If the monitor setting "replication_master_ssl" is set to on, any CHANGE MASTER TO-command
will have MASTER_SSL=1. If set to off or unset, MASTER_SSL is left unchanged to match existing
behaviour.
Because runtime changes are performed one at a time, adding replication credentials
to a mariadbmon which didn't have any would cause an error to be printed, and
the monitor would not start.
This is now fixed by allowing replication_user without replication_password. This
is not an ideal solution as a configuration file with only replication_user would be
accepted. Also, when adding the credentials to a monitor, replication_user must be
given first to avoid the error.
All servers are now updated in their own threads simultaneously. This
should reduce the possibility of having significantly different gtid:s
shown for different servers.
The functions are now in MonitorServer. Disk space can only be checked
during specific ticks. If a server misses a tick (e.g. is down) it will
be checked after disk_space_check_interval has passed.
This fixes some situations where MaxAdmin/MaxCtrl would block and wait
until a monitor operation or tick is complete. This also fixes a deadlock
caused by calling monitor diagnostics inside a monitor script.
Concurrency is enabled by adding one mutex per server object to protect
array-like fields from concurrent reading/writing.
Previously, runtime monitor modifications could directly alter monitor fields,
which could leave the text-form parameters and reality out-of-sync. Also,
the configure-function was not called for the entire monitor-object, only the
module-implementation.
Now, all modifications go through the overridden configure-function, which calls the
base-class function. As most configuration changes are given in text-form, this
removes the need for specific setters. The only exceptions are the server add/remove
operations, which must modify the text-form serverlist.
The monitor now continuously updates a list of enabled server events. When
promoting a new master in failover/switchover, only events that were enabled
on the previous master are enabled on the new. This avoids enabling events
that may have been disabled on the master yet stayed in the SLAVESIDE_DISABLED-
state on the slave.
In the case of reset-replication command, events on the new master are only
enabled if the monitor had a master when the command was launched. Otherwise
all events remain disabled.
Worker::STOPPED -> MONITOR_STATE_STOPPED
Worker::POLLING -> MONITOR_STATE_RUNNING
Worker::PROCESSING -> MONITOR_STATE_RUNNING
By defining the monitor state from the worker state there is
no risk they will ever get out of sync. And there is one thing
less to maintain.
The manipulation functions are currently static so that the container can be initialized
if required. This will be fixed later.
The new functions are taken into use in monitor management.
Since the settings are now protected fields, all related functions were
moved inside the monitor class. mon_ping_or_connect_to_db() is now a method
of MXS_MONITORED_SERVER. The connection settings class is defined inside the
server since that is the class actually using the settings.