If normal authentication fails and a PAM service is defined, PAM authentication
is attempted. Separate services can be set for read-only users and admin-level
users.
The configuration mechanism consists of the following concepts:
Specification
Specifies the available configuration parameters of a module,
their names and their types.
Param
Specifies a parameter, its name and its type.
Type
Specifies the type of a configuration parameters; Bool, Size,
Count, etc.
Configuration
Specifies the configuration values of a particular instance of
the module. Configuration walks hand in hand with Specification,
the latter specifies what the former should contain.
A Specification is capable of configuring a Configuration from a
MXS_CONFIG_PARAMETER, checking in the process that all parameters
are of the correct type and that the required parameters are present.
A Specification is capable of persisting itself so that it later
can be read back.
The mechanism is closed for modification but open for extension in
the sense that if a module requires a custom parameter, all it needs
to do is to derive one class from Param and another from Type.
The canonical way for using this mechanism is as follows. Consider
a module xyx that has three parameters; a parameter called
"enabled" that is of boolean type, a parameter called "period"
that is of duration type, and a parameter "cache" that is of
size type. That would be declared as follows:
// xyz.hh
class XYZSession;
class XYZ : public maxscale::Filter<XYZ, XYZSession>
{
public:
static XYZ* create(const char* zName, MXS_CONFIG_PARAMETER* pParams);
private:
XYZ();
static config::Specification s_specification;
static config::ParamBool s_enabled;
static config::ParamDuration<std::chrono::seconds> s_period;
static config::ParamSize s_cache;
config::Configuration m_configuration;
config::Bool m_enabled;
config::Duration<std::chrono::seconds> m_period;
config::Size m_cache;
};
// xyz.cc
config::Specification XYZ::s_specification(MXS_MODULE_NAME);
config::ParamBool XYZ::s_enabled(
&s_specification,
"enabled",
"Specifies whether ... should be enabled or not."
);
config::ParamDuration<std::chrono::seconds> XYZ::s_period(
&s_specification,
"period",
"Specifies the period. Rounded to the nearest second."
);
config::ParamSize XYZ::s_cache(
&s_specification,
"cache",
"Specifies the size of the internal cache."
);
XYZ::XYZ()
: m_configuration(&s_specification)
, m_enabled(&m_configuration, &s_enabled)
, m_period(&m_configuration, &s_period)
, m_cache(&m_configuration, &s_cache)
{
}
XYZ* XYZ::create(const char* zName, MXS_CONFIG_PARAMETER* pParams)
{
XYZ* pXyz = new XYZ;
if (!s_specification.configure(pXyz->m_configuration, pParams))
{
delete pXyz;
pXyz = nullptr;
}
return pXyz;
}
The new `force=yes` option closes all connections to the server that is
being put into maintenance mode. This will immediately close all open
connections to the server without allowing results to return.
Added a new module parameter type to be used for parameters
that specify a duration. With the suffixes 'h', 'm', 's' and
'ms' the duration can be specified in hours, minutes, seconds
or milliseconds, respectively.
Irrespective of how the duration is specified, it is always
returned as milliseconds.
For backward compatibility, when a duration value is read it must
be specifed how a value *not* defined using a suffix should be
interpreted; as seconds or milliseconds.
value = param->get_duration(name, mxs::config::INTERPRET_AS_SECONDS);
The manipulation functions are currently static so that the container can be initialized
if required. This will be fixed later.
The new functions are taken into use in monitor management.
Replaces uses of config_get_param() in modules either with contains()
or get_string(). The config_get_param() is moved to internal headers,
as it allows seeing inside a config setting.
Names starting with '@@' can now longer be used in configuration files.
Subsequent commits will prevent such names from being used when objects
are created dynamically.
See script directory for method. The script to run in the top level
MaxScale directory is called maxscale-uncrustify.sh, which uses
another script, list-src, from the same directory (so you need to set
your PATH). The uncrustify version was 0.66.
The test cases allocated servers in a way that doesn't comfortably suit
the way the servers are now allocated. Adding a helper C++ class to load
module defaults makes it easier to do explicit server initialization in
tests.
The binlogrouter was also fixed in this commit as it uses servers much
like a test would use.