MXS-2732 Rename sqlite-src-3110100 to sqlite-src-3110100.old
Originally, the sqlite installation was imported into the MaxScale repository in the one gigantic MaxScale 1.4 -> 2.0 commit. Consequently, there is no import commit to compare to if you want to extract all MaxScale specific changes. To make it simpler in the future, sqlite will now be imported in a commit of its own.
This commit is contained in:
@ -1,508 +0,0 @@
|
||||
/*
|
||||
** 2008 December 3
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This module implements an object we call a "RowSet".
|
||||
**
|
||||
** The RowSet object is a collection of rowids. Rowids
|
||||
** are inserted into the RowSet in an arbitrary order. Inserts
|
||||
** can be intermixed with tests to see if a given rowid has been
|
||||
** previously inserted into the RowSet.
|
||||
**
|
||||
** After all inserts are finished, it is possible to extract the
|
||||
** elements of the RowSet in sorted order. Once this extraction
|
||||
** process has started, no new elements may be inserted.
|
||||
**
|
||||
** Hence, the primitive operations for a RowSet are:
|
||||
**
|
||||
** CREATE
|
||||
** INSERT
|
||||
** TEST
|
||||
** SMALLEST
|
||||
** DESTROY
|
||||
**
|
||||
** The CREATE and DESTROY primitives are the constructor and destructor,
|
||||
** obviously. The INSERT primitive adds a new element to the RowSet.
|
||||
** TEST checks to see if an element is already in the RowSet. SMALLEST
|
||||
** extracts the least value from the RowSet.
|
||||
**
|
||||
** The INSERT primitive might allocate additional memory. Memory is
|
||||
** allocated in chunks so most INSERTs do no allocation. There is an
|
||||
** upper bound on the size of allocated memory. No memory is freed
|
||||
** until DESTROY.
|
||||
**
|
||||
** The TEST primitive includes a "batch" number. The TEST primitive
|
||||
** will only see elements that were inserted before the last change
|
||||
** in the batch number. In other words, if an INSERT occurs between
|
||||
** two TESTs where the TESTs have the same batch nubmer, then the
|
||||
** value added by the INSERT will not be visible to the second TEST.
|
||||
** The initial batch number is zero, so if the very first TEST contains
|
||||
** a non-zero batch number, it will see all prior INSERTs.
|
||||
**
|
||||
** No INSERTs may occurs after a SMALLEST. An assertion will fail if
|
||||
** that is attempted.
|
||||
**
|
||||
** The cost of an INSERT is roughly constant. (Sometimes new memory
|
||||
** has to be allocated on an INSERT.) The cost of a TEST with a new
|
||||
** batch number is O(NlogN) where N is the number of elements in the RowSet.
|
||||
** The cost of a TEST using the same batch number is O(logN). The cost
|
||||
** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
|
||||
** primitives are constant time. The cost of DESTROY is O(N).
|
||||
**
|
||||
** There is an added cost of O(N) when switching between TEST and
|
||||
** SMALLEST primitives.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
/*
|
||||
** Target size for allocation chunks.
|
||||
*/
|
||||
#define ROWSET_ALLOCATION_SIZE 1024
|
||||
|
||||
/*
|
||||
** The number of rowset entries per allocation chunk.
|
||||
*/
|
||||
#define ROWSET_ENTRY_PER_CHUNK \
|
||||
((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
|
||||
|
||||
/*
|
||||
** Each entry in a RowSet is an instance of the following object.
|
||||
**
|
||||
** This same object is reused to store a linked list of trees of RowSetEntry
|
||||
** objects. In that alternative use, pRight points to the next entry
|
||||
** in the list, pLeft points to the tree, and v is unused. The
|
||||
** RowSet.pForest value points to the head of this forest list.
|
||||
*/
|
||||
struct RowSetEntry {
|
||||
i64 v; /* ROWID value for this entry */
|
||||
struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
|
||||
struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
|
||||
};
|
||||
|
||||
/*
|
||||
** RowSetEntry objects are allocated in large chunks (instances of the
|
||||
** following structure) to reduce memory allocation overhead. The
|
||||
** chunks are kept on a linked list so that they can be deallocated
|
||||
** when the RowSet is destroyed.
|
||||
*/
|
||||
struct RowSetChunk {
|
||||
struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
|
||||
struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
|
||||
};
|
||||
|
||||
/*
|
||||
** A RowSet in an instance of the following structure.
|
||||
**
|
||||
** A typedef of this structure if found in sqliteInt.h.
|
||||
*/
|
||||
struct RowSet {
|
||||
struct RowSetChunk *pChunk; /* List of all chunk allocations */
|
||||
sqlite3 *db; /* The database connection */
|
||||
struct RowSetEntry *pEntry; /* List of entries using pRight */
|
||||
struct RowSetEntry *pLast; /* Last entry on the pEntry list */
|
||||
struct RowSetEntry *pFresh; /* Source of new entry objects */
|
||||
struct RowSetEntry *pForest; /* List of binary trees of entries */
|
||||
u16 nFresh; /* Number of objects on pFresh */
|
||||
u16 rsFlags; /* Various flags */
|
||||
int iBatch; /* Current insert batch */
|
||||
};
|
||||
|
||||
/*
|
||||
** Allowed values for RowSet.rsFlags
|
||||
*/
|
||||
#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
|
||||
#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
|
||||
|
||||
/*
|
||||
** Turn bulk memory into a RowSet object. N bytes of memory
|
||||
** are available at pSpace. The db pointer is used as a memory context
|
||||
** for any subsequent allocations that need to occur.
|
||||
** Return a pointer to the new RowSet object.
|
||||
**
|
||||
** It must be the case that N is sufficient to make a Rowset. If not
|
||||
** an assertion fault occurs.
|
||||
**
|
||||
** If N is larger than the minimum, use the surplus as an initial
|
||||
** allocation of entries available to be filled.
|
||||
*/
|
||||
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
|
||||
RowSet *p;
|
||||
assert( N >= ROUND8(sizeof(*p)) );
|
||||
p = pSpace;
|
||||
p->pChunk = 0;
|
||||
p->db = db;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->pForest = 0;
|
||||
p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
|
||||
p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
|
||||
p->rsFlags = ROWSET_SORTED;
|
||||
p->iBatch = 0;
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Deallocate all chunks from a RowSet. This frees all memory that
|
||||
** the RowSet has allocated over its lifetime. This routine is
|
||||
** the destructor for the RowSet.
|
||||
*/
|
||||
void sqlite3RowSetClear(RowSet *p){
|
||||
struct RowSetChunk *pChunk, *pNextChunk;
|
||||
for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
|
||||
pNextChunk = pChunk->pNextChunk;
|
||||
sqlite3DbFree(p->db, pChunk);
|
||||
}
|
||||
p->pChunk = 0;
|
||||
p->nFresh = 0;
|
||||
p->pEntry = 0;
|
||||
p->pLast = 0;
|
||||
p->pForest = 0;
|
||||
p->rsFlags = ROWSET_SORTED;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate a new RowSetEntry object that is associated with the
|
||||
** given RowSet. Return a pointer to the new and completely uninitialized
|
||||
** objected.
|
||||
**
|
||||
** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
|
||||
** routine returns NULL.
|
||||
*/
|
||||
static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
|
||||
assert( p!=0 );
|
||||
if( p->nFresh==0 ){
|
||||
struct RowSetChunk *pNew;
|
||||
pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
|
||||
if( pNew==0 ){
|
||||
return 0;
|
||||
}
|
||||
pNew->pNextChunk = p->pChunk;
|
||||
p->pChunk = pNew;
|
||||
p->pFresh = pNew->aEntry;
|
||||
p->nFresh = ROWSET_ENTRY_PER_CHUNK;
|
||||
}
|
||||
p->nFresh--;
|
||||
return p->pFresh++;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert a new value into a RowSet.
|
||||
**
|
||||
** The mallocFailed flag of the database connection is set if a
|
||||
** memory allocation fails.
|
||||
*/
|
||||
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
|
||||
struct RowSetEntry *pEntry; /* The new entry */
|
||||
struct RowSetEntry *pLast; /* The last prior entry */
|
||||
|
||||
/* This routine is never called after sqlite3RowSetNext() */
|
||||
assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
|
||||
|
||||
pEntry = rowSetEntryAlloc(p);
|
||||
if( pEntry==0 ) return;
|
||||
pEntry->v = rowid;
|
||||
pEntry->pRight = 0;
|
||||
pLast = p->pLast;
|
||||
if( pLast ){
|
||||
if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
|
||||
p->rsFlags &= ~ROWSET_SORTED;
|
||||
}
|
||||
pLast->pRight = pEntry;
|
||||
}else{
|
||||
p->pEntry = pEntry;
|
||||
}
|
||||
p->pLast = pEntry;
|
||||
}
|
||||
|
||||
/*
|
||||
** Merge two lists of RowSetEntry objects. Remove duplicates.
|
||||
**
|
||||
** The input lists are connected via pRight pointers and are
|
||||
** assumed to each already be in sorted order.
|
||||
*/
|
||||
static struct RowSetEntry *rowSetEntryMerge(
|
||||
struct RowSetEntry *pA, /* First sorted list to be merged */
|
||||
struct RowSetEntry *pB /* Second sorted list to be merged */
|
||||
){
|
||||
struct RowSetEntry head;
|
||||
struct RowSetEntry *pTail;
|
||||
|
||||
pTail = &head;
|
||||
while( pA && pB ){
|
||||
assert( pA->pRight==0 || pA->v<=pA->pRight->v );
|
||||
assert( pB->pRight==0 || pB->v<=pB->pRight->v );
|
||||
if( pA->v<pB->v ){
|
||||
pTail->pRight = pA;
|
||||
pA = pA->pRight;
|
||||
pTail = pTail->pRight;
|
||||
}else if( pB->v<pA->v ){
|
||||
pTail->pRight = pB;
|
||||
pB = pB->pRight;
|
||||
pTail = pTail->pRight;
|
||||
}else{
|
||||
pA = pA->pRight;
|
||||
}
|
||||
}
|
||||
if( pA ){
|
||||
assert( pA->pRight==0 || pA->v<=pA->pRight->v );
|
||||
pTail->pRight = pA;
|
||||
}else{
|
||||
assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
|
||||
pTail->pRight = pB;
|
||||
}
|
||||
return head.pRight;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sort all elements on the list of RowSetEntry objects into order of
|
||||
** increasing v.
|
||||
*/
|
||||
static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
|
||||
unsigned int i;
|
||||
struct RowSetEntry *pNext, *aBucket[40];
|
||||
|
||||
memset(aBucket, 0, sizeof(aBucket));
|
||||
while( pIn ){
|
||||
pNext = pIn->pRight;
|
||||
pIn->pRight = 0;
|
||||
for(i=0; aBucket[i]; i++){
|
||||
pIn = rowSetEntryMerge(aBucket[i], pIn);
|
||||
aBucket[i] = 0;
|
||||
}
|
||||
aBucket[i] = pIn;
|
||||
pIn = pNext;
|
||||
}
|
||||
pIn = 0;
|
||||
for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
|
||||
pIn = rowSetEntryMerge(pIn, aBucket[i]);
|
||||
}
|
||||
return pIn;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
|
||||
** Convert this tree into a linked list connected by the pRight pointers
|
||||
** and return pointers to the first and last elements of the new list.
|
||||
*/
|
||||
static void rowSetTreeToList(
|
||||
struct RowSetEntry *pIn, /* Root of the input tree */
|
||||
struct RowSetEntry **ppFirst, /* Write head of the output list here */
|
||||
struct RowSetEntry **ppLast /* Write tail of the output list here */
|
||||
){
|
||||
assert( pIn!=0 );
|
||||
if( pIn->pLeft ){
|
||||
struct RowSetEntry *p;
|
||||
rowSetTreeToList(pIn->pLeft, ppFirst, &p);
|
||||
p->pRight = pIn;
|
||||
}else{
|
||||
*ppFirst = pIn;
|
||||
}
|
||||
if( pIn->pRight ){
|
||||
rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
|
||||
}else{
|
||||
*ppLast = pIn;
|
||||
}
|
||||
assert( (*ppLast)->pRight==0 );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Convert a sorted list of elements (connected by pRight) into a binary
|
||||
** tree with depth of iDepth. A depth of 1 means the tree contains a single
|
||||
** node taken from the head of *ppList. A depth of 2 means a tree with
|
||||
** three nodes. And so forth.
|
||||
**
|
||||
** Use as many entries from the input list as required and update the
|
||||
** *ppList to point to the unused elements of the list. If the input
|
||||
** list contains too few elements, then construct an incomplete tree
|
||||
** and leave *ppList set to NULL.
|
||||
**
|
||||
** Return a pointer to the root of the constructed binary tree.
|
||||
*/
|
||||
static struct RowSetEntry *rowSetNDeepTree(
|
||||
struct RowSetEntry **ppList,
|
||||
int iDepth
|
||||
){
|
||||
struct RowSetEntry *p; /* Root of the new tree */
|
||||
struct RowSetEntry *pLeft; /* Left subtree */
|
||||
if( *ppList==0 ){
|
||||
return 0;
|
||||
}
|
||||
if( iDepth==1 ){
|
||||
p = *ppList;
|
||||
*ppList = p->pRight;
|
||||
p->pLeft = p->pRight = 0;
|
||||
return p;
|
||||
}
|
||||
pLeft = rowSetNDeepTree(ppList, iDepth-1);
|
||||
p = *ppList;
|
||||
if( p==0 ){
|
||||
return pLeft;
|
||||
}
|
||||
p->pLeft = pLeft;
|
||||
*ppList = p->pRight;
|
||||
p->pRight = rowSetNDeepTree(ppList, iDepth-1);
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert a sorted list of elements into a binary tree. Make the tree
|
||||
** as deep as it needs to be in order to contain the entire list.
|
||||
*/
|
||||
static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
|
||||
int iDepth; /* Depth of the tree so far */
|
||||
struct RowSetEntry *p; /* Current tree root */
|
||||
struct RowSetEntry *pLeft; /* Left subtree */
|
||||
|
||||
assert( pList!=0 );
|
||||
p = pList;
|
||||
pList = p->pRight;
|
||||
p->pLeft = p->pRight = 0;
|
||||
for(iDepth=1; pList; iDepth++){
|
||||
pLeft = p;
|
||||
p = pList;
|
||||
pList = p->pRight;
|
||||
p->pLeft = pLeft;
|
||||
p->pRight = rowSetNDeepTree(&pList, iDepth);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Take all the entries on p->pEntry and on the trees in p->pForest and
|
||||
** sort them all together into one big ordered list on p->pEntry.
|
||||
**
|
||||
** This routine should only be called once in the life of a RowSet.
|
||||
*/
|
||||
static void rowSetToList(RowSet *p){
|
||||
|
||||
/* This routine is called only once */
|
||||
assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
|
||||
|
||||
if( (p->rsFlags & ROWSET_SORTED)==0 ){
|
||||
p->pEntry = rowSetEntrySort(p->pEntry);
|
||||
}
|
||||
|
||||
/* While this module could theoretically support it, sqlite3RowSetNext()
|
||||
** is never called after sqlite3RowSetText() for the same RowSet. So
|
||||
** there is never a forest to deal with. Should this change, simply
|
||||
** remove the assert() and the #if 0. */
|
||||
assert( p->pForest==0 );
|
||||
#if 0
|
||||
while( p->pForest ){
|
||||
struct RowSetEntry *pTree = p->pForest->pLeft;
|
||||
if( pTree ){
|
||||
struct RowSetEntry *pHead, *pTail;
|
||||
rowSetTreeToList(pTree, &pHead, &pTail);
|
||||
p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
|
||||
}
|
||||
p->pForest = p->pForest->pRight;
|
||||
}
|
||||
#endif
|
||||
p->rsFlags |= ROWSET_NEXT; /* Verify this routine is never called again */
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the smallest element from the RowSet.
|
||||
** Write the element into *pRowid. Return 1 on success. Return
|
||||
** 0 if the RowSet is already empty.
|
||||
**
|
||||
** After this routine has been called, the sqlite3RowSetInsert()
|
||||
** routine may not be called again.
|
||||
*/
|
||||
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
|
||||
assert( p!=0 );
|
||||
|
||||
/* Merge the forest into a single sorted list on first call */
|
||||
if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);
|
||||
|
||||
/* Return the next entry on the list */
|
||||
if( p->pEntry ){
|
||||
*pRowid = p->pEntry->v;
|
||||
p->pEntry = p->pEntry->pRight;
|
||||
if( p->pEntry==0 ){
|
||||
sqlite3RowSetClear(p);
|
||||
}
|
||||
return 1;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to see if element iRowid was inserted into the rowset as
|
||||
** part of any insert batch prior to iBatch. Return 1 or 0.
|
||||
**
|
||||
** If this is the first test of a new batch and if there exist entries
|
||||
** on pRowSet->pEntry, then sort those entries into the forest at
|
||||
** pRowSet->pForest so that they can be tested.
|
||||
*/
|
||||
int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
|
||||
struct RowSetEntry *p, *pTree;
|
||||
|
||||
/* This routine is never called after sqlite3RowSetNext() */
|
||||
assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
|
||||
|
||||
/* Sort entries into the forest on the first test of a new batch
|
||||
*/
|
||||
if( iBatch!=pRowSet->iBatch ){
|
||||
p = pRowSet->pEntry;
|
||||
if( p ){
|
||||
struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
|
||||
if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
|
||||
p = rowSetEntrySort(p);
|
||||
}
|
||||
for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
|
||||
ppPrevTree = &pTree->pRight;
|
||||
if( pTree->pLeft==0 ){
|
||||
pTree->pLeft = rowSetListToTree(p);
|
||||
break;
|
||||
}else{
|
||||
struct RowSetEntry *pAux, *pTail;
|
||||
rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
|
||||
pTree->pLeft = 0;
|
||||
p = rowSetEntryMerge(pAux, p);
|
||||
}
|
||||
}
|
||||
if( pTree==0 ){
|
||||
*ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
|
||||
if( pTree ){
|
||||
pTree->v = 0;
|
||||
pTree->pRight = 0;
|
||||
pTree->pLeft = rowSetListToTree(p);
|
||||
}
|
||||
}
|
||||
pRowSet->pEntry = 0;
|
||||
pRowSet->pLast = 0;
|
||||
pRowSet->rsFlags |= ROWSET_SORTED;
|
||||
}
|
||||
pRowSet->iBatch = iBatch;
|
||||
}
|
||||
|
||||
/* Test to see if the iRowid value appears anywhere in the forest.
|
||||
** Return 1 if it does and 0 if not.
|
||||
*/
|
||||
for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
|
||||
p = pTree->pLeft;
|
||||
while( p ){
|
||||
if( p->v<iRowid ){
|
||||
p = p->pRight;
|
||||
}else if( p->v>iRowid ){
|
||||
p = p->pLeft;
|
||||
}else{
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user