M

%
Ve

E

SkySQL

MaxScale

Configuration & Usage Scenarios

Mark Riddoch
Last Updated: 24™ July 2013

Contents

Contents
Document History
Introduction
Terms
Configuration
Global Settings
Threads
Service
Router
Servers
User
Auth
Server
Address
Port
Protocol
Monuser
MonPasswd
Listener
Service
Protocol
Port
Monitor
Module
Servers
User
Passwd
Protocol Modules
MySQLClient
MySQl Backend
Telnetd
HTTPD
Router Modules
Connection Based Routing
Statement Based Routing
Available Routing Modules
Readconnroute
Master/Slave Replication Setup
Galera Cluster Configuration
Readwritesplit

https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.own38oq23q1h
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.4h8sccjfukfg
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.tg7waljopb0j
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.k498ywyi4d7y
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ubko889dk8db
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.w748vjpky28w
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.cc6sgznkcb5p
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.7t3508ifyp7e
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.jmc3h9lmhkvo
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.5ls02rb3i8o6
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.fo8xmknd8dhy
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.vrlqacwiw4jg
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.kd35wrn1e1ws
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.cxj4lm9g1sy8
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ciwlfjhbqadx
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.5bsc6nq0s7v
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.3h2ruf9uyi6h
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.mea194zh1ok7
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.klgpjo2v8n3j
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.fq271s2tm13u
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.fcq6bkajtpth
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.qpt43h1jgrjt
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.i06or51fzsfy
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.gp2tqaepqn7z
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ivnmlnywz8ns
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.3et4j1l44lwu
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ipwrd09imfrk
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ygst0hfs8omz
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.a4918nf156ek
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.rldj49cubl6i
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.58d5zioxsja5
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.duyws6hxz60c
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.zgwd621heux4
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.o5rkohp32mbd
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.d8vwkqs1j4ew
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.x51co1biupg7
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.j90bj6uoru33
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.wtxa4l6bwnfm
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ekf2nk2y5rdv
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.xgjo4h9nd6wh

Master/Slave Replication Setup
Debugcli
Debug CLI Configuration
Monitor Modules
Mysqglmon
Galeramon
Encrypting Passwords
Creating Encrypted Passwords

https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.bfxsnbank28n
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.ocyc3m30hnsp
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.hqwc7nucjb6n
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.b4fy1xu5sj58
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.dmyjk8rz7ujv
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.wymeq7isxh75
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.dc263y31zsda
https://docs.google.com/a/skysql.com/document/d/sj1OY4b7_U8azHUEjKZxqFg/headless/print#heading=h.l0qb1nls7ei3

Document History

Date

Change

Who

21st July 2013

Initial version

Mark Riddoch

23rd July 2013

Addition of default user and password for a
monitor and discussion of monitor user
requirements

New monitor documented for Galera clusters
Addition of example Galera cluster configuration

Mark Riddoch

Introduction

The purpose of this document is to describe how to configure MaxScale and to discuss some
possible usage scenarios for MaxScale. MaxScale is designed with flexibility in mind, and
consists of an event processing core with various support functions and plugin modules that
tailor the behaviour of the MaxScale itself.

Terms

Term Description

service A service represents a set of databases with a specific access
mechanism that is offered to clients of MaxScale. The access
mechanism defines the algorithm that MaxScale will use to direct
particular requests to the individual databases.

server A server represents an individual database server to which a clien
can be connected via MaxScale.

router A router is a module within MaxScale that will route client request

to the various database server which MaxScale provides a servicq
interface to.

connection routing

Connection routing is a method of handling requests in which
MaxScale will accept connections from a client and route data on
that connection to a single database using a single connection.
Connection based routing will not examine individual quests on a
connection and it will not move that connection once it is
established.

statement routing Statement routing is a method of handling requests in which each
request within a connection will be handled individually. Requests
may be sent to one or more servers and connections may be
dynamically added or removed from the session.

protocol A protocol is a module of software that is used to communicate
with another software entity within the system. MaxScale supportg
the dynamic loading of protocol modules to allow for increased
flexibility.

module A module is a separate code entity that may be loaded
dynamically into MaxScale to increase the available functionality.
Modules are implemented as run-time loadable shared objects.

monitor A monitor is a module that can be executed within MaxScale to
monitor the state of a set of database. The use of an internal
monitor is optional, monitoring may be performed externally to
MaxScale.

listener A listener is the network endpoint that is used to listen for

connections to MaxScale from the client applications. A listener is
associated to a single service, however a service may have many
listeners.

connection failover When a connection currently being used between MaxScale and
the database server fails a replacement will be automatically
created to another server by MacScale without client intervention

backend database A term used to refer to a database that sits behind MaxScale and
is accessed by applications via MaxScale.

Configuration

The MaxScale configuration is read from a file which can be located in a number of placing,
MaxScale will search for the configuration file in a number of locations.

1. If the environment variable MAXSCALE_HOME is set then MaxScale will look for a
configuration file called MaxScale.cnf in the directory SMAXSCALE_HOME/etc

2. If MAXSCALE_HOME is not set or the configuration file is not in the location above
MaxScale will look for a file in /etc/MaxScale.cnf

Alternatively MaxScale can be started with the -c flag and the path of an explicit configuration file
to load.

The configuration file itself is based on the “ini” file format and consists of various sections that

are used to build the configuration, these sections define services, servers, listeners, monitors
and global settings.

Global Settings

The global settings, in a section named [MaxScale]], allow various parameters that affect
MaxScale as a whole to be tuned. Currently the only setting that is supported is the number of
threads to use to handle the network traffic. MaxScale will also accept the section name of
[gateway] for global settings. This is for backward compatibility with versions prior to the naming
of MaxScale.

Threads

To control the number of threads that poll for network traffic set the parameter threads to a
number. It is recommended that you start with a single thread and add more as you find the
performance is not satisfactory. MaxScale is implemented to be very thread efficient, so a small
number of threads is usually adequate to support reasonably heavy workloads. Adding more
threads may not improve performance and can consume resources needlessly.

Valid options are:

threads=<number of epoll threads>
[MaxScale]

threads=1

Service

A service represents the database service that MaxScale offers to the clients. In general a
service consists of a set of backend database servers and a routing algorithm that determines
how MaxScale decides to send statements or route connections to those backend servers.

Several different services may be defined using the same set of backend servers. For example a
connection based routing service might be used by clients that already performed internal
read/write splitting, whilst a different statement based router may be used by clients that are not
written with this functionality in place. Both sets of applications could access the same data in
the same databases.

A service is identified by a service name, which is the name of the configuration file section and
a type parameter of service

[Test Service]
type=service

Router
The router parameter of a service defines the name of the router module that will be used to

implement the routing algorithm between the client of MaxScale and the backend databases.
Additionally routers may also be passed a comma separated list of options that are used to
control the behaviour of the routing algorithm. The two parameters that control the choice of
routing are router and router_options.

router=readconnroute
router options=slave

To change the router to consider master as well as slave servers for connection distribution
would merely require a change of router options.

router=radconnroute
router options=master,slave

Servers

The servers parameter in a service definition provides a comma separated list of the backend
servers that comprise the service. The server names are those used in the name section of a
block with a type parameter of server (see below).

servers=serverl, server?2, server3

User

The users parameter, along with the auth parameter are used to define the credentials used to
connect to the backend servers to extract the list of database users from the backend database
that is used for the client authentication.

user=maxscale
auth=maxpassword

Auth

The auth parameter may be either a plain text password or it may be an encrypted password.
Ses the second on encrypting passwords for use in the MaxScale.cnf file. This user must be
capable of connecting to the backend database and executing the SQL statement “SELECT
user, password FROM mysql.user”.

Server

Server sections are used to define the backend database servers that can be formed into a
service. A server may be a member of one or more services within MaxScale. Servers are
identified by a server name which is the section name in the configuration file. Servers have a
type parameter of server, plus address port and protocol parameters.

[serverl]

type=server
address=127.0.0.1
port=3000
protocol=MySQLBackend

Address
The IP address or hostname of the machine running the database server that is being defined.

Port
The port on which the database listens for incoming connections.

Protocol

The name for the protocol module to use to connect MaxScale to the database. Currently only
one backend protocol is supported, the MySQLBackend module.

Monuser

The monitor has a username and password that is used to connect to all servers for monitoring
purposes, this may be overridden by supplying a monuser statement for each individual server

monuser=mymonitoruser

MonPasswd

The monitor has a username and password that is used to connect to all servers for monitoring
purposes, this may be overridden by supplying a monpasswd statement for the individual
servers

monpasswd=mymonitorpasswd

The monpasswd parameter may be either a plain text password or it may be an encrypted
password. Ses the second on encrypting passwords for use in the MaxScale.cnf file.

Listener

The listener defines a port and protocol pair that is used to listen for connections to a service. A
service may have multiple listeners associated with it, either to support multiple protocols or
multiple ports. As with other elements of the configuration the section name is the listener name
and a type parameter is used to identify the section as a listener definition.

[Test Listener]
type=listener
service=Test Service
protocol=MySQLClient
port=4008

Service

The service to which the listener is associated. This is the name of a service that is defined
elsewhere in the configuration file.

Protocol

The name of the protocol module that is used for the communication between the client and
MaxScale itself.

Port
The port to use to listen for connections incoming connections.

Monitor

In order for the various router modules to function correctly they require information about the
state of the servers that are part of the service they provide. MaxScale has the ability to internally
monitored the state of the back-end database servers or that state may be feed into MaxScale
from external monitoring systems.

Monitors are defined in much the same way as other elements in the configuration file, with the
section name being the name of the monitor instance and the type being set to monitor.

[MySQL Monitor]

type=monitor

module=mysglmon
servers=serverl, server?2, server3
user=raatikka

passwd=vilho

Module

The module parameter defines the name of the loadable module that implements the monitor.
This module is loaded and executed on a separate thread within MaxScale.

Servers

The servers parameter is a comma separated list of server names to monitor, these are the
names defined elsewhere in the configuration file. The set of servers monitored by a single
monitor need not be the same as the set of servers used within any particular server, a single
monitor instance may monitor servers in multiple servers.

User

The user parameter defines the username that the monitor will use to connect to the monitored
database. Depending on the monitoring module used this user will require specific privileges in
order to determine the state of the nodes, details of those privileges can be found in the sections
on each of the monitor modules.

Individual servers may define override values for the user and password the monitor uses by
setting the monuser and monpasswd parameters in the server section.

Passwd
The password parameter may be either a plain text password or it may be an encrypted
password. Ses the second on encrypting passwords for use in the MaxScale.cnf file.

Protocol Modules

The protocol supported by MaxScale are implemented as external modules that are loaded
dynamically into the MaxScale core. These modules reside in the directory
$SMAXSCALE_HOME/module, if the environment variable SMAXSCALE_HOME is not set it
defaults to /usr/local/skysql/MaxScale.

MySQLClient

This is the implementation of the MySQL protocol that is used by clients of MaxScale to connect
to the gateway.

MySQLBackend

The MySQLBackend protocol module is the implementation of the protocol that MaxScale uses
to connect to the backend MySQL, MariaDB and Percona Server databases. This
implementation is tailored for the MaxScale to MySQL Database traffic and is not a general
purpose implementation of the MySQL protocol.

Telnetd

The telnetd protocol module is used for connections to MaxScale itself for the purposes of
creating interactive user sessions with the MaxScale instance itself. Currently this is used in
conjunction with a special router implementation, the debugcli.

HTTPD

This protocol module is currently still under development, it provides a means to crete HTTP
connections to MaxScale for use by web browser or RESTful API clients.

Router Modules

The main task of MaxScale is to accept database connections from client applications and route
the connections or the statements sent over those connections to the various services
supported by MaxScale.

There are two flavours of routing that MaxScale can perform, connection based routing and
statement based routine. These each have their own characteristics and costs associated with
them.

Connection Based Routing

Connection based routing is a mechanism by which MaxScale will, for each incoming
connection decide on an appropriate outbound server and will forward all statements to that
server without examining the internals of the statement. Once an inbound connection is
associated to a particular backend database it will remain connected to that server until the
connection is closed or the server fails.

Statement Based Routing

Statement based routing is somewhat different, the routing modules examine every statement
the client sends and determines, on a per statement basis, which of the set of backend servers
in the service is best to execute the statement. This gives better dynamic balancing of the load
within the cluster but comes at a cost. The query router must understand the statement that is
being routing and will typically need to parse the statement in order to achieve this. This parsing
within the router adds a significant overhead to the cost of routing and makes this type of router
only really suitable for loads in which the gains outweigh this added cost.

Available Routing Modules

Currently a small number of query routers are available, these are in different stages of
completion and offer different facilities.

Readconnroute

This is a statement based query router that was originally targeted at environments in which the
clients already performed splitting of read and write queries into separate connections.
Whenever a new connection is received the router will examine the state of all the server that
form part of the service and route the connection to the server with least connections currently.
This results is a balancing of the connections, however different connections may have different
lifetimes and the connections may become unbalanced.

The readconnroute router can be configured to balance the connections from the clients across
all the backend servers that are running, just those backend servers that are currently replication
slaves or those that are replication masters. These options are configurable via the
router_options that can be set within a service. The router_option strings supported are

LT

‘master”, “slave” and “joined”.

Master/Slave Replication Setup

To setup MaxScale to route connections to evenly between all the current slave servers in a
replication cluster a service entry of the form shown below is required.

[Read Service]

type=service

router=readconnroute

router options=slave
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

With the addition of a listener for this service, which defines the port and protocol that MaxScale
uses

[Read Listener]

type=listener

service=Read Service

protocol=MySQLClient

port=4006

the client can now connect to port 4006 on the host which is running MaxScale. Statements sent
using this connection will then be routed to one of the slaves in the server set defined in the
Read Service. Exactly which is selected will be determined by balancing the number of
connections to each of those whose current state is “slave”.

It is assumed that the client will have a separate connection to the master server, however this
can be arranged via MaxScale, allowing MaxScale to manage the determination of which server
is master. To do this you would add a second service and listener definition for the master
server.

[Write Service]

type=service

router=readconnroute

router options=master
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

[Write Listener]
type=listener
service=Write Service

protocol=MySQLClient
port=4007

This allows the clients to direct write requests to port 4007 and read requests to port 4006 of the
MaxScale host without the clients needing to understand the configuration of the Master/Slave
replication cluster.

Galera Cluster Configuration

Although not primarily designed for a multi-master replication setup it is possible to use the
readconnroute in this situation. The readconnroute connection router can be used to balance
the connection across a Galera cluster. A special monitor is available that detects if nodes are
joined to a Galera Cluster, with the addition of a router option to only route connections to nodes
marked as joined. MaxScale can ensure that users are never connected to a node that is not a
full cluster member.

[Galera Service]

type=service

router=readconnroute

router option=joined
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

[Galera Listener]
type=listener
service=Galera Service
protocol=MySQLClient
port=3336

[Galera Monitor]

type=monitor

module=galeramon
servers=serverl, server?2, server3, serverd
user=galeramon

passwd=galeramon

Readwritesplit

The readwritesplit is a statement based router that has been designed for use within
Master/Slave replication environments. It examines every statement, parsing it to determine if the
statement falls into one of three categories;

e read only statement

e possible write statement

e session modification statement
Each of these three categories has a different action associated with it. Read only statements
are sent to a slave server in the replication cluster. Possible write statements, which may
include read statements that have an undeterminable side effect, are sent to the current
replication master. Statements that modify the session are sent to all the servers, with the result
that is generated by the master server being returned to the user.

Session modification statements must be replicated as they affect the future results of read and
write operations, so they must be executed on all servers that could execute statements on

behalf of this client.

Currently the readwritesplit router module is under development and is limited:
e Only a single slave connection is managed currently, therefore statements can not be

balanced across multiple slaves.
e Read statements that use stored procedures and functions are not recognised as having
potentially dangerous (write) side effects and so are routed to slave servers, they should

be routed to the master.
e Connection failover support has not yet be implemented. Client connections will fail if the

master server fails over.

Master/Slave Replication Setup

To setup the readwritesplit connection router in a master/slave failover environment is extremely
simple, a service definition is required with the router defined for the service and an associated

listener.

[Split Service]

type=service

router=readwritesplit
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

[Split Listener]
type=listener
service=Split Service
protocol=MySQLClient
port=3336

The client would merely connect to port 3336 on the MaxScale host and statements would be
directed to the master or slave as appropriate. Determination of the master or slave status may
be done via a monitor module within MaxScale or externally. In this latter case the server flags

would need to be set via the MaxScale debug interface, in future versions an API will be available
for this purpose.

Debugcli

The debugcli is a special case of a statement based router. Rather than direct the statements at
an external data source they are handled internally. These statements are simple text
commands and the results are the output of debug commands within MaxScale. The service
and listener definitions for a debug cli service only differ from other services in they they require
no backend server definitions.

Debug CLI Configuration

The definition of the debug cli service is illustrated below

[Debug Service]
type=service
router=debugcli

[Debug Listener]
type=listener
service=Debug Service
protocol=telnetd
port=4442

Connections using the telnet protocol to port 4442 of the MaxScale host will result in a new
debug CLI session.

Monitor Modules

Monitor modules are used by MaxScale to internally monitor the state of the backend databases
in order to set the server flags for each of those servers. The router modules then use these
flags to determine if the particular server is suitable for routing connections to particular query
classifications to. The monitors are run within separate threads of MaxScale and do not affect
the MaxScale performance.

The use of monitors is optional, it is possible to run MaxScale with external monitoring, in which
case arrangements must be made for an external entity to set the status of each of the servers
that MaxScale can route to.

Mysqglmon

The MySQLMon monitor is a simple router designed for use with MySQL Master/Slave

replication cluster. To execute the mysglmon monitor an entry as shown below should be added
to the MaxScale configuration file.

[MySQL Monitor]

type=monitor

module=mysglmon
servers=serverl, server2, server3, serverd

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of
running or failed and master or slave for each of the servers.

The monitor uses the username given in the monitor section or the server specific user that is
given in the server section to connect to the server. This user must have sufficient permissions
on the database to determine the state of replication. The roles that must be granted to this user
are REPLICATION SLAVE and REPLICATION CLIENT.

Galeramon

The Galeramon monitor is a simple router designed for use with MySQL Galera cluster. To
execute the galeramon monitor an entry as shown below should be added to the MaxScale
configuration file.

[Galera Monitor]

type=monitor

module=galeramon
servers=serverl, server2, server3, serverd

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of
running or failed and joined for those servers that reported the Galera JOINED status.

The user that is configured for use with the Galera monitor must have sufficient privileges to
select from the information_schema database and GLOBAL_STATUS table within that

database.

Encrypting Passwords

Passwords stored in the MaxScale.cnf file may be encrypted for added security. This is done by
creation of an encryption key on installation of MaxScale. Encryption keys may be created
manually by executing the maxkeys utility with the argument of the filename to store the key.

maxkeys $MAXSCALE HOME/etc/.secrets

Changing the encryption key for a MaxScale will invalidate any currently encrypted keys stored in

the MaxScale.cnf file.

Creating Encrypted Passwords

Encrypted passwords are created by executing the maxpasswd command with the password
you require to encrypt as an argument. The environment variable MAXSCALE_HOME must be
set, or MaxScale must be installed in the default location before maxpasswd can be executed.

maxpasswd MaxScalePw001
61DD955512C39A4A8BC4BB1ESF116705

The output of the maxpasswd command is a hexadecimal string, this should be inserted into the
MaxScale.cnf file in place of the ordinary, plain text, password. MaxScale will determine this as
an encrypted password and automatically decrypt it before sending it the database server.

[Split Service]

type=service

router=readwritesplit
servers=serverl, server?2, server3, serverd
user=maxscale
auth=61DD955512C39A4A8BC4BBIESF116705

