The queries that make up the transaction are now stored in the router
session while the transaction is in progress. For the time being, the
queries are only used to log extra information about the transaction
contents.
Readwritesplit now calculates checksums for all successful and failed
transactions. This checksum is not of any practical use until the
transaction replaying is implemented.
The Checksum class defines an interface which the SHA1Checksum and
CRC32Checksum implement.
Added test unit test cases to verify that the checksums work and perform
as expected.
5.1 to 5.3 are officially not supported anymore, so support can be removed from
the monitor. This allows removing the config parameter "mysql51_replication".
In this case, the server was already a slave and is not being demoted. Also, the file may
contain queries which cannot be ran while a slave connection is running.
Fixed string truncation warnings by reducing max parameter lengths by one
where applicable. The binlogrouter filename lengths are slightly different
so using memcpy to work around the warnings is an adequate "solution"
until the root of the problem is solved.
Removed unnecessary CMake policy settings from qc_sqlite. Adding a
self-dependency on the source file of an external project has no effect
and only caused warnings to be logged.
When providing pointer to instance and pointer to member function
of the class of the instance, the pointer to the member function
should be first and the pointer to the instance second.
There's now double bookkeeping:
- All delayed calls are in a map whose key is the next
invocation time. Since it's a map (and not an unordered_map)
it's sorted just the way we want to have it.
- In addition, there's an unordered set for each tag.
With this arrangement we can easily invoke the delayed calls
in the right order and be able to efficiently remove all
delayed calls related to a particular tag.
When canceling, a DelayedCall instance must be removed from the
collection holding all delayed calls. Consequently priority_queue
cannot be used as it 1) does not provide access to the underlying
collection and 2) the underlying collection (vector or deque)
is a bad choise if items in the middle needs to be removed.
The interface for canceling calls is now geared towards the needs
of sessions. Basically the idea is as follows:
class MyFilterSession : public maxscale::FilterSession
{
...
int MyFilterSession::routeQuery(GWBUF* pPacket)
{
...
if (needs_to_be_delayed())
{
Worker* pWorker = Worker::current();
void* pTag = this;
pWorker->delayed_call(5000, pTag, this,
&MyFilterSession::delayed_routeQuery,
pPacket);
return 1;
}
...
}
bool MyFilterSession::delayed_routeQuery(Worker::Call:action_t action,
GWBUF* pPacket)
{
if (action == Worker::Call::EXECUTE)
{
routeQuery(pPacket);
}
else
{
ss_dassert(action == Worker::Call::CANCEL);
gwbuf_free(pPacket);
}
return false;
}
~MyFilterSession()
{
void* pTag = this;
Worker::current()->cancel_delayed_calls(pTag);
}
}
The alternative, returning some key that the caller must keep
around seems more cumbersome for the general case.
It's now possible to provide Worker with a function to call
at a later time. It's possible to provide a function or a
member function (with the object), taking zero or one argument
of any kind. The argument must be copyable.
There's currently no way to cancel a call, which must be added
as typically the delayed calling is associated with a session
and if the session is closed before the delayed call is made,
bad things are likely to happen.
Worker::Timer class and Worker::DelegatingTimer templates are
timers built on top of timerfd_create(2). As such they consume
descriptor and hence cannot be created independently for each
timer need.
Each Worker has now a private timer member variable on top of
which a general timer mechanism will be provided.
The maximum number of workers and routing workers are now
hardwired to 128 and 100, respectively. It is still so that
all workers must be created at startup and destroyed at
shutdown, creating/destorying workers at runtime is not
possible.
The documentation stated that all CPUs would be used when threads=auto was
used. In reality the behavior was the same as was with 2.0 (number of CPUs
minus one).
The SESSION_TRACK_SCHEMA tracking capability handling assumed an encoding
integer in the data. This value does not exist for the data returned by
schema change or session state tracking.
The sql queries are given in two text files, defined by options promotion_sql_file
and demotion_sql_file. The files must exist when monitor starts. The files are read
line by line, ignoring empty lines and lines starting with '#'. All other lines
are sent to the server being promoted, demoted or rejoined. Any error in opening
a file, reading it or executing the contents will cause the entire operation to
fail.
The filed defined in demotion_sql_file is also ran when rejoining a server. This
is to ensure a previously failed master is "demoted" properly when it joins the
cluster.
With the changes to the DCB handling, the service pointer of a client DCB
must always be assigned.
Also removed the unnecessary parentheses around the comparison.
Large session commands weren't properly handled which caused the router to
think that the trailing end of a multi-packet query was actually a new
query.
This cannot be confidently solved in 2.2 which is why the router session
is now closed the moment a large session command is noticed.
Only commands that can contain an SQL statements should be stored for
retrying (COM_QUERY and COM_EXECUTE). Other commands are either session
commands or do not work with query retrying.