of sections, the purpose of which are to isolate the limitations to the

components which illustrate them.

Limitations in the MaxScale core

This section describes the limitations that are common to all configuration of plugins with

MaxScale.

Limitations with MySQL Protocol support

● Compression

● SSL

Both capabilities are not included in MySQL server handshake

● LOAD DATA LOCAL INFILE currently not supported

Limitations with MySQL Master/Slave Replication monitoring

Limitations with Galera Cluster Monitoring

Master selection is based only on MIN(wsrep_local_index), no other server parameter.

Limitations in the connection router

 If Master changes (ie. new Master promotion) during current connection the router

cannot check the change

Limitations in the Read/Write Splitter

Scale-out limitations

In master-slave replication cluster also read-only queries are routed to master too in the

following situations:

● if they are executed inside an open transaction

w: www.mariadb.com

e: info@mariadb.com

Page: 2

● in case of prepared statement execution

● statement includes a stored procedure, or an UDF call

Limitations in client session handling

Some of the queries that client sends are routed to all backends instead of sending them just to

one of server. These queries include “USE <db name>” and “SET autocommit=0” among many

others. Read/Write Splitter sends a copy of these queries to each backend server and forwards

the first reply it receives to the client. Below is a list of MySQL commands which we call session

commands :

COM_INIT_DB (USE <db name> creates this)

COM_CHANGE_USER

COM_STMT_CLOSE

COM_STMT_SEND_LONG_DATA

COM_STMT_RESET

COM_STMT_PREPARE

Also these are session commands:

COM_QUIT (no response)

COM_REFRESH

COM_DEBUG

COM_PING

In addition there are query types which belong to the same group:

SQLCOM_CHANGE_DB

SQLCOM_DEALLOCATE_PREPARE

SQLCOM_PREPARE

SQLCOM_SET_OPTION

SELECT ..INTO variable|OUTFILE|DUMPFILE

Then there are queries which modify session characteristics, listed as derived, internal RWSplit

types:

 QUERY_TYPE_ENABLE_AUTOCOMMIT

 QUERY_TYPE_DISABLE_AUTOCOMMIT

w: www.mariadb.com

e: info@mariadb.com

Page: 3

There is a possibility for misbehavior; if “USE mytable” was executed in one of the slaves and it

failed, it may be due to replication lag rather than the fact it didn’t exist. Thus the same

command may end up with different result among backend servers. This disparity is missed.

The above-mentioned behavior can be partially controller with RWSplit configuration parameter

called

use_sql_variables_in=[master|all] (master)

Server-side session variables are called as SQL variables. If “master” or no value is set, SQL

variables are read and written in master only. Autocommit values and prepared statements are

routed to all nodes always.

NOTE: If variable is written as a part of write query, it is treated like write query and not routed

to all servers. For example, INSERT INTO test.t1 VALUES (@myvar:= 7) .

Examples:

If new database “db” was created and client executes “USE db” and it is routed to slave before

the CREATE DATABASE clause is replicated to all slaves there is a risk of executing query in

wrong database. Similarly, if any response that RWSplit sends back to the client differ from that

of the master, there is a risk for misbehavior.

Most imaginable reasons are related to replication lag but it could be possible that a slave fails

to execute something because of some non-fatal, temporary failure while execution of same

command succeeds in other backends.

Authentication Related Limitations

MySQL old passwords are not supported

	Limitations and Known Issues within MariaDB MaxScale
	Limitations in the MaxScale core
	Limitations with MySQL Protocol support
	Limitations with MySQL Master/Slave Replication monitoring
	Limitations with Galera Cluster Monitoring
	Limitations in the connection router
	Limitations in the Read/Write Splitter
	Scale-out limitations
	Limitations in client session handling

	Authentication Related Limitations

