Certain MariaDB connectors will use the direct execution for batching
COM_STMT_PREPARE and COM_STMT_EXECUTE execution without waiting for the
COM_STMT_PREPARE to complete. In these cases the COM_STMT_EXECUTE (and
other COM_STMT commands as well) will use the special ID 0xffffffff. When
this is detected, it should be substituted with the ID of the latest
statement that was prepared.
All COM_STMT_SEND_LONG_DATA commands and the COM_STMT_EXECUTE that follows
it must be sent to the same server. This implicitly works for masters but
with multiple slave servers the data could be sent to the wrong server.
By using the code added for MXS-2521, this problem can now be easily
solved by checking what the previous command was.
If a COM_STMT_EXECUTE has no metadata in it and it has more than one
parameter, it must be routed to the same backend where the previous
COM_STMT_EXECUTE with the same ID was routed to. This prevents MDEV-19811
that is triggered by MaxScale routing the queries to different backends.
Given the following query:
PREPARE ps FROM 'PREPARE ps2 FROM \'SELECT 1\'';
The debug assertion is hit even though this is valid, albeit unsupported,
SQL. An optimization would be to ignore the query if the prepared
statement type is another prepared statement.
See script directory for method. The script to run in the top level
MaxScale directory is called maxscale-uncrustify.sh, which uses
another script, list-src, from the same directory (so you need to set
your PATH). The uncrustify version was 0.66.
The characteristics of a transaction can now be tracked by the query
classifier. This allows read-only and read-write transaction statistics to
be calculated.
By relying on the server to tell us that it is requesting the loading of a
local infile, we can remove one state from the state machine that governs
the loading of local files. It also removes the need to handle error and
success cases separately.
A side-effect of this change is that execution of multi-statement LOAD
DATA LOCAL INFILE no longer hangs. This is done by checking whether the
completion of one command initiates a new load.
The current code recursively checks the reply state and clones the
buffers. Neither of these are required nor should they be done but
refactoring the code is to be done in a separate commit.
Added two helper functions that are used to detect requests for local
infiles and to extract the total packet length from a non-contiguous
GWBUF.
The code for figuring out the where to send a statement does no
longer depend upon RWSplitSession but only on QueryClassifier.
So now the functionality can be moved into QueryClassifier after
which further cleanup and streamlining can be done.
This is the first step in providing a QueryClassifier class
that is capable of performing context dependent query classification,
where the context is essentially the session state.