There is a race condition between the addition of the DCB into epoll and
the execution of the event that initiates the protocol pointer for the DCB
and sends the handshake to the client. If a hangup event would occur
before the handshake would be sent, it would be possible that the DCB
would get freed before the code that sends the handshake is executed.
By picking the worker who owns the DCB before the DCB is placed into the
owner's epoll instance, we make sure no events arrive on the DCB while the
control is transferred from the accepting worker to the owning
worker.
If the connection to the master is lost, knowing what type of an error
caused the call to handleError helps deduce what was the real reason for
it. Logging the idle time of the connection helps detect when the
wait_timeout of a connection is exceeded.
Most of the ones still remaining outside are special cases.
Also, removed locking from status manipulation functions as it
has not been required for quite some time.
The prefix was always added even when the original version would've been
acceptable. For example, a version string of 5.5.40 would get converted to
5.5.5-5.5.40 which is quite confusing for older client applications.
DCBs can now have a null session pointer and if they do, they are in the
persistent pool. The no-null-session assertions are no longer valid but
with a reorganization of the pooling code to only use file descriptors,
the assertions can be added back.
Minor renaming of the session state enum values. Also exposed the session
state stringification function in the public header and removed the
stringification macro.
The error flag was set before the function was called which caused the
function to never be used. As the core should handle the filtering of
multiple errors on the same DCB, the protocol modules should not check it.
When a response to a prepared statement was processed, the number of EOF
packets was used to see whether the response was complete. This code used
a function that does not work with the special packet returned by a PS
preparation that is similar to an OK packet.
The correct method is to count the total number of packets in the
response.
For lifetime management keep RWBackends in a vector of unique_ptrs.
RWSplitSession keeps the unique_ptrs very private, and provides a vector
of plain pointers for all other interfaces.
This is essentially just a search and replace to change SRWBackend to
RWBackend* and SRWBackendList to PRWBackends, a vector of a raw
pointers. In the next few commits vector<unique_ptr<RWBackend>>
will be used for life time management.
There are a lot of diffs from the global search and replace. Only a few manual
edits had to be done.
list-src -x build | xargs sed -ri 's/SRWBackends/prwbackends/g'
list-src -x build | xargs sed -ri 's/const mxs::SRWBackend\&/const mxs::RWBackend\*/g'
list-src -x build | xargs sed -ri 's/const SRWBackend\&/const RWBackend\*/g'
list-src -x build | xargs sed -ri 's/mxs::SRWBackend\&/mxs::RWBackend\*/g'
list-src -x build | xargs sed -ri 's/mxs::SRWBackend/mxs::RWBackend\*/g'
list-src -x build | xargs sed -ri 's/SRWBackend\(\)/nullptr/g'
list-src -x build | xargs sed -ri 's/mxs::SRWBackend\&/mxs::RWBackend\*/g'
list-src -x build | xargs sed -ri 's/mxs::SRWBackend/mxs::RWBackend\*/g'
list-src -x build | xargs sed -ri 's/SRWBackend\&/RWBackend\*/g'
list-src -x build | xargs sed -ri 's/SRWBackend\b/RWBackend\*/g'
list-src -x build | xargs sed -ri 's/prwbackends/PRWBackends/g'
Allocating the session before a DCB guarantees that at no point will a DCB
have a null session. This further clarifies the concept of the session and
also allows the listener reference to be moved there.
Ideally, the session itself would allocate and assign the client DCB but
since the Listener is the only one who does it, it's acceptable for now.
As each connection now immediately gets a session the dummy session is no
longer required. The next step would be to combine parts of the session
and the client DCB into one entity. This would prevent the possibility of
a client DCB with no associated session. Backend DCBs are different as
they can move from one session to another when the persistent connection
pool is in use.
Whenever a client DCB is accepted, a session for it is allocated. This
simplifies the handling of shared data between DCBs by allowing it to be
placed inside the session object. Currently, the data is stashed away in
the client DCB.
By doing the actual accepting of the new DCB in the core, the protocol
modules can only do the actual protocol level work. This removes some of
the redundant code that was in the protocol modules.
Allocating DCB with new allows the use of C++ objects in the DCB
struct. Also the explicit poll field can be replaced by inheriting from
MXB_POLL_DATA.
Modified the functions to use a listener instead of a DCB in the accepting
process. This removes some of the dependenices that the listeners have on
the DCB system.
The iteration of listeners is now done via the global list of
listeners. This removes the need to have a service before a listener is
accessed which also reflects how the actual configuration is laid out. It
also guarantees that any results returned by the find functions will be
valid as long as the results are used.