The connections that relate to a particular session are now a part of the
sessions resource. Currently, only the generic information is stored for
each connection (id and server name).
By storing a link to the backend DCBs in the session object itself, we can
reach all related objects from the session. This removes the need to
iterate over all DCBs to find the set of related DCBs.
A new class mxs::Worker will be introduced and mxs::RoutingWorker
will be inherited from that. mxs::Worker will basically only be a
thread with a message-loop.
Once available, all current non-worker threads (but the one
implicitly created by microhttpd) can be creating by inheriting
from that; in practice that means the housekeeping thread, all
monitor threads and possibly the logging thread.
The benefit of this arrangement is that there then will be a general
mechanism for cross thread communication without having to use any
shared data structures.
The worker task should never be immediately executed to allow the task to
be executed on the next "tick" of the worker. This prevents recursive
calls to e.g. routeQuery in readwritesplit when errors are handled.
Now that the readwritesplit uses the same mechanism for both
retry_failed_reads and delayed query retries, the re-routing function
should accept a delay of 0 seconds. This makes the mechanism more suitable
for other uses e.g. delaying of queries in filters.
The `error` variable was never used. Also added a more convenient typedef
for both the downstream and upstream functions and updated filter API
version.
The tasks themselves now control whether they are executed again. To
compare it to the old system, oneshot tasks now return `false` and
repeating tasks return `true`.
Letting the housekeeper remove the tasks makes the code simpler and
removes the possibility of the task being removed while it is being
executed. It does introduce a deadlock possibility if a housekeeper
function is called inside a housekeeper task.
The class now does all of the work and the API wraps the calls to the
member methods. Using an STL container makes the list management a lot
more convenient.
The old hkheartbeat variable was changed to the mxs_clock() function that
simply wraps an atomic load of the variable. This allows it to be
correctly read by MaxScale as well as opening up the possibility of
converting the value load to a relaxed memory order read.
Renamed the header and associated macros. Removed inclusion of the
heartbeat header from the housekeeper header and added it to the files
that were missing it.
This is a proof-of-concept that validates the query retrying method. The
actual implementation of the query retrying mechanism needs more thought
as using the housekeeper is not very efficient.
With the configuration entry
dump_last_statements=[never|on_close|on_error]
you can now specify when and if to dump the last statements
of of a session.
With the configuration entry
retain_last_statements=<unsigned>
or the debug flag '--debug=retain-last-statements=<unsigned>',
MaxScale will store the specified number of last statements
for each session. By calling
session_dump_statements(session);
MaxScale will dump the last statements as NOTICE messages.
For debugging purposes.
- session_set_response() made const correct
- set_response() function added to mxs::FilterSession; calls
session_set_response().
- Cache uses set_response() for delivering the cache result
to the client.
Filter that terminate the response processing now have a mechanism
using which a response can be provided in such a way that previous
filters will see the response.
The macros MXS_SESSION_ROUTE_QUERY and MXS_SESSION_ROUTE_REPLY
are now defined in terms of functions that do the actual stuff.
Incidentally, the function session_route_reply() existed already
but was not used. Now slightly rewritten so that it does not simply
ignore misuse.
The earlier @maxscale.cache.enabled has now been replaced with
@maxscale.cache.populate and @maxscale.cache.use that provide
for more flexibility.
With the former it is possible to control in what circumstances
the cache is populated and with the latter one when it is used.
Together they can be used for having a completely client driven
caching.
With the changes in this commit it is possible to add and remove
MaxScale specific user variables. A MaxScale specific user variable
is a user variable that is interpreted by MaxScale and that
potentially changes the behaviour of MaxScale.
MaxScale specific user variables are of the format "@maxscale.x.y"
where "@maxscale" is a mandatory prefix, x a scope identifying the
component that handles the variable and y the component specific
variable. So, a variable might be called e.g. "@maxscale.cache.enabled".
The scope "core" is reserved (although not enforced yet) to MaxScale
itself.
The idea is that although MaxScale catches these, they are passed
through to the server. The benefit of this is that we do not need to
detect e.g. "SELECT @maxscale.cache.enabled", but can let the result
be returned from the server.
The interpretation of a provided value is handled by the component that
adds the variable. In a subsequent commit, it will be possible for a
component to reject a value, which will then cause an error to be
returned to the client.
There are 3 new functions:
- session_add_variable() using which a variable is added,
- session_remove_variable() using which a variable is removed, and
- session_set_variable_value().
The two former ones are to be called by components, the last one by
the protocol that catches the "set @maxscale..." statements.
By always starting the session shutdown process by stopping the client
DCB, the manipulation of the session state can be removed from the backend
protocol modules and replaced with a fake hangup event.
Delivering this event via the core allows the actual dcb_close call on the
client DCB to be done only when the client DCB is being handled by a
worker.
The backend DCBs didn't have a valid service pointer whereas the client
DCBs had one. The necessity of the pointer can be questioned as a similar
pointer is located in the session.
The internal header directory conflicted with in-source builds causing a
build failure. This is fixed by renaming the internal header directory to
something other than maxscale.
The renaming pointed out a few problems in a couple of source files that
appeared to include internal headers when the headers were in fact public
headers.
Fixed maxctrl in-source builds by making the copying of the sources
optional.
KILL commands are now sent to the backends in an asynchronous manner. As
the LocalClient class is used to connect to the servers, this will cause
an extra connection to be created on top of the original connections
created by the session.
If the user does not have the permissions to execute the KILL, the error
message is currently lost. This could be solved by adding a "result
handler" into the LocalClient class which is called with the result.
Now it is also possible to ensure that a DCB stays alive while
a task referring to it is posted from one worker to another.
That will be implemented in a subsequent commit.
The template class wraps a HashMap such that only a few operations
are allowed. Usage requires specializing a RegistryTraits class
template for each entry type.
The server internal session id may be larger than 4 bytes (MariaDB uses 8)
but only 4 are sent in the handshake. The full value can be queried
from the server, but this query is not supported by MaxScale yet. In any
case, both the protocol and MXS_SESSION now have 64 bit counters. Only the
low 32 bits are sent in the handshake, similar to server.
The top level resource self links pointed to the collection instead of the
resource itself. The individual resoures now also have a links field that
contains the self link to the resource. This should make navigation of the
API easier as all objects have valid links in them.
The JSON objects that are created from the various core MaxScale objects
share a lot of common code. Moving this into a separate files removes the
redundant code.
The sessions resource now follows the JSON API specification:
http://jsonapi.org/
This makes the API relatively easier to use as the specification and the
client libraries to consume this data exist.
Various small changes to part2, as suggested by comments and otherwise.
Mostly renaming, working logic should not change.
Exception: session id changed to 64bit in the container and associated
functions. Another commit will change it to 64bit in the session itself.
MySQL sessions are added to a hasmap when created, removed when closed.
MYSQL_COM_PROCESS_KILL is now detected, the thread_id is read and the kill
command sent to all worker threads to find the correct session. If found, a
fake hangup even is created for the client dcb.
As is, this function is of little use since the client could just disconnect
itself instead. Later on, additional commands of this nature will be added.
The /sessions/ resource was not implemented due to changes in the core
polling mechanics. With the new worker thread messaging system, sessions
can be listed in a safe manner.