MaxScale Internals

Introduction

Mark Riddoch

Principles & Concepts

Conceptual Overview

e Provide a layer between client applications and the database implementation

e Pluggable Architecture
e Flexibility
® Easy extension of capabilities
® Separation of functionality

e Astransparent as possible
e |deally no client changes required

Development Practices

e Pseudo object model

® Per object header file

e Structure to hold object properties

® Set of entry points to manipulate object
® No true encapsulation

e All header files protected against multiple includes
e No header file ordering issues

e All header files include any headers they depend on

Development Practices

e Code documentation via Doxygen

e Every function should have a comment with @params and @return as a minimum
e Every file should have a doxygen @file comment with a description of the contents
e All structures should be commented for doxygen with each field documented

® Test harnesses
® Every pseudo object should have a test harness

Protocol Plugins

e Two types of protocol plugin

® Client side (Clients to MaxScale)
® Backend (MaxScale to Database)

e Responsible for...
® Connection handshake
® Data exchange
® Connection shutdown
® Encryption
e Compression

Monitor Plugin

e Monitor backend databases
e Translates backend specifics to generic concepts

e |nformation provider for core & other modules

Router Plugin

® Two classes of router

® Connection based - does not look at individual requests
® Statement based - decides on a per request basis, must look at every request

e Decides which database to send requests or connections to

e Uses status information from the monitor

Filter Plugin

e Sits between the client side protocol and routers
e Filters may be chained together
e Affect requests and optionally responses

e Different filter types
® ogging
e Statement modification

e Statement blocking
o ‘Utility’

Authentication Plugin

e Allow for non-native authentication mechanism

® Map generic authentication mechanisms (E.g. LDAP, Kerberos) to database mechanism
e Map different database models

e Yet to be implemented

10

Plugin Mechanism

e Fixed set of entry points, same for all plugin types

e Modules return a plugin specific ‘Module Object’

e Model Objects are essentially a set of function pointers
e Plugins are shared library objects, loaded on demand

e Can be implemented in any programming language that can use C calling
convention

11

ﬂ Plugin Mechanism (contd.)

Module loads, instances and sessions

e Each plugin module (.so) is loaded only once

e A new instance of a plugin is created for each use within the configuration file
® The instance ties the configuration to the plugin

e A new session is created for each client connection that uses a plugin
® Every session using the same service shares a common instance

12

Module Common Entry Points

e A set of entry points common to all modules

e Vodulelnit()

e Called once when the module is first loaded
e Performs per module initialisation

® version()
e Returns a NULL terminated string with the plugin version information

e GetModuleObject()

e Returns the plugin type specific module object
e Module objects are a set of function pointers

e ModInfo structure
® info static variable with all type and version related data needed to identify plugin

13

MaxScale Principles

e Object Orientated Design
e Not implemented in OO language
e Separation of responsibilities

e Not only at the “object” level
® Plugins should be isolated, self contained and flexible

14

Event Driven Core

Event Driven Model

e All network I/O is event driven
e Each connection (file descriptor) is given a descriptor control block (DCB)
® The file descriptor and DCB are registered with EPOLL on linux

e Every change of descriptor state causes an EPOLL event, DCB is event data

16

Event Driven Model - DCB

e Connection state must be passed to event handlers

e DCB is mechanism for communicating connection state between event
handlers

e On arrival events are queued for processing by MaxScale threads

e Model maps easily to |0 Completion Ports on windows and AlX

17

Threading Model

e A set of threads for handling I/0 events

e A set of utility threads

e No. of I/O threads defined in configuration file
e |/O threads should never block

® Best to configure no. of I/O threads to be less than no. of physical cores

13

e These threads may block

e Utility threads used for
® | og manager
® House Keeper
® One per instance of monitor plugin

19

/O Thread Tips

e All network sockets should be non-blocking
e Never wait for a response on a network thread
e Avoid locking objects for extended periods

e Do not usr mutexes that can cause I/O threads to queue on each other

20

Event Implementation

e File poll.c contains EPOLL implementation of event abstraction
® Ports to non-Linux system will require platform specific versions of poll.c, e.g. winpoll.c

® Tuning parameters
® nonblocking polls - No. of interactions of non-blocking poll before a blocking poll call is
made
® maxwait - Maximum time to do a blocking poll

21

Event Queue

e Event queue is implemented within the DCB structure

e DCBEVENTQ structure
e Doubly linked list
e Set of pending events
e Set of processing event
® processing flag

DCBEventQ I

+pending_events
+processing events

+processin
e Event queue lock +gventq Iogk
® A pair of timestamps +inser:;d
+start

® \When an event is processed the mechanismis
® |ock dcb->evq structure
e Copy pending events to processing events
e Set processing flag
e Unlock dcb->evq structure

22

Event Queue (contd.)

e New events are added in dcb->evq pending events

e |f processing flag is set pending events will not be processed until current
processing completes

e Threads will not block on dcb->evq lock or wait for processing flag to clear
e MaxAdmin/DebugCLI commands to examine poll statistics and event queue

® show eventqg
e show poll

23

Descriptor Control Block

DCBMM +memdata

® Descriptor control block is centre of polling —r

e All events are passed the DCB

e The DCB holds all the connection state
directly or indirectly

e DCB’s maintain queues of outgoing and
incoming data

24

MMMMM

DCB - buffer queues

e DCB->writeq
e The DCB write queue is used when data is being written to the socket and the socket buffer
becomes full.
e |nstead of the write blocking the residual data is added to the DCB writeq
® The writeq will be flushed when an EPOLL OUT event is received on the descriptor

e DCB->delayq

® The delay queue is used to hold requests when there is an outstanding authentication
handshake on the connection

e DCB->dcb readqueue

e The dcb readqueue buffers incomplete requests

25

MMMMM

DCB - GWPROTOCOL

e GWPROTOCOL is the link between the DCB and the protocol plugin
e A set of function pointers that are entry points in the protocol plugin
® These entry points include;

® read, write, write ready, error, hangup, accept, connect, close & listen operations
® These entry points are the links to the protocol specific part of the event handler

26

® DCB’s may be referenced from multiple 1/0 threads
e A DCB can not be freed until all threads have finished with it

e DCBMM manages
e A bitmap - one bit per thread
e A zombie list

® A DCB is first placed on zombie list

+next

DCB - Memory Management

DCBMM

next

DCB

+memdata

+bitmask

+role
+fd
+state

g/

uncs

e Aseach thread completes event processing it checks the zombie list and clears it’s

bit

® Only when all bits are cleared is the DCB freed

|\

27

MaxScale Utility “Classes”

Atomic Operations

e Implemented as Intel assembler

e atomic add - add signed value and return previous value
e Basis for spinlock implementation

e Used for maintaining statistics counters

e Could be replaced with GCC built in function - need to evaluate performance

29

Spinlocks

e Three entry points

® spinlock acquire - wait for spinlock to be available and grab lock
® spinlock acquire nowait - grab lock if available, return true if lock was grabbed
® spinlock release - release a spinlock we are holding

e All spinlocks must be initialised with spinlock init or SPINKLOCK INIT macro

e Spinlocks implement a busy wait for acquisition

® Spinlocks should not be held for long period
e Avoid holding spinlocks when making system calls the may cause thread scheduling

30

Buffer Management

e GWBUF structures designed to allow St ok
e Sharing buffers between different threads without copies vt type
e Chopping buffers up without copy | o g

+gwbuf_trim()
e Creating lists of buffers for read/write (scatter/gather approach) ot o)
+gwbuf:make:contiguous()

BUF_PROPERTY +owbuf add_ fint)
rvalue < oot add propery(
e Buffers also allow extra information to be carried with the == \

network data / \

HINT
P

O H | nts SHARED_BUF

+data
. +next +refcount
e Buffer properties
e Buffer objects

31

o GWBITMASK

e An arbitrarily sized bitmap
e Grows automatically as bits are set and cleared

e Bitmask operations are locked at the bitmask level

+next
\ GWBITMASK I
+lock
+bits
+length

+bitmask_init()
+bitmask_free()
+bitmask_set()
+bitmask_clear()
+bitmask_isset()
+bitmask_isallclear()
+bitmask_copy()

e

32

HASHTABLE

e Generic hashtable implementation
e Multiple readers, single writer

e Configurable hash function and key/value memory
management

e [terator support for walking hashtable

HASHITERATOR

HASHTABLE

+chain
+depth

+hashsize
+spin
+n_readers
+writelock

+hashtable_next()

+table

A

+hashtable_add()
+hashtable delete()
+hashtable_fetch()
+hashtable_stats()
+hashtable_iterator()

+entries

/

HASHENTRIES

+

key +next
+value

33

MEMLOG

e Asimple interface to allow values to be logged to memory and later flushed to
disk

e Simple API to log integer, long, long long and string values
e MEMLogs by be flushed by demand or when defined buffer is full
e Always flushed on shutdown

e Use in time sensitive code

34

Accurate Time

® RDTSC - low cost accurate time

e |ntel processor specific

e Good for profiling

e Returns the processor clock tick value

e Accuracy is related to processor clock frequency

e rdtsc() return an unsigned long long value of current CPU time stamp counter

35

Housekeeper Thread

HKTASK

+name
+task
+data

+frequency &
. . . +nextdue
® Housekeeper gives interface that allows timed tasks to be run s oty TN |
+htktask remove() *ype :;r;:nswir—axrgg
. HK REPEATED
e Tasks may be repeated at a given frequency or one-shot delayed HK_ONESHOT

® Tasks consist a function pointer and some user data that is passed to the task

e Housekeeper maintains hkheartbeat counter

® Incremented every 100ms
e Globally available cheap source of time

e Implemented with a dedicated thread

36

Service View

+users
USERS

Service Centric View

+next

SERVICE

+name
+state =
+spin

+routerModule
+version_string
+enable_root
+|localhost_match_wildcard
+svc_config_version
+svc_do_shutdown
+users_table spin
+rate_limit

+weightby

+service_find()
+service_isvalid()
+serviceAddProtocol()
+serviceHasProtocol()
—<>| +serviceAddBackend()

® Services are a logical place to start
configuration & also to look at
|nterna| Organlsatl on SERVER_REF

? +server
1

SERVER

+dbref

>

® The service represents the static
state of MaxScale, i.e. the
“potential” for user sessions

+listener

DCB 1

+serviceStart()
41 | +serviceStop() 1
+serviceRestart()

+serviceSetUser()

+serviceSetFilters()
+serviceEnableRootUser()
+serviceWeightBy()
+serviceGetWeightingParameter()
+serviceEnableLocalhostMatchWildcardHost()
+serviceUpdate()

+serviceUpdate()

+service_refresh_users() 1

1 1 .
+port rout

+router_instance

SERV_PROTOCOL

+protocol

+port
+address

= 1

ROUTER_INSTANCE

+next

1 | +serviceHasBackend()
+serviceAddRouterOption() \
+servicerClearRotuerOptions() +stats

+serviceGetUser() +credentia 1

1

SERVICE_STATS

+started
+n_sessions
+n_current

SERVICE_USER

+name

+authdata

ROUTER

FILTER_DEF

38

+++++

spin
uuuuuuuuuu
+version_string

@

+enable_root
+localhost_match_wildcard
+svc_config_version
+svc_do_shutdown
+users_table_spin
+rate_limit

rs +serviceHasProtocol

USERS

® Services are created as part of configuration load

® Services responsible for loading modules for a service

e Creates instance of plugin with service specific configuration
® The Service ties together all the resources needed to create a session

® The service does not represent an actual session or state, it is a blue print for
session creation

39

vvvvvvvvvvvvvvv

+service_refresh user

Service Listeners - /

SERV_PROTOCOL

+protocol

+port
+listener +address

1

DCB 1

+next

e The SERV PROTOCOL structure represents listening ports

e A service may have multiple protocol/port entries
e A special session is created for the listener

e |istener sessions are created for each SERV PROTOCOL entry

40

4 Starting Listeners

e Starting a service
® Creates an instance of the router that is
used by all sessions of this service
® | oads the protocol modules
® Creates a DCB for the listener
® Creates the Listener Session

interaction serviceStart)

Service

|: 1 : serviceStart

2 : createlnstance

Router

3 : serviceStartPort

for each
SERV_PROTOCOL

T

DCB
_.--&cregtex»
............. s Accreate T
: : Protocol
: «create» :
PERUURNNNN S, S U —___ >

6 : setProtocol

1

...

7: Iist:en

«create» .

SESSION

9 : setState(LISTENING)

41

4 New Connection

® New Connections cause POLLIN
events on the listener DCB

® Protocol does connect and creates
DCB

e Service and Protocol copied from
listener

® Session not created until
authentication is completed

interaction Client Connection)

: AN
Poll Listener: DCB PROTOCOL fcrgr%yliiteewn:re
DCB
1: POLLIN
2 : accept
3 : accept DCB
«creé'te» .
...... 4. create).

5 : SetService _

6 : setup Protocq)

7 : Add DCB to Poll Set

42

Users

e Users are connected to the service
e Probably should move to an authentication object when authentication
plugins become available
® Each service has a distinct set of users
e Uses HASHTABLE to store user data
® Key may be complex structure, e.g. MYSQL USER HOST
e SERVICE USER credentials used to load users from MySQL
e Not limited to MySQL users

MYSQL_USER_HOST

+user
+ipvd
+netmask
+resource

SERVICE

+users

USERS

+usersCustomUserFormat

+users_add()
+users_delete()
+users_fetch()
+user_update()

1
+data +stats
1

HASHTABLE

USERS_STATS

+n_entries
+n_adds

+n_deletes
+n_fetches

43

Session View

4 Session View

® Dynamic View

® One session per client connection

® Except in cases of pseudo clients (e.g. tee
filter)

e UPSTREAM & DOWNSTREAM are the
session plumbing

Service

UPSTREAM

+instance
+5ession
+clientReply
+error

SESSION

! 0.+ +ses_id
\ +ses_enabled logs

+service +data

+refcount

<
+next

+session_isvalid()

+state

y +session_reply()

+1 +session_get_remote()
+session_getUser()
DCB

1 1 1
+tail
+head
1

1

DOWNSTREAM

+instance
+session
+routeQuery

+filters

+stats

«enumeration»
session_state_t

SESSION STATE ALLOC
SESSION STATE READY
SESSION ROUTER READY
SESSION STATE STOPPING
SESSION STATE LISTENER
SESSION STATE TO BE FREED

SESSION_STATE_FREE

SESSION_STATS

+connect

SESSION_FILTER

+instance
+session

« +filter

1

FILTER_DEF

45

Downstream Plumbing

e Downstream - client request to backend —

e Fach component has pointer to next

® |nterface at each level is identical

e Each level has opaque instance and session pointers that are passed to the next

e Each layer may modify request content or return without forwarding

46

Plumbing (Contd.)

e Upstream plumbing is converse of downstream

e Participation in upstream is optional - a filter may not have an upstream
interface

e Upstream and downstream structure chain setup when a session is created

47

® Triggered by authentication success

® Creates router session
e Sets up plumbing for filters

® Backend connections handled in
router

[

PROTOCOL

1: Auth OK

«create»
2 : session

alloc

SESSION

Router

>‘ 3 : createSession_ !

4 : session setup filters ’[:I

Filter1

Filter2

5 - filtérApply

6 : filterApply

7: filtertipstream

B SetSessionReady§

T

48

Database Connections

e Database connections are not created by the session

e The router manages the backend database connections
® Only the router knows what the requirements are in the backend

e Database connections can be opened and closed at any point in the session
lifetime

49

Filters

Filters

e Filters are probably the simplest plugins to write
® Best advice - start with one of the examples and modify it

e Filters similar to other plugin modules
® |nstances - represent a filter module plus configuration
® Sessions - A use of a filter in a client session

e Filter module object similar to that of a router

e Additional plumbing interface
e Better handling of parameters in configuration

1

FILTER_DEF
+name 1
+module i
+options next
+spin

+filter_find()
+filterAddOption()
+filterAddParameter() Ei

Iter
ODULE OBJECT

+filterApply() . M
+filterUpstream()
+filter 1 Q 1 +obj 1
1

FILTER

The runtime filte
instance

FILTER_OBJECT

+parameters

0..*

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream
+setUpstream
+routeQuery
+clientReply
+diagnostics

FILTER_PARAMETER

+name
+value

51

Filters - Create Instance

e Create instance is called for each filter defined in configuration
e [t tailors the filter to the configuration

e Main task is to create and population the instance structure

Filter
MODULE OBJECT

FILTER_OBJECT

N

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream
+setUpstream
+routeQuery
+clientReply
+diagnostics

® The instance structure contains everything that is common to all sessions using

this filter

e Instance structure passed to every other entry point

52

Filter - New Session o

MODULE OBJECT

‘\1 FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession

. o o . . +setDownstream
® The newSession entry point is called when a connection is created seslipsirm
+clientReply
+diagnostics

® Primary role of newSession is to create and return the session structure
e newSession is called with the instance structure

® The session holds all the state and data related to this particular connection and
its use of the filter

53

ﬂ Filter - Set Downstream

N FILTER_OBJECT
+createlnstance

MODULE OBJECT

]

+newSession
+closeSession
+freeSession

+setUpstream

e The Filter setDownstream entry point is called to configure next element | 5o

in the chain

+diagnostics

+setDownstream

e Passed the instance, session and downstream component information

e Usually stores this in the session structure

/**

* Set the downstream component for this filter.

* @param instance The filter instance data

* @param session The session being closed
* @param downstream The downstream filter or router
*/

static void
setDownstream (FILTER *instance, void *session, DOWNSTREAM *downstream)

{
MYFILTER SESSION *my session = (MYFILTER SESSION *)session;

my session->down = *downstream;

}

54

Filter - Set Upstream s

N FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream

+setUpstream
+routeQuery
+clientReply
+diagnostics

e Optional, only required if results are filtered
e NULL entry point is defined in module object if not required

e Stores the upstream data for returning the result set

55

Filter - Route Query o

‘\1 FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream
+setUpstream

e Called for every query packet received *clontRoply

+diagnostics

e Always passed instance and session structure

e No guarantees regarding completeness of the request
o [f the filter needs the entire request to be contiguous it must handle this
® A single packet could contain more than one statement
e [f the filter needs to parse the request it must do so, unless the buffer already has query
classifier data attached to it

56

_f{ Filter- Route Query (contd.) e

e Filters should attach any parse data to the GWBUF for use downstream | :scumetear

e Filters may add hints to be used by the router or downstream components

\ FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession

+routeQuery
+clientReply
+diagnostics

e Once the filter has manipulated the request it should be passed

/**

downstream

e Filters may block downstream processing| - qu qu

{

MYFILTER INSTANCE *my instance = (MYFILTER INSTANCE *)instance;
MYFILTER SESSION *my session = (MYFILTER SESSION *)session;

* The routeQuery entry point. This is passed the query buffer
* to which the filter should be applied. Once applied the

* query should normally be passed to the downstream component
* (filter or router) in the filter chain.

*/
static int
routeQuery (FILTER *instance, void *session, GWBUF *queue)

return my session->down.routeQuery (my session->down.instance,
my session->down.session, queue) ;

57

ﬂ Filter - Client Reply

X FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream
+setUpstream
+routeQuery
+clientReply
+diagnostics

e Only required if result set filtering is enabled

MODULE_OBJECT

]

e \ery similar to routeQuery but the buffer is the result set

e On completion results routed upstream

~
*

* % % X X F * *

The clientReply entry point. This is passed the result set buffer
to which the filter should be applied. Once applied the

query should normally be passed to the upstream component

(filter or session) in the filter chain.

@param instance The filter instance data
@param session The filter session
@param queue The result set data

*

*/
static 1int
clientReply (FILTER *instance, void *session, GWBUF *queue)
{
MYFILTER INSTANCE *my instance = (MYFILTER INSTANCE *)instance;
MYFILTER SESSION *my session = (MYFILTER SESSION *)session;

return my session->up.clientReply(my session->down.instance,
my session->down.session, queue) ;

> -

Filter - Close Session s

‘ FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream

+setUpstream
+routeQuery
+clientReply
+diagnostics

e Close session called after the last request in the session has been sent
e Close is called on every component in the chain separately

® The session may still be accessed for responses and diagnostics after this call

59

4 Filter - Free Session S

‘ FILTER_OBJECT

+createlnstance
+newSession
+closeSession
+freeSession
+setDownstream
+setUpstream
+routeQuery
+clientReply
+diagnostics

e | ast call made for this session

e Should free any session specific data

60

ﬂ Filter - Diagnostics o

N FILTER_OBJECT

e Called to print diagnostic/monitoring data crewSession
set Bsow stream
o +setUpstream
e Passed a DCB to print data to rroueQuery
+diagnostics

e Called as part of “show service” command to a

service or “show session” for a particular SessSion |/ sgmostscs zoutine

* If session is NULL then print diagnostics on the filter
* instance as a whole, otherwise print diagnostics for the
* particular session.

e |f called with a NULL session then print INStaNCe | * eeran instance e e11¢er tnstance

* @param session Filter session, may be NULL
(j. . * @param dcb The DCB for diagnostic output
L /
IagnOS ICS static wvoid

diagnostic (FILTER *instance, void *session, DCB *dcb)

{
MYFILTER INSTANCE *my instance = (MYFILTER INSTANCE *)instance;
MYFILTER SESSION *my session = (MYFILTER SESSION *)session;

e |f called with a session then part of “show

dcb printf(dcb, ..

session” call

61

Router Interface

e Module Object provides familiar entry points

® Routers have instances and sessions

ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()
+closeSession()
+routeQuery()
+diagnostics()
+clientReply()
+handleError()

e The instance configures the router to the service definition

«enumeration»

error_action_t

ERRACT NEW CONNECTION
ERRACT REPLY CLIENT
ERRACT RESET

® The session manages the data for each individual client connection

63

ﬂ RO uter - Cre ate I nstance \ ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()
+closeSession()
+routeQuery()
+diagnostics()

® Creates instance structure for each router sclientReply() [N

+handleError()

® One instance of a router per service

* Create an instance of the router for a particular service
* within MaxScale.

e Passed router options from service definition

* @param service The service this router is being create for
* @param options An array of options for this query router

* @Qreturn The instance data for this new instance
*/

e Returns the instance data passed to other calls|sttic_sovres -

createInstance (SERVICE *service, char **options)

{
MYROUTER INSTANCE *inst;

if ((inst = (MYROUTER INSTANCE)calloc(1,

O May dO Other |n|t|al|sat|on sizeof (MYROUTER INSTANCE))) == NULL)

return NULL;

return inst;

}

64

ﬂ ROUter = NEW SESSIOH ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()

. . +closeSession()
e Called on client connection +routeQuery()
+diagnostics()
+clientReply()
+handleError()

® Creates session data related to that connections use of the router

e Called with instance and session =

* Associate a new session with this instance of the router.

* @param instance The router instance data
o o B o ° * @param session The session itself
‘ Performs Inltlallsatlon * @return Session specific data for this session

*/
static wvoid
newSession (ROUTER *instance, SESSION *session)

{
ROUTER INSTANCE *inst = (ROUTER_ INSTANCE *)instance;

e Connection based router make routing decision |sressssszos

if ((my_session = (ROUTER SESSION *)calloc(1l,
sizeof (ROUTER SESSION))) == NULL)
return NULL;

e Returns the newly created router session

}

65

Router - Close Session oUTeR oRiEe

+createlnstance()
+newSession()
+freeSession()
+closeSession()

+routeQuery()
+diagnostics()
+clientReply()
+handleError()

e Called when the last request has been sent
e Signals router to close backend connections

e Responses may still arrive (on other threads) and diagnostics may be called

66

4 Router - Free Session couren omr

+createlnstance()
+newSession()
+freeSession()
+closeSession()

+routeQuery()
+diagnostics()
+clientReply()
+handleError()

e Final call in lifecycle of a router

e All resources should be deallocated

67

Router - Route Query TEXG

+createlnstance()
+newSession()
+freeSession()

i +closeSession()
e Called for every packet received +routeQuery()
+diagnostics()
+clientReply()
+handleError()

e End of filter chain
e Always passed instance and session structure

e No guarantees regarding completeness of the request
e |f the router needs the entire request to be contiguous it must handle this
® A single packet could contain more than one statement
e |f the router needs to parse the request it must do so, unless the buffer already has query
classifier data attached to it

63

Router - Route Query (contd.)

e Connection based router merely forwards request to chosen backend

e Statement based routers must make choice of backend
® Parse query if not already done
® Examine server states and match with router options
e Handle backend connection requirements
e Handle session commands

ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()
+closeSession()
+routeQuery()
+diagnostics()
+clientReply()
+handleError()

69

J RO Uter - CI ient Reply ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()
+closeSession()

+routeQuery()
+diagnostics()
+clientReply()
+handleError()

e Handle result sets from backend database
e Filters multiple result sets from session commands

® Pass result upstream via filter chain to session

70

Router - Handle Error oUTeR oREeT

+createlnstance()
+newSession()
+freeSession()
+closeSession()
+routeQuery()
+diagnostics()

+clientRepl
e Handle an error returned from the backend server or protocol layer | faadiecred

e Three options for handling the error

e May simply pass the error upstream
® Close connection and shutdown session
® Open a new connection to either the same of possibly different backend

e May mark error to be handled upstream as well

71

RO Ute r - D | a gﬂ OSthS ROUTER_OBJECT

+createlnstance()
+newSession()
+freeSession()
+closeSession()

+routeQuery()
+diagnostics()
+clientReply()
+handleError()

® Only passed an instance, no session
e Print diagnostic and instance data
e Passed a DCB on which to print the data

e Called as part of show service command

72

Monitors

Monitors

e Monitors are different to other plugins
e Not related to a service or set of sessions
e [Vlonitors relate to sets of servers

e [Monitors run independently of request threads
® Each monitor runs in its own thread

MONITOR

+name

+handle tnext

+interval

+module
+state
MONITOR_OBJECT «enumeration»
) monitor_state t

+startMonitor
+stopMonitor MONITOR_STATE_ALLOC
+registerServer MONITOR _STATE RUNNING
+unregisterServer MONITOR_STATE_STOPPING
+defaultUser MONITOR _STATE _STOPPED
+diagnostic MONITOR _STATE_FREED
#setinterval LY
#setNetworkTimeout | ~--- .. N
#defaultld Protected Items are
#replicationHeartbeat configuration and should
#tdetectStaleMaster be phased out
#disableMasterFailback

74

Monitor Module Object

e Some configuration functions have been added to the interface

® Better to remove these

e Not universally applicable
® Constrains future monitors

/

MONITOR_OBJECT

+startMonitor
+stopMonitor
+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval
#tsetNetwork Timeout
#defaultid
#replicationHeartbeat
#tdetectStaleMaster
#disableMasterFailback

75

Monitor - Start Monitor

e Creates thread and starts monitoring loop
e Passed a NULL on first invocation
e |f restarting a stopped monitor passed handle previously returned

e Returns a handle that is passed to all subsequent calls
® The handle is essentially the monitor instance structure

e Do not use static data - multiple instance of a monitor may exist in same
MaxScale

/

MONITOR_OBJECT

+startMonitor
+stopMonitor
+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval
#setNetwork Timeout
#defaultld
#replicationHeartbeat
#detectStaleMaster
#disableMasterfailback

76

Monitor - Stop Monitor

® Stop a running monitor
e Does not stop thread

e Stops the actual processing and updating of server state

/

MONITOR_OBJECT

+startMonitor
+stopMonitor
+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval
#setNetwork Timeout
#defaultld
#replicationHeartbeat
#tdetectStaleMaster
#disableMasterFailback

e Restart by calling startMonitor entry point with previously allocated handle

77

/

_fl Monitor - Register Server ~ [Z=~

+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval
#setNetwork Timeout
#defaultld
#replicationHeartbeat
#detectStaleMaster
#disableMasterFailback

e Add a server to the list of servers that should be monitored

e Called with the monitor handle and pointer to a server

[**
Register a server that must be added to the monitored servers for
a monitoring module.

* % * ¥ *

@param arg A handle on the running monitor module
* @param server The server to add
*/
static wvoid
registerServer (void *arg, SERVER *server)
{
MY MONITOR *handle = (MY MONITOR *)arg;
MONITOR SERVERS *ptr, *db;

if ((db = (MONITOR SERVERS *)malloc(sizeof (MONITOR SERVERS)))
== NULL)
return;
db->server = server;

/8

Monitor - Unregister Server

e Converse of registerServer

e Stop monitoring the server

/

MONITOR_OBJECT

+startMonitor
+stopMonitor
+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval

#setNetworkTimeout |

#defaultid
#replicationHeartbeat
#tdetectStaleMaster
#disableMasterFailback

/9

Monitor - Diagnhostics

® Print monitor diagnostics to a supplied DCB

e Called as show monitor command

/

MONITOR_OBJECT

+startMonitor
+stopMonitor
+registerServer
+unregisterServer
+defaultUser
+diagnostic
#setinterval
#tsetNetwork Timeout
#defaultid
#replicationHeartbeat
#tdetectStaleMaster
#disableMasterFailback

30

