If two or more session commands contain identical buffers, the buffer of
the first session command is shared between the others. This reduces the
amount of memory used to store repeated executions of session commands.
The purging of session command history in readwritesplit was replaced with
session command de-duplication. This was done to prevent problems that
could arise when the order of session commands plays a significant role.
When the `optimistic_trx` mode is enabled, all transactions are started on
a slave server. If the client executes a query inside the transaction that
is not of a read-only nature, the transaction is rolled back and replayed
on the master.
The characteristics of a transaction can now be tracked by the query
classifier. This allows read-only and read-write transaction statistics to
be calculated.
The id has now been moved from mxs::Worker to mxs::RoutingWorker
and the implications are felt in many places.
The primary need for the id was to be able to access worker specfic
data, maintained outside of a routing worker, when given a worker
(the id is used to index into an array). Slightly related to that
was the need to be able to iterate over all workers. That obviously
implies some kind of collection.
That causes all sorts of issues if there is a need for being able
to create and destroy a worker at runtime. With the id removed from
mxs::Worker all those issues are gone, and its perfectly ok to create
and destory mxs::Workers as needed.
Further, while there is a need to broadcast a particular message to
all _routing_ workers, it hardly makes sense to broadcast a particular
message too _all_ workers. Consequently, only routing workers are kept
in a collection and all static member functions dealing with all
workers (e.g. broadcast) have now been moved to mxs::RoutingWorker.
Now, instead of passing the id around we instead deal directly
with the worker pointer. Later the data in all those external arrays
will be moved into mxs::[Worker|RoutingWorker] so that worker related
data is maintained in exactly one place.
To get rid of the need that a Worker must have an id, we store
in the MXS_POLL_DATA structure a pointer to the owning worker
instead of the id of the owning worker. This also allows some
further cleanup as the need for switching back and forth between
the id and the worker disappears.
The id will be moved from Worker to RoutingWorker as there
currently is a fair amount of code that assumes that the id of
routing workers start from 0.
It's no longer necessary to inherit from Worker in order to use
it, but it can now be used in a stand-alone fashion. This fits
the MonitorInstance use-case better.
The function implemented redundant functionality and replacement with
modutil_get_next_MySQL_packet was planned.
When faced with a packet header spread over multiple buffers, the packet
length calculation would read past the buffer end. This is fixed by taking
modutil_get_next_MySQL_packet into use.
Identical behavior to the old function is achieved by calling
gwbuf_make_contiguous for each packet to store them in a contiguous area
of memory. This should be either removed and only done when
RCAP_TYPE_CONTIGUOUS_INPUT is requested or be made an innate feature of
statement based routing.
The state of the backend needs to be checked before any pending session
commands are executed on it.
Added debug assertions to catch invalid use of the status functions of
closed backends.
The core library now contains the maxscale_shutdown() command. This makes
it possible to resolve all symbols at link time even for administrative
modules.
MaxScale now defines events for which the syslog
facility and level can explicitly be defined by the
administrator. Currently there is only one such
event, namelt AUTHENTICATION_FAILURE.
In a subsequent commit, config.cc will be modified so
that event-related configuration parameters are passed
to event::configure() and in another subsequent commit
the authenticators will be modifed to use this mechanism.
In practice a line like:
MXS_WARNING("%s: login attempt for user '%s'@[%s]:%s, "
"authentication failed.",
dcb->service->name, client_data->user,
dcb->remote, dcb->path);
will be changed to
MXS_LOG_EVENT(event::AUTHENTICATION_FAILURE,
"%s: login attempt for user '%s'@[%s]:%s, "
"authentication failed.",
dcb->service->name, client_data->user,
dcb->remote, dcb->path);
When a client connection is closed by MaxScale before the client initiates
a controlled closing of the connection, an error message is sent. This
error message now also explains why the connection was closed to make
problem resolution easier.
MonitorInstanceSimple is intended for simple monitors that
probe servers in a straightforward fashion. More complex monitors
can be derived directly from MonitorInstance.
Tracking how many times the monitor has performed its monitoring allows
the test framework to consistently wait for an event instead of waiting
for a hard-coded time period. The MaxCtrl `api get` command can be used to
easily extract the numeric value.
If the starting of a transaction was interrupted by a server failure, the
query needs to be retried. This needs to be done as a transaction replay
to keep the routing logic consistent and simple.
When a non-autocommit transaction is interrupted, there will be no query
in progress and no replaying is needed. To handle this case, the replay
initialization logic needed to be altered to treat truly empty
transactions as a success case.
The two operations return different types of results and need to be
treated differently in order for them to be handled correctly in 2.2.
This fixes the unexpected internal state errors that happened in all 2.2
versions due to a wrong assumption made by readwritesplit. This fix is not
necessary for newer versions as the LOAD DATA LOCAL INFILE processing is
done with a simpler, and more robust, method.
Start/stop now provided by MonitorInstance. The thread main
function is now virtual and overriden by MariaDBMonitor. Some
additional refactoring is necessary in order to be able to allow
MonitorInstance to handle the main loop.