moving files to /server to make merge possible
This commit is contained in:
505
server/core/hashtable.c
Normal file
505
server/core/hashtable.c
Normal file
@ -0,0 +1,505 @@
|
||||
/*
|
||||
* This file is distributed as part of the SkySQL Gateway. It is free
|
||||
* software: you can redistribute it and/or modify it under the terms of the
|
||||
* GNU General Public License as published by the Free Software Foundation,
|
||||
* version 2.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
* details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along with
|
||||
* this program; if not, write to the Free Software Foundation, Inc., 51
|
||||
* Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Copyright SkySQL Ab 2013
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <hashtable.h>
|
||||
|
||||
/**
|
||||
* @file hashtable.c General purpose hashtable routines
|
||||
*
|
||||
* The hashtable can be create with a custom number of hash buckets,
|
||||
* a hash function and optional functions to call make copies of the key
|
||||
* and value and to free them.
|
||||
*
|
||||
* The hashtable is arrange as a set of linked lists, the number of linked
|
||||
* lists beign the hashsize as requested by the user. Entries are hashed by
|
||||
* calling the hash function that is passed in by the user, this is used as
|
||||
* an index into the array of linked lists, usign modulo hashsize.
|
||||
*
|
||||
* The linked lists are searched using the key comparison function that is
|
||||
* passed into the hash table creation routine.
|
||||
*
|
||||
* By default the hash table keeps the original pointers that are passed in
|
||||
* for the keys and values, however two functions can be supplied to copy these
|
||||
* a copy function and a free function. Please note the same function is used for
|
||||
* the key and the value, if the actions required are different the called functions
|
||||
* must understand how to differenate the key and value.
|
||||
*
|
||||
* The hash table implements a single write, multiple reader locking policy by
|
||||
* using a pair of counters and a spinlock. The spinlock is used to protect the
|
||||
* number of readers and writers counters when taking out locks. Releasing of
|
||||
* locks uses pure atomic actions and thus does not require spinlock protection.
|
||||
*
|
||||
* @verbatim
|
||||
* Revision History
|
||||
*
|
||||
* Date Who Description
|
||||
* 23/06/13 Mark Riddoch Initial implementation
|
||||
* 23/07/13 Mark Riddoch Addition of hashtable iterator
|
||||
*
|
||||
* @endverbatim
|
||||
*/
|
||||
|
||||
static void hashtable_read_lock(HASHTABLE *table);
|
||||
static void hashtable_read_unlock(HASHTABLE *table);
|
||||
static void hashtable_write_lock(HASHTABLE *table);
|
||||
static void hashtable_write_unlock(HASHTABLE *table);
|
||||
|
||||
/**
|
||||
* Special null function used as default memory allfunctions in the hashtable
|
||||
* implementation. This avoids having to special case the code that manipulates
|
||||
* the keys and values
|
||||
*
|
||||
* @param data The data pointer
|
||||
* @return Return the value we were called with
|
||||
*/
|
||||
static void *
|
||||
nullfn(void *data)
|
||||
{
|
||||
return data;
|
||||
}
|
||||
|
||||
/**
|
||||
* Allocate a new hash table
|
||||
*
|
||||
* @param size The size of the hash table
|
||||
* @param hashfn The user supplied hash function
|
||||
* @param cmpfn The user supplied key comparison function
|
||||
* @return The hashtable table
|
||||
*/
|
||||
HASHTABLE *
|
||||
hashtable_alloc(int size, int (*hashfn)(), int (*cmpfn)())
|
||||
{
|
||||
HASHTABLE *rval;
|
||||
|
||||
if ((rval = malloc(sizeof(HASHTABLE))) == NULL)
|
||||
return NULL;
|
||||
rval->hashsize = size;
|
||||
rval->hashfn = hashfn;
|
||||
rval->cmpfn = cmpfn;
|
||||
rval->copyfn = nullfn;
|
||||
rval->freefn = nullfn;
|
||||
rval->n_readers = 0;
|
||||
rval->writelock = 0;
|
||||
spinlock_init(&rval->spin);
|
||||
if ((rval->entries = (HASHENTRIES **)calloc(size, sizeof(HASHENTRIES *))) == NULL)
|
||||
{
|
||||
free(rval);
|
||||
return NULL;
|
||||
}
|
||||
memset(rval->entries, 0, size * sizeof(HASHENTRIES *));
|
||||
|
||||
return rval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Delete an entire hash table
|
||||
*
|
||||
* @param table The hash table to delete
|
||||
*/
|
||||
void
|
||||
hashtable_free(HASHTABLE *table)
|
||||
{
|
||||
int i;
|
||||
HASHENTRIES *entry, *ptr;
|
||||
|
||||
hashtable_write_lock(table);
|
||||
for (i = 0; i < table->hashsize; i++)
|
||||
{
|
||||
entry = table->entries[i];
|
||||
while (entry)
|
||||
{
|
||||
ptr = entry->next;
|
||||
table->freefn(entry->key);
|
||||
table->freefn(entry->value);
|
||||
free(entry);
|
||||
entry = ptr;
|
||||
}
|
||||
}
|
||||
free(table->entries);
|
||||
free(table);
|
||||
}
|
||||
|
||||
/**
|
||||
* Provide memory management functions to the hash table. This allows
|
||||
* function pointers to be registered that can make copies of the
|
||||
* key and value.
|
||||
*
|
||||
* @param table The hash table
|
||||
* @param copyfn The copy function
|
||||
* @param freefn The free function
|
||||
*/
|
||||
void
|
||||
hashtable_memory_fns(HASHTABLE *table, HASHMEMORYFN copyfn, HASHMEMORYFN freefn)
|
||||
{
|
||||
table->copyfn = copyfn;
|
||||
table->freefn = freefn;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add an item to the hash table.
|
||||
*
|
||||
* @param table The hash table to which to add the item
|
||||
* @param key The key of the item
|
||||
* @param value The value for the item
|
||||
* @return Return the number of items added
|
||||
*/
|
||||
int
|
||||
hashtable_add(HASHTABLE *table, void *key, void *value)
|
||||
{
|
||||
int hashkey = table->hashfn(key) % table->hashsize;
|
||||
HASHENTRIES *entry;
|
||||
|
||||
hashtable_write_lock(table);
|
||||
entry = table->entries[hashkey % table->hashsize];
|
||||
while (entry && table->cmpfn(key, entry->key) != 0)
|
||||
{
|
||||
entry = entry->next;
|
||||
}
|
||||
if (entry && table->cmpfn(key, entry->key) == 0)
|
||||
{
|
||||
/* Duplicate key value */
|
||||
hashtable_write_unlock(table);
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
HASHENTRIES *ptr = (HASHENTRIES *)malloc(sizeof(HASHENTRIES));
|
||||
if (ptr == NULL)
|
||||
{
|
||||
hashtable_write_unlock(table);
|
||||
return 0;
|
||||
}
|
||||
ptr->key = table->copyfn(key);
|
||||
ptr->value = table->copyfn(value);
|
||||
ptr->next = table->entries[hashkey % table->hashsize];
|
||||
table->entries[hashkey % table->hashsize] = ptr;
|
||||
}
|
||||
hashtable_write_unlock(table);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Delete an item from the hash table that has a given key
|
||||
*
|
||||
* @param table The hash table to delete from
|
||||
* @param key The key value of the item to remove
|
||||
* @return Return the number of items deleted
|
||||
*/
|
||||
int
|
||||
hashtable_delete(HASHTABLE *table, void *key)
|
||||
{
|
||||
int hashkey = table->hashfn(key) % table->hashsize;
|
||||
HASHENTRIES *entry, *ptr;
|
||||
|
||||
hashtable_write_lock(table);
|
||||
entry = table->entries[hashkey % table->hashsize];
|
||||
while (entry && entry->key && table->cmpfn(key, entry->key) != 0)
|
||||
{
|
||||
entry = entry->next;
|
||||
}
|
||||
if (entry == NULL)
|
||||
{
|
||||
/* Not found */
|
||||
hashtable_write_unlock(table);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (entry == table->entries[hashkey % table->hashsize])
|
||||
{
|
||||
/* We are removing from the first entry */
|
||||
table->entries[hashkey % table->hashsize] = entry->next;
|
||||
table->freefn(entry->key);
|
||||
table->freefn(entry->value);
|
||||
entry->key = entry->next->key;
|
||||
entry->value = entry->next->value;
|
||||
free(entry);
|
||||
}
|
||||
else
|
||||
{
|
||||
ptr = table->entries[hashkey % table->hashsize];
|
||||
while (ptr && ptr->next != entry)
|
||||
ptr = ptr->next;
|
||||
if (ptr == NULL)
|
||||
{
|
||||
hashtable_write_unlock(table);
|
||||
return 0; /* This should never happen */
|
||||
}
|
||||
ptr->next = entry->next;
|
||||
table->freefn(entry->key);
|
||||
table->freefn(entry->value);
|
||||
free(entry);
|
||||
}
|
||||
hashtable_write_unlock(table);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch an item with a given key value from the hash table
|
||||
*
|
||||
* @param table The hash table
|
||||
* @param key The key value
|
||||
* @return The item or NULL if the item was not found
|
||||
*/
|
||||
void *
|
||||
hashtable_fetch(HASHTABLE *table, void *key)
|
||||
{
|
||||
int hashkey = table->hashfn(key) % table->hashsize;
|
||||
HASHENTRIES *entry;
|
||||
|
||||
hashtable_read_lock(table);
|
||||
entry = table->entries[hashkey % table->hashsize];
|
||||
while (entry && entry->key && table->cmpfn(key, entry->key) != 0)
|
||||
{
|
||||
entry = entry->next;
|
||||
}
|
||||
if (entry == NULL)
|
||||
{
|
||||
hashtable_read_unlock(table);
|
||||
return NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
hashtable_read_unlock(table);
|
||||
return entry->value;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Print hash table statistics to the standard output
|
||||
*
|
||||
* @param table The hash table
|
||||
*/
|
||||
void
|
||||
hashtable_stats(HASHTABLE *table)
|
||||
{
|
||||
int total, longest, i, j;
|
||||
HASHENTRIES *entries;
|
||||
|
||||
printf("Hashtable: %p, size %d\n", table, table->hashsize);
|
||||
total = 0;
|
||||
longest = 0;
|
||||
hashtable_read_lock(table);
|
||||
for (i = 0; i < table->hashsize; i++)
|
||||
{
|
||||
j = 0;
|
||||
entries = table->entries[i];
|
||||
while (entries)
|
||||
{
|
||||
j++;
|
||||
entries = entries->next;
|
||||
}
|
||||
total += j;
|
||||
if (j > longest)
|
||||
longest = j;
|
||||
}
|
||||
hashtable_read_unlock(table);
|
||||
printf("\tNo. of entries: %d\n", total);
|
||||
printf("\tAverage chain length: %.1f\n", (float)total / table->hashsize);
|
||||
printf("\tLongest chain length: %d\n", longest);
|
||||
}
|
||||
|
||||
/**
|
||||
* Print hash table statistics to a DCB
|
||||
*
|
||||
* @param dcb The DCB to send the information to
|
||||
* @param table The hash table
|
||||
*/
|
||||
void
|
||||
dcb_hashtable_stats(DCB *dcb, HASHTABLE *table)
|
||||
{
|
||||
int total, longest, i, j;
|
||||
HASHENTRIES *entries;
|
||||
|
||||
dcb_printf(dcb, "Hashtable: %p, size %d\n", table, table->hashsize);
|
||||
total = 0;
|
||||
longest = 0;
|
||||
hashtable_read_lock(table);
|
||||
for (i = 0; i < table->hashsize; i++)
|
||||
{
|
||||
j = 0;
|
||||
entries = table->entries[i];
|
||||
while (entries)
|
||||
{
|
||||
j++;
|
||||
entries = entries->next;
|
||||
}
|
||||
total += j;
|
||||
if (j > longest)
|
||||
longest = j;
|
||||
}
|
||||
hashtable_read_unlock(table);
|
||||
dcb_printf(dcb, "\tNo. of entries: %d\n", total);
|
||||
dcb_printf(dcb, "\tAverage chain length: %.1f\n", (float)total / table->hashsize);
|
||||
dcb_printf(dcb, "\tLongest chain length: %d\n", longest);
|
||||
}
|
||||
|
||||
/**
|
||||
* Take a read lock on the hashtable.
|
||||
*
|
||||
* The hashtable support multiple readers and a single writer,
|
||||
* we have a spinlock to protect the two counts, n_readers and
|
||||
* writelock.
|
||||
*
|
||||
* We take the hashtable spinlock and then check that writelock
|
||||
* is set to zero. If not we release the spinlock and do dirty
|
||||
* reads of writelock until it goes to 0. Once it is zero we
|
||||
* acquire the spinlock again and test that writelock is still
|
||||
* 0.
|
||||
*
|
||||
* With writelock set to zero we increment n_readers with the
|
||||
* spinlock still held.
|
||||
*
|
||||
* @param table The hashtable to lock.
|
||||
*/
|
||||
static void
|
||||
hashtable_read_lock(HASHTABLE *table)
|
||||
{
|
||||
spinlock_acquire(&table->spin);
|
||||
while (table->writelock)
|
||||
{
|
||||
spinlock_release(&table->spin);
|
||||
while (table->writelock)
|
||||
;
|
||||
spinlock_acquire(&table->spin);
|
||||
}
|
||||
table->n_readers++;
|
||||
spinlock_release(&table->spin);
|
||||
}
|
||||
|
||||
/**
|
||||
* Release a previously obtained readlock.
|
||||
*
|
||||
* Simply decrement the n_readers value for the hash table
|
||||
*
|
||||
* @param table The hash table to unlock
|
||||
*/
|
||||
static void
|
||||
hashtable_read_unlock(HASHTABLE *table)
|
||||
{
|
||||
atomic_add(&table->n_readers, -1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Obtain an exclusive write lock for the hash table.
|
||||
*
|
||||
* We acquire the hashtable spinlock, check for the number of
|
||||
* readers beign zero. If it is not we hold the spinlock and
|
||||
* loop waiting for the n_readers to reach zero. This will prevent
|
||||
* any new readers beign granted access but will not prevent current
|
||||
* readers releasing the read lock.
|
||||
*
|
||||
* Once we have no readers we increment writelock and test if we are
|
||||
* the only writelock holder, if not we repeat the process. We hold
|
||||
* the spinlock throughout the process since both read and write
|
||||
* locks do not require the spinlock to be acquired.
|
||||
*
|
||||
* @param table The table to lock for updates
|
||||
*/
|
||||
static void
|
||||
hashtable_write_lock(HASHTABLE *table)
|
||||
{
|
||||
int available;
|
||||
|
||||
spinlock_acquire(&table->spin);
|
||||
do {
|
||||
while (table->n_readers)
|
||||
;
|
||||
available = atomic_add(&table->writelock, 1);
|
||||
if (available != 0)
|
||||
atomic_add(&table->writelock, -1);
|
||||
} while (available != 0);
|
||||
spinlock_release(&table->spin);
|
||||
}
|
||||
|
||||
/**
|
||||
* Release the write lock on the hash table.
|
||||
*
|
||||
* @param table The hash table to unlock
|
||||
*/
|
||||
static void
|
||||
hashtable_write_unlock(HASHTABLE *table)
|
||||
{
|
||||
atomic_add(&table->writelock, -1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an iterator on a hash table
|
||||
*
|
||||
* @param table The table to ceate an iterator on
|
||||
* @return An iterator to use in future calls
|
||||
*/
|
||||
HASHITERATOR *
|
||||
hashtable_iterator(HASHTABLE *table)
|
||||
{
|
||||
HASHITERATOR *rval;
|
||||
|
||||
if ((rval = (HASHITERATOR *)malloc(sizeof(HASHITERATOR))) != NULL)
|
||||
{
|
||||
rval->table = table;
|
||||
rval->chain = 0;
|
||||
rval->depth = -1;
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the next key for a hashtable iterator
|
||||
*
|
||||
* @param iter The hashtable iterator
|
||||
* @return The next key value or NULL
|
||||
*/
|
||||
void *
|
||||
hashtable_next(HASHITERATOR *iter)
|
||||
{
|
||||
int i;
|
||||
HASHENTRIES *entries;
|
||||
|
||||
iter->depth++;
|
||||
while (iter->chain < iter->table->hashsize)
|
||||
{
|
||||
if ((entries = iter->table->entries[iter->chain]) != NULL)
|
||||
{
|
||||
i = 0;
|
||||
hashtable_read_lock(iter->table);
|
||||
while (entries && i < iter->depth)
|
||||
{
|
||||
entries = entries->next;
|
||||
i++;
|
||||
}
|
||||
hashtable_read_unlock(iter->table);
|
||||
if (entries)
|
||||
return entries->key;
|
||||
}
|
||||
iter->depth = 0;
|
||||
iter->chain++;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* Free a hashtable iterator
|
||||
*
|
||||
* @param iter The iterator to free
|
||||
*/
|
||||
void
|
||||
hashtable_iterator_free(HASHITERATOR *iter)
|
||||
{
|
||||
free(iter);
|
||||
}
|
||||
Reference in New Issue
Block a user