Returning the length of the value instead of a boolean allows the user to
know when the parameter value exceeded the buffer size passed as the
parameter.
To support a wider range of client connectors, MaxScale should respond
with an AuthSwitchRequest packet to all COM_CHANGE_USER commands. Only
MariaDB connectors understand the OK packet as the only response to a
COM_CHANGE_USER but all connectors understand the AuthSwitchRequest
packet.
The mysql_create_standard_error function accepted a packet number as a
parameter but did not use it as the actual packet number. As the value it
used happened to coincide with 50% of the use-cases, it went unnoticed.
The remaining 50% occurred when a KILL command was executed with an
unknown connection ID.
The individual servers were missing a statistic that would give an
estimated query count. As there is no simple way to count queries for all
modules, counting the number of routed protocol packets is a suitable
substitute.
The same problem that caused maxadmin to lock up was also what caused
maxinfo to lock up. The concurrent access to the legacy administrative
functions caused deadlocks.
The resultset processing for MySQL requires some extra work as it lacks
the proper SERVER_MORE_RESULTS_EXIST flag in the last EOF packet. Instead,
the first EOF packet has the SERVER_PS_OUT_PARAMS flag which needs to be
interpreted as a SERVER_MORE_RESULTS_EXIST flag for the second EOF packet.
Also corrected the EOF packet handling to do the flag checks in the code
that deals with the EOF packets.
As the modutil_state parameter is now used for more than large packet
tracking, the correct solution is to store this state object in the
readwritesplit session instead of interpreting it to a boolean value.
In this case, the server was already a slave and is not being demoted. Also, the file may
contain queries which cannot be ran while a slave connection is running.
Fixed string truncation warnings by reducing max parameter lengths by one
where applicable. The binlogrouter filename lengths are slightly different
so using memcpy to work around the warnings is an adequate "solution"
until the root of the problem is solved.
Removed unnecessary CMake policy settings from qc_sqlite. Adding a
self-dependency on the source file of an external project has no effect
and only caused warnings to be logged.
The documentation stated that all CPUs would be used when threads=auto was
used. In reality the behavior was the same as was with 2.0 (number of CPUs
minus one).
The sql queries are given in two text files, defined by options promotion_sql_file
and demotion_sql_file. The files must exist when monitor starts. The files are read
line by line, ignoring empty lines and lines starting with '#'. All other lines
are sent to the server being promoted, demoted or rejoined. Any error in opening
a file, reading it or executing the contents will cause the entire operation to
fail.
The filed defined in demotion_sql_file is also ran when rejoining a server. This
is to ensure a previously failed master is "demoted" properly when it joins the
cluster.
With the changes to the DCB handling, the service pointer of a client DCB
must always be assigned.
Also removed the unnecessary parentheses around the comparison.
Large session commands weren't properly handled which caused the router to
think that the trailing end of a multi-packet query was actually a new
query.
This cannot be confidently solved in 2.2 which is why the router session
is now closed the moment a large session command is noticed.
Only commands that can contain an SQL statements should be stored for
retrying (COM_QUERY and COM_EXECUTE). Other commands are either session
commands or do not work with query retrying.
If maxadmin connections are handled by different workers, then
there may be a deadlock if some maxadmin command requires
communication with all workers.
Namely, in that case a message will be sent to all other workers
but the current one, but that message will not be handled if that
other worker at that point sits in the debugcmd_lock spinlock
in debugcmd.c:execute_cmd().
We can prevent that deadlock from happening simply by ensuring
that all maxadmin connections are handled by one thread.
The commands needs to be handled separately from the rest of the result
types.
Added a test case that reproduces the problem and verifies that the change
in code fixes it.
When a LOAD DATA LOCAL INFILE finishes, the client sends an empty
packet. The second case when the client sends an empty packet when the
previous packet was exactly 0xffffff bytes long. These two packets were
confused which caused the internal state to temporarily flip from inactive
to ending and back to inactive.
The aforementioned flip-flopping didn't have any practical differences but
it was caught by a debug assertion.
The COM_STMT_FETCH command will create a response. This was a
readwritesplit-specific interpretation of the command and it was wrong.
Also record the currently executed command event for session commands.
Readwritesplit would not handle multiple overlapping COM_STMT_EXECUTE
commands properly if they opened cursors. This was due to the fact that
the result would not be marked as complete and COM_STMT_FETCH commands
were executed as if they did not return results.
The correct implementation is to consider a COM_STMT_EXECUTE that opens a
cursor complete only when the first EOF packet is read (that is, when the
resultset header is read). This allows subsequent COM_STMT_FETCH commands
to be handled separately.
The separate COM_STMT_FETCH handling must count the number of packets that
are being fetched. This allows correct tracking of the state of a
COM_STMT_FETCH by checking that the number of packets is correct or the
second EOF/ERR packet is read.
When a LOAD DATA LOCAL INFILE is actively rejected by the server, the
server sends an error to the client. This error was not detected and the
router was stuck in the special mode that handles LOAD DATA LOCAL INFILE.
The current command needs to be updated before the queries are actually
routed. This allows the KILL command detection and processing to correctly
work.
When the connection pool is inspected, both the client username and IP
must match. This causes the pool to be partitioned by username and IP,
prevening unintentional sharing of connections between different users.