Given the assumption that queries are rarely 16MB long and that
realistically the only time that happens is during a large dump of data,
we can limit the size of a single read to at most one MariaDB/MySQL packet
at a time. This change allows the network throttling to engage a lot
sooner and reduces the maximum overshoot of throtting to 16MB.
By logging the connection ID for each created connection, failures can be
traced back from the backend server all the way up to the client
application.
If a transaction replay has to be executed twice due to a failure of the
original candidate master, the query queue could contain replayed
queries. The replayed queries would be placed into the queue if a new
connection needs to be created before the transaction replay can start.
Backported the changes that convert the query queue in readwritesplit into
a proper queue. This changes combines both
5e3198f8313b7bb33df386eb35986bfae1db94a3 and
6042a53cb31046b1100743723567906c5d8208e2 into one commit.
By passing the raw password deeper into the authentication code, it can be
used to verify the user can access some systems. Right now, this is not
required by the simple salted password comparison done in MaxScale.
When debugging you occasionally want to find out what a packet
contains (e.g. delivered to clientReply). Manually looking into
the packet works, but is tedious. With this function you when
the execution has been stopped in GDB examine a protocol packet.
E.g.
Thread 3 "maxscale" hit Breakpoint 6, RWSplitSession::clientReply (this=0x7fffe401ed20, writebuf=0x7fffe401e910, backend_dcb=0x7fffe401dbe0) at /home/wikman/MariaDB/MaxScale/server/modules/routing/readwritesplit/rwsplitsession.cc:567
567 DCB* client_dcb = backend_dcb->session->client_dcb;
(gdb) p dbg_decode_response(writebuf)
$30 = 0x7ffff0d40d54 "Packet no: 1, Payload len: 44, Command : ERR, Code: 1146, Message : Table 'test.blahasdf' doesn't exist"
The load_persisted_configs parameter now controls whether persisted
runtime changes are loaded on startup. The changes are still generated as
it persists the current state of MaxScale making problem analysis easier.
By storing the queries in the query queue and routing it once the
transaction replay is done, we prevent two problems:
* Multiple transaction replays would overwrite the m_interrupted_query
buffer that was used to store any queries executed during the
transaction replay.
* Incorrect ordering of queries when the query queue is not empty and a
new query is executed during transaction replay.
If the session starts with no master but later one becomes available, when
a transaction is started the code would unconditionally use the master's
name in a log message.
By allowing transactions to the master to end even if the server is in
maintenance mode makes it possible to terminate connections at a known
point. This helps prevent interrupted transactions which can help reduce
errors that are visible to the clients.
The new `force=yes` option closes all connections to the server that is
being put into maintenance mode. This will immediately close all open
connections to the server without allowing results to return.
maxscale-system-test changed in order to control test environment by itself.
Every test checks which machines are running, compare with list of needed machines
and start new VMs is they are missing in the running machines list.
Tests are executiong MDBCI commands, MDBCI executable should be in the PATH
In this context master should be interpreted as "can be read
and written to".
Marking them as master requires less changes in RWS to make it
usable with a Clustrix cluster.
The masking_user test creates a database over a masked connection.
As 'CREATE DATABASE DB' is not fully parsed the test will fail since
it creates a database.
To allow the test to pass, we turn off the strict requirement that
all statements must be fully parsed.
If set to true and if any of the other blocking related parameters
is true, then a statement that cannot be fully parsed will be blocked.
Default is true.