The readwritesplit transaction management was a large part of the
clientReply function. Moving it into a separate function clarifies the
clientReply function by hiding the comments and details of the transaction
management.
See script directory for method. The script to run in the top level
MaxScale directory is called maxscale-uncrustify.sh, which uses
another script, list-src, from the same directory (so you need to set
your PATH). The uncrustify version was 0.66.
- The ones that were not used were removed.
- The ones that were used were moved close to the actual type.
In most cases some values were missing and if the definition is
close to the type there is a remote chance that they will stay
in sync. If detached, they surely will not.
The configuration doesn't need to be contained in shared pointer as each
session holds its own version of it. This removes most of the overhead in
configuration reloading. The only thing that's left is any overhead added
by the use of thread-local storage.
The transaction migration in the case of a changed master never worked as
transaction replay would only be triggered when the master fails. To cover
this case, the transaction replay just needs to be started when the need
for a transaction migration is detected.
To help diagnose the behavior, the Trx class no longer logs a message when
a transaction is closed. This is now done by readwritesplit which has more
knowledge of the context in which the transaction is closed.
Moved transaction statistics calculations into a member function and
placed all target type specific processing into their respective
functions.
Also inverted the connection keepalive check to also cover hinted queries.
If transaction replaying was enabled and a result was returned in more
than one call to clientReply, a NULL value would be added to the statement
which in turn would trigger a debug assertion.
Similarly any following statements in the transaction would be executed
regardless of whether the result was complete.
Renamed the statement execution function to better describe what it does.
Extended the basic functional test case to cover this.
By using a shared pointer instead of a plain object, we can replace the
router configuration without it affecting existing sessions. This is a
change that is required to enable runtime reconfiguration of
readwritesplit.
If two or more session commands contain identical buffers, the buffer of
the first session command is shared between the others. This reduces the
amount of memory used to store repeated executions of session commands.
The purging of session command history in readwritesplit was replaced with
session command de-duplication. This was done to prevent problems that
could arise when the order of session commands plays a significant role.
When the `optimistic_trx` mode is enabled, all transactions are started on
a slave server. If the client executes a query inside the transaction that
is not of a read-only nature, the transaction is rolled back and replayed
on the master.
Formatted readwritesplit with Astyle. Changed the initialization of
Backend::m_modutil_state to use curly braces to cope with Astyle's lack of
support for curly braces inside parentheses.
The MariaDB implementation allows the last GTID to be tracked with the
`last_gtid` variable. To do this, the configuration option
`session_track_system_variables=last_gtid` must be used or it must be
enabled at runtime.
Session commands that span multiple packets are now allowed and will
work. However, if one is executed the session command history is disabled
as no interface for appending to session commands exists.
The backend protocol modules now also correctly track the current
command. This was a pre-requisite for large session commands as they
needed to be gathered into a single buffer and to do this the current
command had to be accurate.
Updated tests to expect success instead of failure for large prepared
statements.
Added the `transaction_replay_max_size` parameter that controls the
maximum size of a transaction that can be replayed. If the limit is
exceeded, the stored statements are released thus preventing the
transaction from being replayed.
This limitation prevents accidental misuse of the transaction replaying
system when autocommit is disabled. It also allows the user to control the
amount of memory that MaxScale will use.
As the current query was added to the transaction log before it finished,
the m_current_query contained a duplicate of the latest transaction log
entry. To correctly log only successful transactions, the statement should
be added only after it has successfully completed. This change also
removed the unnecessary cloning that took place when the statement was
added to the log before it finished.
With the fixed transaction logging, the value of m_current_query can be
stashed for later retrying while the replay process is happening. If the
replay completes successfully and the checksums match, the interrupted
query is retried.
Also added a clarifying comment to can_retry_query to explain why a query
inside a transaction cannot be retried.
Added the initial implementation of transaction replay. Transactions are
only replayed if the master fails when no statement is being executed.
The validity of the replayed transaction is done by verifying that the
checksums of the returned results are equal.
Added a close function into the Trx class to make resetting its state
easier. Also changed the return type of the pop_stmt to GWBUF* as the
places where it is used expect a raw GWBUF pointer.
The queries that make up the transaction are now stored in the router
session while the transaction is in progress. For the time being, the
queries are only used to log extra information about the transaction
contents.
Readwritesplit now calculates checksums for all successful and failed
transactions. This checksum is not of any practical use until the
transaction replaying is implemented.
Only servers that qualify to be connected should be considered as
candidate servers. This triggered a debug assertion when a slave server
failed to execute a session command but it was chosen as a candidate
server later on.
The state could be factored out into a boolean variable as the reply
processing can be in two states: Either waiting for the response to
MASTER_GTID_WAIT or updating packet numbers.
The packet number updating can always be done as long as a buffer is
available. The discard_master_wait_gtid_result function discards the OK
packet before the packet numbers are updated so any trailing packets get
corrected properly.
If a query is interrupted that was sent to the master, it is now
retried. This allows all autocommit queries to be transparently retried if
the server in question fails.
By adding a boolean parameter, the feature can be enabled with sensible
default values. Renamed the query_retry parameters and set the defaults to
acceptable values.
Added new parameters to diagnostic output. Also did some minor renaming.
This is a proof-of-concept that validates the query retrying method. The
actual implementation of the query retrying mechanism needs more thought
as using the housekeeper is not very efficient.