

MaxScale

Configuration & Usage Scenarios

Mark Riddoch

Last Updated: 8th May 2014

Contents

Contents
Document History
Introduction

Terms
Configuration

Global Settings
Threads

Service
Router
Servers
User
Passwd

Server
Address
Port
Protocol
Monitoruser
MonitorPw

Listener
Service
Protocol
Address
Port
Socket

Monitor
Module
Servers
User
Passwd

Protocol Modules
MySQLClient
MySQLBackend
Telnetd
HTTPD

Router Modules
Connection Based Routing
Statement Based Routing
Available Routing Modules

Readconnroute
Master/Slave Replication Setup

Galera Cluster Configuration
Readwritesplit

Master/Slave Replication Setup
Debugcli

Debug CLI Configuration
Monitor Modules

Mysqlmon
Galeramon

Encrypting Passwords
Creating Encrypted Passwords

Configuration Updates
Limitations

Authentication
Error Reporting

Document History

Date Change Who

21st July 2013 Initial version Mark Riddoch

23rd July 2013 Addition of default user and password for
a monitor and discussion of monitor user
requirements
New monitor documented for Galera
clusters
Addition of example Galera cluster
configuration

Mark Riddoch

13th November 2013 state for Galera Monitor is “synced” Massimiliano Pinto

2nd December 2013 Updated the description of the command
line arguments to match the code updates.
Improved descriptions and general
documentation.
Enhanced example configurations

Mark Riddoch

6th February 2014 Added “enable_root_user” as a service
parameter

Massimiliano Pinto

7th February 2014 Addition of bind address information
Clarification of user configuration required
for monitoring users and the user needed
to fetch the user data

Mark Riddoch

3rd March 2014 MySQL authentication with hostnames Massimiliano Pinto

3rd March 2014 Addition of section that describes
authentication requirements and the rules
for creating user credentials

Mark Riddoch

28th March 2014 Unix socket support Massimiliano Pinto

8th May 2014 Added “version_string” parameter in
service

Massimiliano Pinto

Introduction
The purpose of this document is to describe how to configure MaxScale and to discuss some
possible usage scenarios for MaxScale. MaxScale is designed with flexibility in mind, and
consists of an event processing core with various support functions and plugin modules that
tailor the behaviour of the MaxScale itself.

Terms

Term Description

service A service represents a set of databases with a specific access
mechanism that is offered to clients of MaxScale. The access
mechanism defines the algorithm that MaxScale will use to
direct particular requests to the individual databases.

server A server represents an individual database server to which a
client can be connected via MaxScale.

router A router is a module within MaxScale that will route client
requests to the various database servers which MaxScale
provides a service interface to.

connection routing Connection routing is a method of handling requests in which
MaxScale will accept connections from a client and route data
on that connection to a single database using a single
connection. Connection based routing will not examine
individual quests on a connection and it will not move that
connection once it is established.

statement routing Statement routing is a method of handling requests in which
each request within a connection will be handled individually.
Requests may be sent to one or more servers and connections
may be dynamically added or removed from the session.

protocol A protocol is a module of software that is used to communicate
with another software entity within the system. MaxScale
supports the dynamic loading of protocol modules to allow for
increased flexibility.

module A module is a separate code entity that may be loaded
dynamically into MaxScale to increase the available
functionality. Modules are implemented as run-time loadable
shared objects.

monitor A monitor is a module that can be executed within MaxScale to

monitor the state of a set of database. The use of an internal
monitor is optional, monitoring may be performed externally to
MaxScale.

listener A listener is the network endpoint that is used to listen for
connections to MaxScale from the client applications. A listener
is associated to a single service, however a service may have
many listeners.

connection failover When a connection currently being used between MaxScale and
the database server fails a replacement will be automatically
created to another server by MaxScale without client
intervention

backend database A term used to refer to a database that sits behind MaxScale
and is accessed by applications via MaxScale.

Configuration

The MaxScale configuration is read from a file which can be located in a number of placing,
MaxScale will search for the configuration file in a number of locations.

1. If the environment variable MAXSCALE_HOME is set then MaxScale will look for a
configuration file called MaxScale.cnf in the directory $MAXSCALE_HOME/etc

2. If MAXSCALE_HOME is not set or the configuration file is not in the location above
MaxScale will look for a file in /etc/MaxScale.cnf

Alternatively MaxScale can be started with the -c flag and the path of the MaxScale home
directory tree.

An explicit path to a configuration file can be passed by using the -f option to MaxScale.

The configuration file itself is based on the “ini” file format and consists of various sections
that are used to build the configuration, these sections define services, servers, listeners,
monitors and global settings.

Global Settings
The global settings, in a section named [MaxScale], allow various parameters that affect
MaxScale as a whole to be tuned. Currently the only setting that is supported is the number of
threads to use to handle the network traffic. MaxScale will also accept the section name of
[gateway] for global settings. This is for backward compatibility with versions prior to the
naming of MaxScale.

Threads

To control the number of threads that poll for network traffic set the parameter threads to a
number. It is recommended that you start with a single thread and add more as you find the
performance is not satisfactory. MaxScale is implemented to be very thread efficient, so a
small number of threads is usually adequate to support reasonably heavy workloads. Adding
more threads may not improve performance and can consume resources needlessly.

Valid options are:
threads=<number of epoll threads>
[MaxScale]
threads=1

It should be noted that additional threads will be created to execute other internal services
within MaxScale, this setting is merely used to configure the number of threads that will be
used to manage the user connections.

Service
A service represents the database service that MaxScale offers to the clients. In general a
service consists of a set of backend database servers and a routing algorithm that determines
how MaxScale decides to send statements or route connections to those backend servers.

A service may be considered as a virtual database server that MaxScale makes available to
its clients.

Several different services may be defined using the same set of backend servers. For
example a connection based routing service might be used by clients that already performed
internal read/write splitting, whilst a different statement based router may be used by clients
that are not written with this functionality in place. Both sets of applications could access the
same data in the same databases.

A service is identified by a service name, which is the name of the configuration file section
and a type parameter of service

[Test Service]
type=service

In order for MaxScale to forward any requests it must have at least one service defined within
the configuration file. The definition of a service alone is not enough to allow MaxScale to
forward requests however, the service is merely present to link together the other
configuration elements.

Router
The router parameter of a service defines the name of the router module that will be used to
implement the routing algorithm between the client of MaxScale and the backend databases.
Additionally routers may also be passed a comma separated list of options that are used to
control the behaviour of the routing algorithm. The two parameters that control the routing
choice are router and router_options. The router options are specific to a particular
router and are used to modify the behaviour of the router. The read connection router can be
passed options of master, slave or synced, an example of configuring a service to use this
router and limiting the choice of servers to those in slave state would be as follows.

router=readconnroute
router_options=slave

To change the router to connect on to servers in the master state as well as slave servers the
router options can be modified to include the master state.

router=radconnroute

router_options=master,slave

A more complete description of router options and what is available for a given router is
included with the documentation of the router itself.

Servers
The servers parameter in a service definition provides a comma separated list of the backend
servers that comprise the service. The server names are those used in the name section of a
block with a type parameter of server (see below).

servers=server1,server2,server3

User
The user parameter, along with the passwd parameter are used to define the credentials
used to connect to the backend servers to extract the list of database users from the backend
database that is used for the client authentication.

user=maxscale
passwd=maxpassword

Authentication of incoming connections is performed by MaxScale itself rather than by the
database server to which the client is connected. The client will authenticate itself with
MaxScale, using the username, hostname and password information that MaxScale has
extracted from the backend database servers. A detailed discussion of how this impacts the
authentication process please see the “Authentication” section below.

The host matching criteria is restricted to IPv4, IPv6 will be added in a future release.

Existing user configuration in the backend databases must be checked and may be updated
before successful MaxScale authentication:

In order for MaxScale to obtain all the data it must be given a username it can use to connect
to the database and retrieve that data. This is the parameter that gives MaxScale the
username to use for this purpose.

The account used must be able to select from the mysql.user table, the following is an
example showing how to create this user.

MariaDB [mysql]> create user 'maxscale'@'maxscalehost'
identified by 'Mhu87p2D';
Query OK, 0 rows affected (0.01 sec)

MariaDB [mysql]> grant SELECT on mysql.user to
'maxscalemon'@'maxscalehost';
Query OK, 0 rows affected (0.00 sec)

Passwd
The auth parameter provides the password information for the above user and may be either
a plain text password or it may be an encrypted password. See the section on encrypting
passwords for use in the MaxScale.cnf file. This user must be capable of connecting to the
backend database and executing the SQL statement “SELECT user, host, password FROM
mysql.user”.

enable_root_user
This parameter controls the ability of the root user to connect to MaxScale and hence
onwards to the backend servers via MaxScale.

The default value is 0, disabling the ability of the root user to connect to MaxScale.

Example for enabling root user:

enable_root_user=1

version_string
This parameter sets a custom version string that is sent in the MySQL Handshake from
MaxScale to clients.

Example:

version_string=5.5.37-MariaDB-RWsplit

If not set the default value is the server version of the embedded MySQL/MariaDB library.
Example: 5.5.35-MariaDB

Server

Server sections are used to define the backend database servers that can be formed into a
service. A server may be a member of one or more services within MaxScale. Servers are
identified by a server name which is the section name in the configuration file. Servers have a
type parameter of server, plus address port and protocol parameters.

[server1]

type=server
address=127.0.0.1
port=3000
protocol=MySQLBackend

Address
The IP address or hostname of the machine running the database server that is being
defined. MaxScale will use this address to connect to the backend database server.

Port
The port on which the database listens for incoming connections. MaxScale will use this port
to connect to the database server.

Protocol
The name for the protocol module to use to connect MaxScale to the database. Currently only
one backend protocol is supported, the MySQLBackend module.

Monitoruser
The monitor has a username and password that is used to connect to all servers for
monitoring purposes, this may be overridden by supplying a monitoruser statement for each
individual server

monitoruser=mymonitoruser

MonitorPw
The monitor has a username and password that is used to connect to all servers for
monitoring purposes, this may be overridden by supplying a monpasswd statement for the
individual servers

monitorpw=mymonitorpasswd

The monpasswd parameter may be either a plain text password or it may be an encrypted
password. See the section on encrypting passwords for use in the MaxScale.cnf file.

Listener

The listener defines a port and protocol pair that is used to listen for connections to a service.
A service may have multiple listeners associated with it, either to support multiple protocols or
multiple ports. As with other elements of the configuration the section name is the listener
name and a type parameter is used to identify the section as a listener definition.

[Test Listener]
type=listener
service=Test Service
protocol=MySQLClient

MaxScale

Configuration & Usage Scenarios

Mark Riddoch

Last Updated: 8th May 2014

