This commit adds a new parameter that, when enabled, prunes the session
command history to a known length. This makes it possible to keep a
client-side pooled connection open indefinitely at the cost of making
reconnections theoretically unsafe. In practice the maximum history length
can be set to a value that encompasses a single session using the pooled
connection with no risk to session state integrity. The default history
length of 50 commands is quite likely to be adequate for the majority of
use-cases.
If the connection to the master is lost, knowing what type of an error
caused the call to handleError helps deduce what was the real reason for
it. Logging the idle time of the connection helps detect when the
wait_timeout of a connection is exceeded.
By storing the server statistics object in side the session, the lookup
involved in getting a worker-local value is avoided. Since the lookup is
done multiple times for a single query, it is beneficial to store it in
the session.
As the worker-local value is never deleted, it is safe to store a
reference to it in the session. It is also never updated concurrently so
no atomic operations are necessary.
The read-write distribution in readwritesplit is now stored in a map
partitioned by the servers that the router has used. Currently, the
statistics for removed servers aren't dropped so some filtering still
needs to be added.
The additions into the server.h header used C++ language which caused C
programs to fail to compile. Moved the implementation of the EMAverage
class into the private Server class in the server.hh header and exposed it
via functions in the server.h header. Also temporarily moved
almost_equal_server_scores into the public server.hh as there is no
service.hh header.
See script directory for method. The script to run in the top level
MaxScale directory is called maxscale-uncrustify.sh, which uses
another script, list-src, from the same directory (so you need to set
your PATH). The uncrustify version was 0.66.
The math becomes simpler when the weight is inverted, i.e. a simple multiplication
to get the (inverse) score. Inverse weights are normalized to the range [0..1] where a lower
number is a higher weight,
The enum select_criteria_t is used to provide a std::function that takes the backends
as vector (rather than the prior pairwise compares) and returns the best backend.
This commit refactors slave selection. The compare is still pair-wise but isolated into a small run_comparison() function. The function get_slave_candidate() is used when new connections are created, which I both moved and modified (had to move due to scoping), so diff is off.
The slave selection for routing: get_slave_backend() now has the filtering logic from old get_slave_backend() and compare_backends(), the latter of which is removed.
Backend functions mostly take shared_ptr<SRWBackend> in various forms (as is, const ref, in a container). Ideally the shared_ptr would be used only to where it is really needed, and either naked ptrs or references to RWBackend would be used. This refactor does not address that issue, but compounds it by using even deeper shared_ptr structures. Fixing that in a future commit.
This is to support calculating the average from a session, and the slave selection criteria to be able to route based on averages. This commit, like the next one, have TODOs which you should feel free to comment on. Undecided things.
The configuration updating in readwritesplit was the inspiration for the
mxs::rworker_local type. Due to this, taking it into use simply means that
the type changes from Config to mxs::rworker_local<Config>.
- The ones that were not used were removed.
- The ones that were used were moved close to the actual type.
In most cases some values were missing and if the definition is
close to the type there is a remote chance that they will stay
in sync. If detached, they surely will not.
The configuration doesn't need to be contained in shared pointer as each
session holds its own version of it. This removes most of the overhead in
configuration reloading. The only thing that's left is any overhead added
by the use of thread-local storage.
By using the worker local data mechanism, data can be efficiently cached
on the local worker. This avoids all synchronization on reads and only
requires synchronization on a configuration update.
As an additional observation, the testing of std::mutex and SPINLOCK shows
that std::mutex far outperforms the MaxScale SPINLOCK even on
non-conflicting workloads.
The configuration used the wrong parameter name. The test also did not
explicitly enable tracking of the last_gtid variable which caused it to
fail if it wasn't already on.
Relaced router_options with configuration parameters in the createInstance
router entry point. The same needs to be done for the filter API as barely
any filters use the feature.
Some routers (binlogrouter) still support router_options but using it is
deprecated. This had to be done as their use wasn't deprecated in 2.2.
Added a new router API entry point that allows configuration changes after
the instance has been created. This makes alterations to most service
parameters at runtime possible.
An option to reconfiguration would have been the creation of a new
service and the eventual destruction of the old one. This would be a more
complicated and costly method but from an architectural point of view it
is interesting.
The actual implementation of the configuration change is left to the
router. Currently, only readwritesplit performs reconfiguration as
implementing it with versioned configurations is very easy.
Versioned configurations can be considered an adequate first step but it
is not an optimal solution as it causes a bottleneck in the reference
counting of the shared configuration. Thread-specific configuration
definitions would make for a more efficient solution but the
implementation is more complex.
By using a shared pointer instead of a plain object, we can replace the
router configuration without it affecting existing sessions. This is a
change that is required to enable runtime reconfiguration of
readwritesplit.
The optimistic_trx parameter will control whether transactions are assumed
to be read-only and will be optimistically executed on slave
servers. Currently, the parameter does nothing.
Readwritesplit now keeps track of how many read-only and read-write
transactions have been executed. This allows a coarse estimation of how
widely read-only transactions are done even without explicit read-only
transactions being used (i.e. START TRANSACTION READ ONLY).
Added the `transaction_replay_max_size` parameter that controls the
maximum size of a transaction that can be replayed. If the limit is
exceeded, the stored statements are released thus preventing the
transaction from being replayed.
This limitation prevents accidental misuse of the transaction replaying
system when autocommit is disabled. It also allows the user to control the
amount of memory that MaxScale will use.
The transaction retrying behavior is now configurable and documented. The
`transaction_replay` parameter implicitly enables the required
functionality in the router that it needs.
Configuring the parameter current doesn't have enough of an effect to
warrant having a configuration option for it.
Also took mxs::extract_sql into use in the INFO level message.
By adding a boolean parameter, the feature can be enabled with sensible
default values. Renamed the query_retry parameters and set the defaults to
acceptable values.
Added new parameters to diagnostic output. Also did some minor renaming.
This is a proof-of-concept that validates the query retrying method. The
actual implementation of the query retrying mechanism needs more thought
as using the housekeeper is not very efficient.
Most of the funtionality is now a member function of either the RWSplit or
RWSplitSession class. This removes the need to pass the router and session
parameters to all functions.
With the `allow_master_change` parameter enabled, sessions can start using
a different master node if one is available. This will not prevent
sessions from closing if a write query is received while no master
replacement is available.
* MXS-199: Support Causal Read in Read Write Splitting
* move most causal read logic into rwsplit router and get server type from monitor
* misc fix: remove new line
* refactor, move config to right place, replace ltrim with gwbuf_consume
* refacter a little for previous commit
* fix code style