The configuration mechanism consists of the following concepts:
Specification
Specifies the available configuration parameters of a module,
their names and their types.
Param
Specifies a parameter, its name and its type.
Type
Specifies the type of a configuration parameters; Bool, Size,
Count, etc.
Configuration
Specifies the configuration values of a particular instance of
the module. Configuration walks hand in hand with Specification,
the latter specifies what the former should contain.
A Specification is capable of configuring a Configuration from a
MXS_CONFIG_PARAMETER, checking in the process that all parameters
are of the correct type and that the required parameters are present.
A Specification is capable of persisting itself so that it later
can be read back.
The mechanism is closed for modification but open for extension in
the sense that if a module requires a custom parameter, all it needs
to do is to derive one class from Param and another from Type.
The canonical way for using this mechanism is as follows. Consider
a module xyx that has three parameters; a parameter called
"enabled" that is of boolean type, a parameter called "period"
that is of duration type, and a parameter "cache" that is of
size type. That would be declared as follows:
// xyz.hh
class XYZSession;
class XYZ : public maxscale::Filter<XYZ, XYZSession>
{
public:
static XYZ* create(const char* zName, MXS_CONFIG_PARAMETER* pParams);
private:
XYZ();
static config::Specification s_specification;
static config::ParamBool s_enabled;
static config::ParamDuration<std::chrono::seconds> s_period;
static config::ParamSize s_cache;
config::Configuration m_configuration;
config::Bool m_enabled;
config::Duration<std::chrono::seconds> m_period;
config::Size m_cache;
};
// xyz.cc
config::Specification XYZ::s_specification(MXS_MODULE_NAME);
config::ParamBool XYZ::s_enabled(
&s_specification,
"enabled",
"Specifies whether ... should be enabled or not."
);
config::ParamDuration<std::chrono::seconds> XYZ::s_period(
&s_specification,
"period",
"Specifies the period. Rounded to the nearest second."
);
config::ParamSize XYZ::s_cache(
&s_specification,
"cache",
"Specifies the size of the internal cache."
);
XYZ::XYZ()
: m_configuration(&s_specification)
, m_enabled(&m_configuration, &s_enabled)
, m_period(&m_configuration, &s_period)
, m_cache(&m_configuration, &s_cache)
{
}
XYZ* XYZ::create(const char* zName, MXS_CONFIG_PARAMETER* pParams)
{
XYZ* pXyz = new XYZ;
if (!s_specification.configure(pXyz->m_configuration, pParams))
{
delete pXyz;
pXyz = nullptr;
}
return pXyz;
}
The largest part of the code deals with the start of a response. Moving
this into a subfunction makes the function clearer as the switch statement
inside a switch statement is removed.
By processing the packets one at a time, the reply state is updated
correctly regardless of how many packets are received. This removes the
need for the clunky code that used modutil_count_signal_packets to detect
the end of the result set.
The new `force=yes` option closes all connections to the server that is
being put into maintenance mode. This will immediately close all open
connections to the server without allowing results to return.
Given the assumption that queries are rarely 16MB long and that
realistically the only time that happens is during a large dump of data,
we can limit the size of a single read to at most one MariaDB/MySQL packet
at a time. This change allows the network throttling to engage a lot
sooner and reduces the maximum overshoot of throtting to 16MB.
By passing the raw password deeper into the authentication code, it can be
used to verify the user can access some systems. Right now, this is not
required by the simple salted password comparison done in MaxScale.
The load_persisted_configs parameter now controls whether persisted
runtime changes are loaded on startup. The changes are still generated as
it persists the current state of MaxScale making problem analysis easier.
The new `force=yes` option closes all connections to the server that is
being put into maintenance mode. This will immediately close all open
connections to the server without allowing results to return.
That URL will now return information about the statements in
the query classifier cache. The information is collected using
the same map in a serial manner from all routing workers (that
each have their own cache). Since all caches will contains the
same statements, collecting the information in a serial manner
means that the overall memory consumption will be lower than
what it would be if the information was collected in parallel.
With the addition of SO_REUSEPORT support, it is no longer possible to
rely on the network stack to prevent multiple listeners from listening on
the same port. Without explicitly checking for the ports it would be
possible for two listeners from two different services to listen on the
same port in which case the service would be almost randomly chosen.
If SO_REUSEPORT is available and the kernel supports it, listeners will
now listen on separate file descriptors. This removes the need for
cross-worker communication when in normal operation which should make
MaxScale scale better.
By storing the file descriptor inside a worker-local variable, it is
possible to handle both unique file descriptors (created with
SO_REUSEPORT) and shared file descriptors with the same code. The way in
which the file descriptor is stored in the rworker_local object determines
the way the listener behaves.
Increasing counter sizes from int to long for averages.
Rename random functions to end with _co instead of _exclusive to
indicate range [close, open[, and to allow future suffixes oc, cc and oo.
By passing strings instead of const char pointers to the task control
functions, we can safely make copies of them knowing that the contents
won't disappear.
Storing all the runtime errors makes it possible to return all of them
them via the REST API. MaxAdmin will still only show the latest error but
MaxCtrl will now show all errors if more than one error occurs.
By using a std::vector to store the keys, the cost of key lookup goes down
in comparison with std::unordered_map. The downside is the increase in
memory use in certain situations but given the fact that the intended
purpose of worker-local data is to store global data, this is unlikely to
have observable negative side-effects. Depending on the implementations of
std::vector and std::unordered_map, the use of std::vector could even
result in a smaller memory footprint.
Added an overload to execute_concurrently that takes an std::function as a
parameter and added a const version of operator* for rworker_local. Also
removed the std::move of the return value in rworker_local::values as it
can prevent RVO from taking place.
Some SQL clients may default to a different authentication plugin than
"mysql_native_password". Since this is the only one supported by MySQL-
authenticator, the client is instructed to swap its plugin.
The functions are now in MonitorServer. Disk space can only be checked
during specific ticks. If a server misses a tick (e.g. is down) it will
be checked after disk_space_check_interval has passed.
The rank can now only be used to define two groups of servers: primary and
secondary servers. This limits the exposure and reduces the number of
possibilities that can arise from the use of this parameter thus making it
more predictable.
Although the default value is the maximum value of a signed 32-bit
integer, the value is stored as a 64-bit integer. The integer type
conversion functions return 64-bit values so storing it as one makes
sense.
Currently values higher than the default are allowed but the accepted
range of input should be restricted in the future.