Backported the minimal set of changes required to build 2.1 with GCC
8. The format-truncation and format-overflow warnings are disabled instead
of fixed in 2.1 to remove duplication of effort that was already done in
2.2 (the commit doesn't cherry-pick cleanly).
The default database was not extracted correctly as the length of the
user's name did not include the null terminator. Also the comparison for
database name length used the smaller than operator instead of the correct
larger than operator.
From 10.1.32, 10.2.14 and 10.3.6 onwards, there is an
information_schema plugin called DISKS using which information
about the disk space situation on the server can be obtained.
Subsequent commits will add configuration options for specifying
limits and take the functionality in use in monitors where it makes
sense.
When the client reauthenticates via COM_CHANGE_USER the new SHA1 needs to
be stored as the backend connections rely on it being up-to-date.
This commit fixes the regression of the mxs548_short_session_change_user
test.
If the reauthentication of a client that is performing a COM_CHANGE_USER
fails, the users need to be reloaded. Without the reloading, the
reauthentication will fail if new users were added after the last loading
of users.
The parameter extraction caused a recursive lock of the server
spinlock. To work around this, an unlocked version of server_get_parameter
is needed.
Ideally, a lock-free setup would be used but due to this being a bug fix,
it will have to be done later on.
The re-authentication done in MaxScale caused multiple error packets to be
sent for the same COM_CHANGE_USER. In addition to this, the failure of
authentication did not terminate the client connection.
The change in behavior requires the test case to be changed as well.
Since monitors are now freed at MaxScale exit, the server data should be freed. Also,
gtid domain variables are now initialized with a common constant.
Multi-statement SELECTs were properly detected and handled,
but e.g. multi-statement UPDATESs were not, with the result
that erronous warnings were logged.
Now the responses are detected and handled properly.
If a connection is killed but the backend DCBs have not yet received their
thread IDs, the connections can be forcibly closed. This removes the
possibility of stale connections caused by an unfortunately timed KILL
query to a session that has partially connected to some servers.
StartMonitor() now takes a MXS_MONITOR_INSTANCE and returns
true, if the monitor could be started and false otherwise.
So, the setup is such that in createInstance(), the instance
data is created and then using startMonitor() and stopMonitor()
the monitor is started/stopped. Finally in destroyInstance(),
the actual instance data is deleted.
The following type name changes
MXS_MONITOR_OBJECT -> MXS_MONITOR_API
MXS_SPECIFIC_MONITOR -> MXS_MONITOR_INSTANCE
Further, the 'handle' instance variable of what used to be
called MXS_MONITOR_OBJECT has been renamed to 'api'.
An example, what used to look like
mon->module->stopMonitor(mon->handle);
now looks like
mon->api->stopMonitor(mon->instance);
which makes it more obvious what is going on.
MonitorDestroy() (renamed to monitor_destroy()) will be used for
actually destroying the monitor instance, that is, execute
destroyInstance() on the loaded module instance and freeing the
the monitor instance.
TODO: monitor_deactivate() could do all the stuff which is currently
done to the monitor in config_runtime(), instead of just
turning off the flag.
CreateInstance() (renamed from initMonitor()) and destroyInstance()
(renamed from finishMonitor()) have now tentatively been
implemented for all monitors.
Next step is to
1) change the prototype of startMonitor() to
bool (*startMonitor)(MXS_SPECIFIC_MONITOR*,
const MXS_MONITOR_PARAMETER*);
and assume that mon->handle will always contain the
instance,
2) not delete any data in stopMonitor(),
3) add monitorCreateAll() that calls createInstance() for all
monitors (and call that in main()), and
4) add monitorDestroyAll() that calls destroyInstance() for
all monitors (and call that in main()).
Now, all monitor functions but startMonitor takes a
MXS_SPECIFIC_MONITOR instead of MXS_MONITOR. That is, startMonitor
is now like a static factory member returning a new specific
monitor instance and the other functions are like member functions
of that instance.
Instead of using void there's now a MXS_SPECIFIC_MONITOR struct
from which monitor specific types can be derived. This change
does not bring about other benefits than a bit of clarity but
this is the first step in clearing up the monitor API.