All executed session commands were logged in the RWSplitSession
destructor. This is not really necessary and shouldn't have been placed
there in the first place.
When the `optimistic_trx` mode is enabled, all transactions are started on
a slave server. If the client executes a query inside the transaction that
is not of a read-only nature, the transaction is rolled back and replayed
on the master.
Unconditionally update the previous target on each routed query. This
allows routing to the previous server in case it is needed. One example of
this is a new type of hint that allows routing to the same server where
the previous query was sent.
Also added a minor clarifying comment to the resetting of the
current_query.
Readwritesplit would crash with the following transaction:
BEGIN;
SET @a = 1; -- This is where it would crash
COMMIT;
When a session command was a part of the transaction, empty queries
(i.e. NULL GWBUFs) would be added to the transaction. If the transaction
were to be replayed, MaxScale would crash when these NULL queries were
executed.
Once the empty responses were fixed, the replaying of the transaction
would fail with a checksum mismatch. This was caused by the wrong order of
processing in RWSplitSession::clientReply. The response processing for
session commands was done after the response processing for replayed
transactions. This would trigger a checksum comparison too early for the
transaction in question.
Backend::execute_session_command would use the overridden write method
instead of the Backend::write method that it intended to use. This caused
session commands that did not expect a response to be in a state that
expected a result.
Also fixed RWBackend::write pass the response_type value to
Backend::write.
The state of the backend needs to be checked before any pending session
commands are executed on it.
Added debug assertions to catch invalid use of the status functions of
closed backends.
Allowing calls to select_connect_backend_servers even when all slaves are
connected solves the debug assertion in select_connect_backend_servers
that happens when the execution of a queued query causes a new connection
to be created.
If the starting of a transaction was interrupted by a server failure, the
query needs to be retried. This needs to be done as a transaction replay
to keep the routing logic consistent and simple.
When a non-autocommit transaction is interrupted, there will be no query
in progress and no replaying is needed. To handle this case, the replay
initialization logic needed to be altered to treat truly empty
transactions as a success case.
The MariaDB implementation allows the last GTID to be tracked with the
`last_gtid` variable. To do this, the configuration option
`session_track_system_variables=last_gtid` must be used or it must be
enabled at runtime.
By relying on the server to tell us that it is requesting the loading of a
local infile, we can remove one state from the state machine that governs
the loading of local files. It also removes the need to handle error and
success cases separately.
A side-effect of this change is that execution of multi-statement LOAD
DATA LOCAL INFILE no longer hangs. This is done by checking whether the
completion of one command initiates a new load.
The current code recursively checks the reply state and clones the
buffers. Neither of these are required nor should they be done but
refactoring the code is to be done in a separate commit.
Added two helper functions that are used to detect requests for local
infiles and to extract the total packet length from a non-contiguous
GWBUF.
Session commands that span multiple packets are now allowed and will
work. However, if one is executed the session command history is disabled
as no interface for appending to session commands exists.
The backend protocol modules now also correctly track the current
command. This was a pre-requisite for large session commands as they
needed to be gathered into a single buffer and to do this the current
command had to be accurate.
Updated tests to expect success instead of failure for large prepared
statements.
The resultset processing for MySQL requires some extra work as it lacks
the proper SERVER_MORE_RESULTS_EXIST flag in the last EOF packet. Instead,
the first EOF packet has the SERVER_PS_OUT_PARAMS flag which needs to be
interpreted as a SERVER_MORE_RESULTS_EXIST flag for the second EOF packet.
Also corrected the EOF packet handling to do the flag checks in the code
that deals with the EOF packets.
As the modutil_state parameter is now used for more than large packet
tracking, the correct solution is to store this state object in the
readwritesplit session instead of interpreting it to a boolean value.
Added the `transaction_replay_max_size` parameter that controls the
maximum size of a transaction that can be replayed. If the limit is
exceeded, the stored statements are released thus preventing the
transaction from being replayed.
This limitation prevents accidental misuse of the transaction replaying
system when autocommit is disabled. It also allows the user to control the
amount of memory that MaxScale will use.
The transaction retrying behavior is now configurable and documented. The
`transaction_replay` parameter implicitly enables the required
functionality in the router that it needs.
As the current query was added to the transaction log before it finished,
the m_current_query contained a duplicate of the latest transaction log
entry. To correctly log only successful transactions, the statement should
be added only after it has successfully completed. This change also
removed the unnecessary cloning that took place when the statement was
added to the log before it finished.
With the fixed transaction logging, the value of m_current_query can be
stashed for later retrying while the replay process is happening. If the
replay completes successfully and the checksums match, the interrupted
query is retried.
Also added a clarifying comment to can_retry_query to explain why a query
inside a transaction cannot be retried.
Added the initial implementation of transaction replay. Transactions are
only replayed if the master fails when no statement is being executed.
The validity of the replayed transaction is done by verifying that the
checksums of the returned results are equal.
Added a close function into the Trx class to make resetting its state
easier. Also changed the return type of the pop_stmt to GWBUF* as the
places where it is used expect a raw GWBUF pointer.
The queries that make up the transaction are now stored in the router
session while the transaction is in progress. For the time being, the
queries are only used to log extra information about the transaction
contents.
Readwritesplit now calculates checksums for all successful and failed
transactions. This checksum is not of any practical use until the
transaction replaying is implemented.
The COM_STMT_FETCH command will create a response. This was a
readwritesplit-specific interpretation of the command and it was wrong.
Also record the currently executed command event for session commands.
Readwritesplit would not handle multiple overlapping COM_STMT_EXECUTE
commands properly if they opened cursors. This was due to the fact that
the result would not be marked as complete and COM_STMT_FETCH commands
were executed as if they did not return results.
The correct implementation is to consider a COM_STMT_EXECUTE that opens a
cursor complete only when the first EOF packet is read (that is, when the
resultset header is read). This allows subsequent COM_STMT_FETCH commands
to be handled separately.
The separate COM_STMT_FETCH handling must count the number of packets that
are being fetched. This allows correct tracking of the state of a
COM_STMT_FETCH by checking that the number of packets is correct or the
second EOF/ERR packet is read.
The state could be factored out into a boolean variable as the reply
processing can be in two states: Either waiting for the response to
MASTER_GTID_WAIT or updating packet numbers.
The packet number updating can always be done as long as a buffer is
available. The discard_master_wait_gtid_result function discards the OK
packet before the packet numbers are updated so any trailing packets get
corrected properly.
If a query is interrupted that was sent to the master, it is now
retried. This allows all autocommit queries to be transparently retried if
the server in question fails.
Now that the readwritesplit uses the same mechanism for both
retry_failed_reads and delayed query retries, the re-routing function
should accept a delay of 0 seconds. This makes the mechanism more suitable
for other uses e.g. delaying of queries in filters.