The creation of a monitor from JSON relied on the non-JSON version for the
addition of default parameters but it proceeded to check the validity of
the parameters before it. Whenever parameters are checked, the default
parameters should be present.
If the last server was removed, the parameter would be rejected due to it
being empty. To remove the parameter, the
MonitorManager::reconfigure_monitor should be used. Also fixed the
unnecessary serialization after a failure to remove server from a monitor
and the fact that some errors were logged instead of written to the caller
of the command.
If a server with zero weight was chosen as the only candidate, it was
possible that the starting minimum value was smaller than the server
score. This would mean that a candidate wouldn't be chosen if the score
was too high. To preven this, the values are capped to a value smaller
than the initial minimum score.
This way the state is encapsulated in the object and the required changes
are done in one place. This makes the code reusable across all functions
making it easier to implement better monitor alteration code.
Queries such as SHOW TABLES FROM db1 are now routed to the backend with db1.
This gives the correct result as long as db1 is not sharded to multiple
backends.
Increasing counter sizes from int to long for averages.
Rename random functions to end with _co instead of _exclusive to
indicate range [close, open[, and to allow future suffixes oc, cc and oo.
The code only handled the basic version of the command, returning incorrect
results if modifiers were used. The code is now removed, causing the command
to be routed to the backend of the current database. This will give correct
results as long as that backend contains all the tables of the database e.g.
no table sharding.
When default parameters are loaded, the type and module name are
added. This helps object serialization and allows all the code to expect
that all the parameters needed to create an object are always present.
Adding the same task twice isn't allowed. The API of the housekeeper tasks
might have to be changed in a way that makes it possible for the caller to
know whether a task has been added.
By passing strings instead of const char pointers to the task control
functions, we can safely make copies of them knowing that the contents
won't disappear.
The cluster check can only be made after the monitor has been
started. If done when monitor is configured it will at startup
be done when services are not yet available and hence they will
not be populated with the dynamically discovered servers.
The last server wasn't removed as the set of relationships was empty. In
addition to this, changes to relationships via the relations endpoint
wasn't reflected by the monitor parameters.
If a monitor was created at runtime, it was missing some parameters that
were assumed to be always present. In addition to that, the parameters
weren't validated against the list of common and module parameters.
Since the monitors always reconstruct the server list, the new servers can
be stored as a parameter. To make this possible, the
server_relationship_to_parameter helper function is needed.
This commit fixes the MaxCtrl test suite failures but does not fix the
failures in the REST API test suite.