MaxScale

Binlog Router Internal Overview

Mark Riddoch

MySQL Replication Overview

Replication Overview

e Slaves connect to Masters in the same way as normal clients
e Standard MySQL protocol
e Some additional messages (COM * commands)

e Binary logs are sent as responses to commands

Message Flow

e Slave Connects to master
e Slave issues a series of standard SQL requests to obtain configuration
e Slave registers with the master - COM SLAVE REGISTER message

e Slave requests binlog events - COM BINLOG DUMP

e Master replies with stream of events

Slave SQL Requests

e SELECT UNIX TIMESTAMP();
e SELECT @master binlog checksum;

o SELECT @ @GLOBAL.GTID MODE;
e MySQL 5.6 only

e SELECT VERSION();
e SELECT 1;

e SELECT @@version comment limit 1;

Slave Set Requests

e SET @master binlog checksum = @ @global.binlog checksum
e SET @master heartbeat period=...
e SET @slave slave uuid=...

e SET NAMES latinl
® May be different if slave is configured differently (e.g. utf8)

Slave Show Commands

e SHOW VARIABLES LIKE 'SERVER _ID’

e SHOW VARIABLES LIKE 'SERVER _UUID'

Slave Registration

e COM SLAVE REGISTER message
e Registers slave server-id, port and rank

e Optionally passes other data
® hostname, username, password

e Server-id should be unique

Binlog Dump

e COM BINLOG DUMP message
e Requests a particular binlog file from a position

e |nitiates process of master sending back binlog events

® First event sent is a synthetic rotate event
® Rotates to specified file and position

e Send event send isa FORMAT _DESCRIPTION EVENT
e Describes how further events will be sent

Event Stream

® The master sends events from the binlog file

e Events sent are a binary representation of the binlog file contents with a header
prepended

® Once all events have been sent the master pauses until new events are ready to
be sent

10

Rotate Event

e Special event sent at end of file

® Closes current file and moves to next file
® New filename and position given in event

e Not all files end with rotate event

11

‘Fake’ Events

e Not all events originate form Master’s binlog file
e Rotate events and format description events

e These should not be saved to binlog file in the receiver

12

Implementation

Concept

e MaxScale connects to master as if it was a MySQL Slave
e MaxScale caches binlog events sent by master
e Slaves connect to MaxScale and request binlogs

e MaxScale appears to slaves as if it was the master

14

MaxScale Modules

e New router to manage replication
e Same Client/Backend Protocols
e No monitor used

e Filter interface not implemented

15

Binlog Router - Backend

e The binlog router has a single backend server
e The backend server is actually the master server

e Unlike other routers connection to backend occurs before client connections

16

Binlog Router - Clients

e The clients of the binlog router are the slaves
e Multiple slave connections
e Slave requests are not routed to the backend

e MaxScale creates responses from cached information previously received from
the backend (master)

17

Binlog Router Code

e MaxScale/modules/routing/binlog
® blr.c - Module interface and entry points
® blr master.c - Interaction with master server
® blr slave.c - Interaction with the slave servers
e blr file.c- Allfile /O related functions
® blr cache.c - Memory cache for binlog events (not currently in use)

e Header file MaxScale/Modules/include/blr.h

13

4 Binlog Router Structu

e

+next ,
1 «enumeration»
SERVICE DCB MASTER_STATE
| ROUTER_INSTANCE BLRM_UNCONNECTED
reervice +lock 1 (0.1 DCB BLRM_CONNECTING
1 +uuid = 0..1 BLRM_AUTHENTICATED
+masterid 1 BLRM_TIMESTAMP
+serverid naster BLRM_SERVERID
+initbinl : BLRM_HBPERIOD
N user +client BLRM_CHKSUM1
® : +password BLRM_CHKSUM2
® ROUTER INSTANCE Is the SESSION rosssion | fileroot - ! | BLRM_GTIDMODE
— 1..* 1 +master_checksum +master state BLRM_MUUID
+master_uuid BLRM_SUUID
+lastReceivedEvent +router BLRM_LATIN1
state of the master e u
POCTERSIATS +binlog_name BLRM_SELECT1
+n_slaves +binlog_position 1 BLRM_SELECTVER
° +n reads +prevbinlog BLRM_SELECTVERCOM
connel l 0N +n_binlogs +rotating BLRM_SELECTHOSTNAME
+n_binlogs_ses ROUTER_SLAVES ;| |BLRM_MAP
_binlog_e . : TM_REGISTER
*+n_binlog_errors +saved_master +files +binlog_pos < BLTM_
+n_rotates - 11 1 +binlogfile +next BLRM_BINLOGDUMP
+n_cachehits . 1 +uuid
+n_cachemisses MASTER RESPONSES 1 +file 1 ™ +serverid
. *+n_registered — +hostname ‘
O RO UTER SLAVE IS the rO Uter +n_masterstarts +server_id BLFILE o+ | *user 4 «enumeration>
+n_residuals +hearteat “ | +passwd 1 SLAVE_STATE
+n_heartbeats +chksum? +binlogname <01 [g AVE STATS +port +state BLRS CREATED
. +lastReply FGNBLTIS +d +nocrc BLRS_REGISTERED
Session StrU CtU e +n_fakeevents Tgemoce e 1 |inevents +overrun BLRS_DUMPING
+n_artificial Fuuid . +cache |e— |*n_bytes tstats” 4 | +rank BLRS_ERRORED
+n badcrc +setslaveuuid +lock +n_bursts soormect ime
+events +setnames +n_requests 1 -
+lastsample +utf8 +n_flows
+minno +select 1 +next +n_upd
° +minavgs +selectver +n_cb
‘ P d h N U LL +selectvercom +n _cbna
Seuao session Nas eclocthostname g
+map +n_failed read
° +fde_event +n_overrun
+fde_len +n_caughtup
SeSS I O n +n_actions
+lastsample
+minno
+minavgs

19

+next

Router Startup e | [

+lock 0..1 DCB

1
+uuid S 0.1

+masterid 1
+serverid
+initbinlog 1
N +user

+password 1
—| +fileroot -

master

+client

+master_checksum 1 +master_state

e Need connection to master on startup e van \

#| .binlog lock
1 | +binlog_name

e Creates fake client in blr start master routine - called from createlnstance entry
point

e Creates authentication information internally - no clients to copy from
e Router instance client dcb is the fake client

® |nitiates state machine used to obtain master information

20

Master State Machine

e Master state machine is mechanism to send set of SQL requests to master
e Allows non-blocking semantics to be maintained
e Set of select, show etc commands

e Responses are cached in the MASTER RESPONSES structure for replay to the
slaves

e |f master connection fails MASTER RESPONSES are loaded from cache of
previous values

21

Master State Machine - Statements

e Set of commands sent 1 +saved_master / 1
e SELECT UNIX_TIMESTAMP() 1
e SHOW VARIABLES LIKE ‘SERVER _ID’ MASTER RESPONSES
e SET @master_heartbeat period =... —
o SET@ . - . +server id
master_binlog_checksum = @ @global.binlog_checksum +hearteat

e SELECT @master_binlog_checksum +chksum *
o SELECT @@global.gtid_mode +chksum?2 ;
e SHOW VARIABLES LIKE ‘SERVER UUID’ +gtid_mode !
e SET @slave uuid = ... :::;(silaveuui d *

—— . 4
e SET NAMES latinl +setnames -
e SET NAMES outfit +utf8
e SELECT1 +select1
e SELECT VERSION() +selectver
o SELECT @@version_comment LIMIT 1 +selectvercom

) +selecthostname
® SELECT @@hostname +map
o SELECT @@max_allowed packet +fde event
. +fde len
® Slave Register —————

® Binlog Dump

22

Master State Machine Implementation

ct um1)
® Assume current state BLRM_CHKSUM1 | — — ——
e State machine triggered on packet e
" 7: blr_cache_r;sz\:wi;response(c = 1]
arrival ;
[ﬁr_make_ & T @ma og_checksum") E
" [ft tate(BLR M2
® Responses stored internally for later use F >
| |
) . . . [T 11 : write EI L
e \Written to cache file for later invocations, || L : z

23

4 MSM - Steady State

® “Steady State” of Master State Machine is BLRM_BINLOGDUMP

interaction Binlog Dump)

® Packets from master are BINLOG Events

e Fvents always written to disk

e [f clients are registered events distributed

ndle_binlog_record

LLLLLL

24

Binlog Event Packets

e Routine blr handle binlog record is called with GWBUF that contains many

packets
e router->residual holds any unprocessed data from previous packet
® Routine prepends any residual i;’Zé',?:"-'e”
® Loops over each event making them contiguous if straddles buffers Iﬁ:‘nestamp
® Fach event extracted and handled separately :z;ewnéﬁgype
® Only copies data if need to make contiguous +event_size

. B
® On return may leave residual data next_pos

+flags

e Events flushed to disk at the end of each packet

25

Special Binlog Events

® Rotate Events
e Written tofile

® Closefile e Events LOG EVENT ARTIFICAL F bit
® Open next file ot

e Distributed to slaves
® Generated (fake) event

e Heartbeat Events ® Not written to disk

e Not written to file
e Not distributed to slaves

26

Slave Side

Slave Connection

e Slaves connection to MaxScale using same mechanism as any client
e Authentication is done at the protocol level

e Slave sends commands to router

e Router parses and responds from MASTER RESPONSES cache

28

Slave State Machine

® connect BLRS_CREATED |

set SLAVE structure)(BLRS_UNREGISTERE[;

(BLRS_REGISTERED)
4) COM_REGISTER_SLAVE

not COM_REGISTER SLAVE

&

® New slaves enter the slave state machine

vV
<> COM_BINLOG_DUMP BLRS_DUMPING]
_ D,

¢ No binlog events are sent until BLRS_ DUMPING state o

(BLRS_ ERRORED close

G J >®

e |n BLRS UNREGISTERED state all responses generated from saved master
responses

29

Slave Modes

e Once BLRS DUMPING state achieved slaves may be in two modes

® Catchup mode

e Slave is lagging behind the master and receiving events from the saved binlog files on the MaxScale
server

e Up-to-date mode
e Slave has received all binlog events in the MaxScale binlog files
e New events will be forwarded to the slave as they arrive at the MaxScale binlog router

30

Catchup Mode

e Sending all events required to cause slave to catchup in a single call would block
a MaxScale thread

e There are no new messages sent from slave to master (MaxScale)

e Solution:

® Send at most “burstsize” binlog events in a single call
e |nsert fake POLLOUT event for the slave
e Results in future thread continuing process to bring slave up to date

e Implemented in blr slave catchup function

31

Up-to-date Mode

® Binlog events are sent as they are received

e Implemented in blr distribute binlog record

® | oops over all slaves
® Sends single event to each slave that is up-to-date

e Events written to local binlog directory before sending to slaves

32

Slave Mode Transition

e Vital that transition for catchup to up-to-date mode is secure
e Must stop any new logs being sent during transition

e Two stage locking process used
e First hold binlog lock in the router
® Then take slave catch lock
® Never do this in the opposite order or deadlock might occur

33

End of File Handling

e |f slave reaches end of file 2 things may have happened

® The slave is up to date and streaming of binlog records can pause
® The master crashed at some point in history and the rotate event at the end of thefile is
missing

® Detection
e |f current file is index N does file N + 1 exist

e |f the binlog file is missing a trailing rotate event then a fake rotate event is
generated

34

File1/O

BLFILE

+binlogname
+fd

+refcnt
+lock

+blr_open_binlog()

+blr_read_binlog()

e BLFILE used as shared binlog file handles +bir_close.binlog
e Shared between master and multiple slaves

e Allows shared descriptors and common caching point

1

+cache

Shared Binlog File Handles

BLCACHE_RECORD

+position

/o
1
, jyfrecords
1 +hdr

BLCACHE

+current
+cnt
+lock

1

W

1

+pkt

REP_HEADER

+payload_len
+seqgno

+0k
+timestamp
+event_type
+serverid
+event size
+next_pos
+flags

1

GWBUF

36

Binlog Storage

e By default binlog files stored in SMAXSCALE HOME/<service name>
e Binlog files have standard binlog header (4 bytes)

e Remainder of binlog files are raw events as per the master

e Only difference is no close marker written to binlog file

e MaxScale does not support binlog index file

37

Cached Master Responses

e Router caches responses from master during handshake to file

e Allows router to read these cached responses if master is down when MaxScale
starts

e |f master is down MaxScale can serve binlog records it has previously cached
e Cached responses stored in SMAXSCALE HOME/<service name>/.cache

e User credentials also stored to allow authentication without a master

38

Monitoring Binlog Server

J MaxAdmin

e Uses standard router diagnostic entry point for show service command

® Provides details stats for master and slaves

40

MySQL Protocol Support

e As a side effect of router responding to saved commands these can detect
MaxScale status

e COM PING response to allow mysgladmin ping to determine if MaxScale is up

e COM STATISTICS - allows basic MaxScale statistics to be returned
® uptime
e No. of threads
® No. of binlog events sent
® No. of slaves connect
e Master State Machine state

41

MySQL Protocol Support (Contd)

e SELECT commands
e SELECT @ @maxscale version
® SELECT @ @hostname
e SELECT @@server id

e SHOW commands

e SHOW MASTER STATUS

e SHOW SLAVE STATUS

e SHOW SLAVE HOSTS

o SHOW VARIABLES LIKE ‘MAXSCALEY'

42

