M

%
2L

E

SkySQL

MaxScale

Configuration & Usage Scenarios

Mark Riddoch

Last Updated: 28™ March 2014



Contents

Contents
Document History
Introduction
Terms
Configuration
Global Settings
Threads
Service
Router
Servers
User
Passwd
Server
Address
Port
Protocol
Monitoruser
MonitorPw
Listener
Service
Protocol
Address
Port
Socket
Monitor
Module
Servers
User
Passwd
Protocol Modules
MySQLClient
MySQl Backend
Telnetd
HTTPD
Router Modules
Connection Based Routing
Statement Based Routing
Available Routing Modules
Readconnroute
Master/Slave Replication Setup




Galera Cluster Configuration

Readwritesplit
Master/Slave Replication Setup

Debugcli
Debug CLI Configuration
Monitor Modules
Mysqglmon
Galeramon
Encrypting Passwords
Creating Encrypted Passwords
Configuration Updates
Limitations
Authentication
Error Reporting




Document History

Date

Change

Who

21st July 2013

Initial version

Mark Riddoch

23rd July 2013

Addition of default user and password for a
monitor and discussion of monitor user
requirements

New monitor documented for Galera
clusters

Addition of example Galera cluster
configuration

Mark Riddoch

13th November 2013

state for Galera Monitor is “synced”

Massimiliano Pinto

2nd December 2013

Updated the description of the command
line arguments to match the code updates.
Improved descriptions and general
documentation.

Enhanced example configurations

Mark Riddoch

6th February 2014

Added “enable_root_user” as a service
parameter

Massimiliano Pinto

7th February 2014

Addition of bind address information
Clarification of user configuration required
for monitoring users and the user needed to
fetch the user data

Mark Riddoch

3rd March 2014

MySQL authentication with hostnames

Massimiliano Pinto

3rd March 2014

Addition of section that describes
authentication requirements and the rules
for creating user credentials

Mark Riddoch

28th March 2014

Unix socket support

Massimiliano Pinto




Introduction

The purpose of this document is to describe how to configure MaxScale and to discuss some
possible usage scenarios for MaxScale. MaxScale is designed with flexibility in mind, and
consists of an event processing core with various support functions and plugin modules that
tailor the behaviour of the MaxScale itself.

Terms

Term Description

service A service represents a set of databases with a specific access
mechanism that is offered to clients of MaxScale. The access
mechanism defines the algorithm that MaxScale will use to direct
particular requests to the individual databases.

server A server represents an individual database server to which a clien
can be connected via MaxScale.

router A router is a module within MaxScale that will route client request

to the various database server which MaxScale provides a servicq
interface to.

connection routing

Connection routing is a method of handling requests in which
MaxScale will accept connections from a client and route data on
that connection to a single database using a single connection.
Connection based routing will not examine individual quests on a
connection and it will not move that connection once it is
established.

statement routing

Statement routing is a method of handling requests in which each
request within a connection will be handled individually. Requests
may be sent to one or more servers and connections may be
dynamically added or removed from the session.

protocol

A protocol is a module of software that is used to communicate
with another software entity within the system. MaxScale supportg
the dynamic loading of protocol modules to allow for increased
flexibility.

module

A module is a separate code entity that may be loaded
dynamically into MaxScale to increase the available functionality.
Modules are implemented as run-time loadable shared objects.

monitor

A monitor is a module that can be executed within MaxScale to
monitor the state of a set of database. The use of an internal




monitor is optional, monitoring may be performed externally to
MaxScale.

listener

A listener is the network endpoint that is used to listen for

connections to MaxScale from the client applications. A listener is
associated to a single service, however a service may have many
listeners.

connection failover

When a connection currently being used between MaxScale and
the database server fails a replacement will be automatically
created to another server by MaxScale without client intervention

backend database

A term used to refer to a database that sits behind MaxScale and
is accessed by applications via MaxScale.




Configuration

The MaxScale configuration is read from a file which can be located in a number of placing,
MaxScale will search for the configuration file in a number of locations.

1. If the environment variable MAXSCALE_HOME is set then MaxScale will look for a
configuration file called MaxScale.cnf in the directory SMAXSCALE_HOME/etc

2. If MAXSCALE_HOME is not set or the configuration file is not in the location above
MaxScale will look for a file in /etc/MaxScale.cnf

Alternatively MaxScale can be started with the -c flag and the path of the MaxScale home
directory tree.

An explicit path to a configuration file can be passed by using the -f option to MaxScale.

The configuration file itself is based on the “ini” file format and consists of various sections that
are used to build the configuration, these sections define services, servers, listeners, monitors
and global settings.

Global Settings

The global settings, in a section named [MaxScale], allow various parameters that affect
MaxScale as a whole to be tuned. Currently the only setting that is supported is the number of
threads to use to handle the network traffic. MaxScale will also accept the section name of
[gateway] for global settings. This is for backward compatibility with versions prior to the naming
of MaxScale.

Threads

To control the number of threads that poll for network traffic set the parameter threads to a
number. It is recommended that you start with a single thread and add more as you find the
performance is not satisfactory. MaxScale is implemented to be very thread efficient, so a small
number of threads is usually adequate to support reasonably heavy workloads. Adding more
threads may not improve performance and can consume resources needlessly.

# Valid options are:

# threads=<number of epoll threads>
[MaxScale]

threads=1

It should be noted that additional threads will be created to execute other internal services within
MaxScale, this setting is merely used to configure the number of threads that will be used to
manage the user connections.



Service

A service represents the database service that MaxScale offers to the clients. In general a
service consists of a set of backend database servers and a routing algorithm that determines
how MaxScale decides to send statements or route connections to those backend servers.

A service may be considered as a virtual database server that MaxScale makes available to its
clients.

Several different services may be defined using the same set of backend servers. For example a
connection based routing service might be used by clients that already performed internal
read/write splitting, whilst a different statement based router may be used by clients that are not
written with this functionality in place. Both sets of applications could access the same data in
the same databases.

A service is identified by a service name, which is the name of the configuration file section and
a type parameter of service

[Test Service]
type=service

In order for MaxScale to forward any requests it must have at least one service defined within the
configuration file. The definition of a service alone is not enough to allow MaxScale to forward
requests however, the service is merely present to link together the other configuration

elements.

Router

The router parameter of a service defines the name of the router module that will be used to
implement the routing algorithm between the client of MaxScale and the backend databases.
Additionally routers may also be passed a comma separated list of options that are used to
control the behaviour of the routing algorithm. The two parameters that control the routing choice
are router and router options. The router options are specific to a particular router and
are used to modify the behaviour of the router. The read connection router can be passed
options of master, slave or synced, an example of configuring a service to use this router and
limiting the choice of servers to those in slave state would be as follows.

router=readconnroute
router options=slave

To change the router to connect on to servers in the master state as well as slave servers the
router options can be modified to include the master state.

router=radconnroute



router options=master,slave

A more complete description of router options and what is available for a given router is included
with the documentation of the router itself.

Servers

The servers parameter in a service definition provides a comma separated list of the backend
servers that comprise the service. The server names are those used in the name section of a
block with a type parameter of server (see below).

servers=serverl, server2, server3

User

The user parameter, along with the passwd parameter are used to define the credentials used
to connect to the backend servers to extract the list of database users from the backend
database that is used for the client authentication.

user=maxscale
passwd=maxpassword

Authentication of incoming connections is performed by MaxScale itself rather than by the
database server to which the client is connected. The client will authenticate itself with
MaxScale, using the username, hostname and password information that MaxScale has
extracted from the backend database servers. A detailed discussion of how this impacts the
authentication process please see the “Authentication” section below.

The host matching criteria is restricted to IPv4, IPv6 will be added in a future release.

Existing user configuration in the backend databases must be checked and may be updated
before successful MaxScale authentication:

In order for MaxScale to obtain all the data it must be given a username it can use to connect to
the database and retrieve that data. This is the parameter that gives MaxScale the username to
use for this purpose.

The account used must be able to select from the mysql.user table, the following is an example
showing how to create this user.

MariaDB [mysqgl]> create user 'maxscale'@'maxscalehost'
identified by 'Mhu87p2D';
Query OK, 0 rows affected (0.01 sec)



MariaDB [mysqgl]> grant SELECT on mysqgl.user to
'maxscalemon'@'maxscalehost';
Query OK, 0 rows affected (0.00 sec)

Passwd

The auth parameter provides the password information for the above user and may be either a
plain text password or it may be an encrypted password. See the section on encrypting
passwords for use in the MaxScale.cnf file. This user must be capable of connecting to the
backend database and executing the SQL statement “SELECT user, host, password FROM
mysql.user”.

enable_root_user
This parameter controls the ability of the root user to connect to MaxScale and hence onwards to
the backend servers via MaxScale.

The default value is 0, disabling the ability of the root user to connect to MaxScale.

Example for enabling root user:
enable root user=l1l

Server

Server sections are used to define the backend database servers that can be formed into a
service. A server may be a member of one or more services within MaxScale. Servers are
identified by a server name which is the section name in the configuration file. Servers have a
type parameter of server, plus address port and protocol parameters.

[serverl]

type=server
address=127.0.0.1
port=3000
protocol=MySQLBackend

Address
The IP address or hostname of the machine running the database server that is being defined.
MaxScale will use this address to connect to the backend database server.

Port
The port on which the database listens for incoming connections. MaxScale will use this port to
connect to the database server.



Protocol

The name for the protocol module to use to connect MaxScale to the database. Currently only
one backend protocol is supported, the MySQLBackend module.

Monitoruser

The monitor has a username and password that is used to connect to all servers for monitoring
purposes, this may be overridden by supplying a monitoruser statement for each individual
server

monitoruser=mymonitoruser

MonitorPw

The monitor has a username and password that is used to connect to all servers for monitoring
purposes, this may be overridden by supplying a monpasswd statement for the individual
servers

monitorpw=mymonitorpasswd

The monpasswd parameter may be either a plain text password or it may be an encrypted
password. See the section on encrypting passwords for use in the MaxScale.cnf file.

Listener

The listener defines a port and protocol pair that is used to listen for connections to a service. A
service may have multiple listeners associated with it, either to support multiple protocols or
multiple ports. As with other elements of the configuration the section name is the listener name
and a type parameter is used to identify the section as a listener definition.

[Test Listener]

type=listener

service=Test Service
protocol=MySQLClient
address=localhost

port=4008
socket=/tmp/testlistener.sock

Service

The service to which the listener is associated. This is the name of a service that is defined
elsewhere in the configuration file.

Protocol

The name of the protocol module that is used for the communication between the client and
MaxScale itself.



Address

The address option sets the address that will be used to bind the listening socket. The address
may be specified as an IP address in ‘dot notation’ or as a hostname. If the address option is not
included in the listener definition the listener will bind to all network interfaces.

Port

The port to use to listen for incoming connections to MaxScale from the clients. If the port is
omitted from the configuration a default port for the protocol will be used.

Socket

The socket option may be included in a listener definition, this configures the listener to use Unix
domain sockets to listen for incoming connections. The parameter value given is the name of the
socket to use.

If a socket option and an address option is given then the listener will listen on both the specific
IP address and the Unix socket.

Monitor

In order for the various router modules to function correctly they require information about the
state of the servers that are part of the service they provide. MaxScale has the ability to internally
monitored the state of the back-end database servers or that state may be feed into MaxScale
from external monitoring systems. If automated monitoring and failover of services is required
this is achieved by running a monitor module that is designed for the particular database
architecture that is in use.

Monitors are defined in much the same way as other elements in the configuration file, with the
section name being the name of the monitor instance and the type being set to monitor.

[MySQL Monitor]

type=monitor

module=mysglmon
servers=serverl, server?2, server3
user=dbmonitoruser
passwd=dbmonitorpwd

Module

The module parameter defines the name of the loadable module that implements the monitor.
This module is loaded and executed on a separate thread within MaxScale.

Servers

The servers parameter is a comma separated list of server names to monitor, these are the



names defined elsewhere in the configuration file. The set of servers monitored by a single
monitor need not be the same as the set of servers used within any particular server, a single
monitor instance may monitor servers in multiple servers.

User

The user parameter defines the username that the monitor will use to connect to the monitored
databases. Depending on the monitoring module used this user will require specific privileges in
order to determine the state of the nodes, details of those privileges can be found in the sections
on each of the monitor modules.

Individual servers may define override values for the user and password the monitor uses by
setting the monuser and monpasswd parameters in the server section.

Passwd

The password parameter may be either a plain text password or it may be an encrypted
password. See the section on encrypting passwords for use in the MaxScale.cnf file.



Protocol Modules

The protocol supported by MaxScale are implemented as external modules that are loaded
dynamically into the MaxScale core. These modules reside in the directory
$MAXSCALE_HOME/module, if the environment variable SMAXSCALE_HOME is not set it
defaults to /usr/local/skysql/MaxScale. It may also be set by passing the -c option on the
MaxScale command line.

MySQLClient

This is the implementation of the MySQL protocol that is used by clients of MaxScale to connect
to MaxScale.

MySQLBackend

The MySQLBackend protocol module is the implementation of the protocol that MaxScale uses
to connect to the backend MySQL, MariaDB and Percona Server databases. This
implementation is tailored for the MaxScale to MySQL Database traffic and is not a general
purpose implementation of the MySQL protocol.

Telnetd

The telnetd protocol module is used for connections to MaxScale itself for the purposes of
creating interactive user sessions with the MaxScale instance itself. Currently this is used in
conjunction with a special router implementation, the debugcli.

HTTPD

This protocol module is currently still under development, it provides a means to crete HTTP
connections to MaxScale for use by web browser or RESTful API clients.



Router Modules

The main task of MaxScale is to accept database connections from client applications and route
the connections or the statements sent over those connections to the various services
supported by MaxScale.

There are two flavours of routing that MaxScale can perform, connection based routing and
statement based routine. These each have their own characteristics and costs associated with
them.

Connection Based Routing

Connection based routing is a mechanism by which MaxScale will, for each incoming
connection decide on an appropriate outbound server and will forward all statements to that
server without examining the internals of the statement. Once an inbound connection is
associated to a particular backend database it will remain connected to that server until the
connection is closed or the server fails.

Statement Based Routing

Statement based routing is somewhat different, the routing modules examine every statement
the client sends and determines, on a per statement basis, which of the set of backend servers
in the service is best to execute the statement. This gives better dynamic balancing of the load
within the cluster but comes at a cost. The query router must understand the statement that is
being routing and will typically need to parse the statement in order to achieve this. This parsing
within the router adds a significant overhead to the cost of routing and makes this type of router
only really suitable for loads in which the gains outweigh this added cost.

Available Routing Modules

Currently a small number of query routers are available, these are in different stages of
completion and offer different facilities.

Readconnroute

This is a statement based query router that was originally targeted at environments in which the
clients already performed splitting of read and write queries into separate connections.

Whenever a new connection is received the router will examine the state of all the servers that
form part of the service and route the connection to the server with least connections currently
that matches the filter constraints given in the router options. This results in a balancing of the
active connections, however different connections may have different lifetimes and the
connections may become unbalanced when later viewed.



The readconnroute router can be configured to balance the connections from the clients across
all the backend servers that are running, just those backend servers that are currently replication
slaves or those that are replication masters when routing to a master slave replication
environment. When a Galera cluster environment is in use the servers can be filtered to just the
set that are part of the cluster and in the ‘synced’ state. These options are configurable via the
router_options that can be set within a service. The router_option strings supported are

LT

“‘master”, “slave” and “synced”.

Master/Slave Replication Setup

To setup MaxScale to route connections to evenly between all the current slave servers in a
replication cluster a service entry of the form shown below is required.

[Read Service]

type=service

router=readconnroute

router options=slave
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

With the addition of a listener for this service, which defines the port and protocol that MaxScale
uses

[Read Listener]

type=listener

service=Read Service

protocol=MySQLClient

port=4006

the client can now connect to port 4006 on the host which is running MaxScale. Statements sent
using this connection will then be routed to one of the slaves in the server set defined in the
Read Service. Exactly which is selected will be determined by balancing the number of
connections to each of those whose current state is “slave”.

Altering the router options to be slave, master would result in the connections being
balanced between all the servers within the cluster.

It is assumed that the client will have a separate connection to the master server, however this
can be routed via MaxScale, allowing MaxScale to manage the determination of which server is

master. To do this you would add a second service and listener definition for the master server.

[Write Service]



type=service

router=readconnroute

router options=master
servers=serverl, server?2, server3, serverd
user=maxscale

auth=thepasswd

[Write Listener]
type=listener
service=Write Service
protocol=MySQLClient
port=4007

This allows the clients to direct write requests to port 4007 and read requests to port 4006 of the
MaxScale host without the clients needing to understand the configuration of the Master/Slave
replication cluster.

Connections to port 4007 would automatically be directed to the server that is the master for
replication at the time connection is opened. Whilst this is a simple mapping to a single server it
does give the advantage that the clients have no requirement to track which server is currently
the master, devolving responsibility for managing the failover to MaxScale.

In order for MaxScale to be able to determine the state of these servers the mysqglmon monitor
module should be run against the set of servers that comprise the service.

Galera Cluster Configuration

Although not primarily designed for a multi-master replication setup it is possible to use the
readconnroute in this situation. The readconnroute connection router can be used to balance
the connection across a Galera cluster. A special monitor is available that detects if nodes are
joined to a Galera Cluster, with the addition of a router option to only route connections to nodes
marked as synced. MaxScale can ensure that users are never connected to a node that is not a
full cluster member.

[Galera Service]

type=service

router=readconnroute

router options=synced
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

[Galera Listener]



type=listener
service=Galera Service
protocol=MySQLClient
port=3336

[Galera Monitor]

type=monitor

module=galeramon
servers=serverl, server2, server3, serverd
user=galeramon

passwd=galeramon

Readwritesplit

The readwritesplit is a statement based router that has been designed for use within
Master/Slave replication environments. It examines every statement, parsing it to determine if the
statement falls into one of three categories;

e read only statement

e possible write statement

e session modification statement
Each of these three categories has a different action associated with it. Read only statements
are sent to a slave server in the replication cluster. Possible write statements, which may
include read statements that have an undeterminable side effect, are sent to the current
replication master. Statements that modify the session are sent to all the servers, with the result
that is generated by the master server being returned to the user.

Session modification statements must be replicated as they affect the future results of read and
write operations, so they must be executed on all servers that could execute statements on
behalf of this client.

Currently the readwritesplit router module is under development and is limited:
e Only a single slave connection is managed currently, therefore statements can not be
balanced across multiple slaves.
e Connection failover support has not yet be implemented. Client connections will fail if the
master server fails over.

Master/Slave Replication Setup

To setup the readwritesplit connection router in a master/slave failover environment is extremely
simple, a service definition is required with the router defined for the service and an associated
listener.

The router_options parameter is not required.

[Split Service]



type=service

router=readwritesplit
servers=serverl, server2, server3, serverd
user=maxscale

auth=thepasswd

[Split Listener]
type=listener
service=Split Service
protocol=MySQLClient
port=3336

The client would merely connect to port 3336 on the MaxScale host and statements would be
directed to the master or slave as appropriate. Determination of the master or slave status may
be done via a monitor module within MaxScale or externally. In this latter case the server flags
would need to be set via the MaxScale debug interface, in future versions an API will be available
for this purpose.

Debugcli

The debugcli is a special case of a statement based router. Rather than direct the statements at
an external data source they are handled internally. These statements are simple text
commands and the results are the output of debug commands within MaxScale. The service
and listener definitions for a debug cli service only differ from other services in that they require
no backend server definitions.

Debug CLI Configuration

The definition of the debug cli service is illustrated below

[Debug Service]
type=service
router=debugcli

[Debug Listener]
type=listener
service=Debug Service
protocol=telnetd
port=4442

Connections using the telnet protocol to port 4442 of the MaxScale host will result in a new
debug CLI session. A default username and password are used for this module which may be
overridden by creating new account for user. The default username is admin with a password of
skysql.



Monitor Modules

Monitor modules are used by MaxScale to internally monitor the state of the backend databases
in order to set the server flags for each of those servers. The router modules then use these
flags to determine if the particular server is suitable for routing connections to particular query
classifications to. The monitors are run within separate threads of MaxScale and do not affect
the MaxScale performance.

The use of monitors is optional, it is possible to run MaxScale with external monitoring, in which
case arrangements must be made for an external entity to set the status of each of the servers
that MaxScale can route to.

Mysqlmon

The MySQLMon monitor is a simple monitor designed for use with MySQL Master/Slave
replication cluster. To execute the mysglmon monitor an entry as shown below should be added
to the MaxScale configuration file.

[MySQL Monitor]

type=monitor

module=mysglmon
servers=serverl, server?2, server3, serverd

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of
running or failed and master or slave for each of the servers.

The monitor uses the username given in the monitor section or the server specific user that is
given in the server section to connect to the server. This user must have sufficient permissions
on the database to determine the state of replication. The roles that must be granted to this user
are REPLICATION SLAVE and REPLICATION CLIENT.

To create a user that can be used to monitor the state of the cluster, the following commands
could be used.

MariaDB [mysqgl]> create user 'maxscalemon'(@'maxscalehost'
identified by 'Ha79%hjds';
Query OK, 0 rows affected (0.01 sec)

MariaDB [mysqgl]> grant REPLICATION SLAVE on *.* to
'maxscalemon'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

MariaDB [mysqgl]> grant REPLICATION CLIENT on *.* to



'maxscalemon'@'maxscalehost';
Query OK, 0 rows affected (0.00 sec)

MariaDB [mysqgl]>

Assuming that MaxScale is running on the host maxscalehost.

Galeramon

The Galeramon monitor is a simple router designed for use with MySQL Galera cluster. To
execute the galeramon monitor an entry as shown below should be added to the MaxScale
configuration file.

[Galera Monitor]
type=monitor
module=galeramon

servers=serverl, server2, server3, serverd

This will monitor the 4 servers; server1, server2, server3 and server4. It will set the status of
running or failed and joined for those servers that reported the Galera JOINED status.

The user that is configured for use with the Galera monitor must have sufficient privileges to
select from the information_schema database and GLOBAL_STATUS table within that
database.

To create a user that can be used to monitor the state of the cluster, the following commands
could be used.

MariaDB [mysgl]> create user 'maxscalemon'(@'maxscalehost'
identified by 'Ha7%hjds';
Query OK, 0 rows affected (0.01 sec)

MariaDB [mysqgl]> grant SELECT on
INFORMSTION SCHEMA.GLOBAL STATUS to
'maxscalemon'@'maxscalehost';

Query OK, 0 rows affected (0.00 sec)

MariaDB [mysqgl]>

Assuming that MaxScale is running on the host maxscalehost.



Encrypting Passwords

Passwords stored in the MaxScale.cnf file may optionally be encrypted for added security. This
is done by creation of an encryption key on installation of MaxScale. Encryption keys may be
created manually by executing the maxkeys utility with the argument of the filename to store the

key.
maxkeys $MAXSCALE HOME/etc/.secrets

Changing the encryption key for MaxScale will invalidate any currently encrypted keys stored in
the MaxScale.cnf file.

Creating Encrypted Passwords

Encrypted passwords are created by executing the maxpasswd command with the password
you require to encrypt as an argument. The environment variable MAXSCALE_HOME must be
set, or MaxScale must be installed in the default location before maxpasswd can be executed.

maxpasswd MaxScalePw(001
61DD955512C39A4A8BC4BR1IESF116705

The output of the maxpasswd command is a hexadecimal string, this should be inserted into the
MaxScale.cnf file in place of the ordinary, plain text, password. MaxScale will determine this as
an encrypted password and automatically decrypt it before sending it the database server.

[Split Service]

type=service

router=readwritesplit
servers=serverl, server2, server3, serverd
user=maxscale
password=61DD955512C39A4A8BC4BB1ESF116705



Configuration Updates

The current MaxScale configuration may be updating by editing the configuration file and then
forcing MaxScale to reread the configuration file. To force MaxScale to reread the configuration
file a SIGTERM signal is sent to the MaxScale process.

Some changes in configuration can not be dynamically changed and require a complete restart
of MaxScale, whilst others will take some time to be applied.

Limitations

Services that are removed via the configuration update mechanism can not be physically
removed from MaxScale until there are no longer any connections using the service.

When the number of threads is decreased the threads will not actually be terminated until such
time as they complete the current operation of that thread.

Monitors can not be completely removed from the running MaxScale.



Authentication

MySQL uses username, passwords and the client host in order to authenticate a user, so a
typical user would be defined as user X at host Y and would be given a password to connect.
MaxScale uses exactly the same rules as MySQL when user connect to the MaxScale instance,
i.e. it will check the address from which the client is connecting and treat this in exactly the same
way that MySQL would. MaxScale will pull the authentication data from one of the backend
servers and use this to match the incoming connections, the assumption being that all the
backend servers for a particular service will share the same set of user credentials.

It is important to understand however that when MaxScale itself makes connections to the
backend servers the backend server will see all connections as originating from the host that
runs MaxScale and not the original host from which the client connected to MaxScale. Therefore
the backend servers should be configured to allow connections from the MaxScale host for every
user that can connect from any host. Since there is only a single password within the database
server for a given host, this limits the configuration such that a given user name must have the
same password for every host from which they can connect.

To clarify, if a user X is defined as using password pass? from host a and pass2 from host b
then there must be an entry in the user table for user X form the MaxScale host, say pass7.

This would result in rows in the user table as follows

Username Password Client Host
X pass1 a

X pass2 b

X pass1 MaxScale

In this case the user X would be able to connect to MaxScale from host a giving the password of
pass1. In addition MaxScale would be able to create connections for this user to the backend
servers using the username X and password pass?, since the MaxScale host is also defined to
have password pass?. User X would not however be able to connect from host b since they
would need to provide the password passZ2 in order to connect to MaxScale, but then MaxScale
would not be able to connect to the backends as it would also use the password pass2 for these
connections.

Wildcard Hosts

Hostname mapping in MaxScale works in exactly the same way as for MySQL, if the wildcard is



used for the host then any host other than the localhost (127.0.0.1) will match. It is important to
consider that the localhost check will be performed at the MaxScale level and at the MySQL
server level.

If MaxScale and the databases are on separate hosts there are two important changes in
behaviour to consider:

1. Clients running on the same machine as the backend database now may access the
database using the wildcard entry. The localhost check between the client and MaxScale
will allow the use of the wildcard, since the client is not running on the MaxScale host.
Also the wildcard entry can be used on the database host as MaxScale is making that
connection and it is not running on the same host as the database.

2. Clients running on the same host as MaxScale can not access the database via
MaxScale using the wildcard entry since the connection to MaxScale will be from the
localhost. These clients are able to access the database directly, as they will use the
wildcard entry.

If MaxScale is running on the same host as one or more of the database nodes to which it is
acting as a proxy then the wildcard host entries can be used to connect to MaxScale but not to
connect onwards to the database running on the same node.

In all these cases the issue may be solved by adding an explicit entry for the localhost address
that has the same password as the wildcard entry. This may be done using a statement as
below for each of the databases that are required:

MariaDB [mysqgl]> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP ON employee.* 'userl'@'localhost' IDENTIFIED BY ‘xxx’;
Query OK, 0 rows affected (0.00 sec)

Limitations

At the time of writing the authentication mechanism within MaxScale does not support IPV6
matching if connections rules. This is also in line with the current protocol modules that do not
support IPV6.



Error Reporting

MaxScale is designed to be executed as a service, therefore all error reports, including
configuration errors, are written to the MaxScale error log file. MaxScale will log to a set of files in
the directory SMAXSCALE_HOME/log, the only exception to this is if the log directory is not
writable, in which case a message is sent to the standard error descriptor.



