-Wunused-result warning in test_logthrottling.cc was causing error when
trying to build MaxScale from source. This warning can be silenced with by
putting the function triggering the warning in if-clause.
When the query queue does not contain a complete packet
(i.e. modutil_get_next_MySQL_packet return NULL), an informative dump of
how many bytes and what is stored is logged.
By aborting the process if memory runs out when a buffer needs to be made
contiguous, we rule out other, more subtle, errors. Failing as soon as a
possible when memory allocation fails gives better error messages.
The LocalClient micro-client required a reference to the session that was
valid at construction time. This is the reason why the previous
implementation used dcb_foreach to first gather the targets and then
execute queries on them. By replacing this reference with pointers to the
raw data it requires, we lift the requirement of the orignating session
being alive at construction time.
Now that the LocalClient no longer holds a reference to the session, the
killing of the connection does not have to be done on the same thread that
started the process. This prevents the deadlock that occurred when
concurrect dcb_foreach calls were made.
Replaced the unused dcb_foreach_parallel with a version of dcb_foreach
that allows iteration of DCBs local to this worker. The dcb_foreach_local
is the basis upon which all DCB access outside of administrative tasks
should be built on.
This change will introduce a regression in functionality: The client will
no longer receive an error if no connections match the KILL query
criteria. This is done to avoid having to synchronize the workers after
they have performed the killing of their own connections.
The dcb_foreach function is not safe to use from multiple threads at the
same time. This should be asserted by checking that the function is called
only from the main worker.
The addition of this assertion also implies that only administrative
operations should use the dcb_foreach function. To accommodate this
change, the KILL command iteration needs to be adjusted.
MariaDBMonitor diagnostics printing is unsafe as some of the read
fields are arrays. To be on the safe side, the fields are now read
in the monitor worker thread.
Since diagnostics must work even for stopped monitors, a worker task
is used. In practice, it usually runs when the monitor is sleeping.
The C++ version with the lock guard is easier to manage when there are
multiple return points from a function. It also makes sure that the lock
is freed after it's used.
Spaces must be considered a part of the object name in tokenization. This
ensures that the name normalization process generates correct names and
that tokens are split at correct places.
With the removal of the old session command implementation, the code that
used it can be removed or replaced with newer constructs. As a result, the
backend protocol no longer does any session command processing.
The three buffer types, GWBUF_TYPE_SESCMD_RESPONSE,
GWBUF_TYPE_RESPONSE_END and GWBUF_TYPE_SESCMD as well as their related
macros are no longer used and can be removed.
The test cases allocated servers in a way that doesn't comfortably suit
the way the servers are now allocated. Adding a helper C++ class to load
module defaults makes it easier to do explicit server initialization in
tests.
The binlogrouter was also fixed in this commit as it uses servers much
like a test would use.
The configuration system that modules use allows the SSL parameter
validation to be simplified. It should also provide more consistent error
messages for similar types of errors.
The SSL_LISTENER initialization is now done in one step. There was no good
reason to do it in two separate steps for listeners but in one step for
servers.
The `ssl` parameter now also accepts boolean values. As the parameter
behaves like a boolean and looks like a boolean, it ought to be a
boolean. It still accepts the custom `required` and `disabled` values
simply for backwards compatibility.
Also added the missing freeing functions for the SSL_LISTENER type. This
prevents failed SSL_LISTENER creations from leaking memory.
The parameter type and value validation is now fully done for the base
module parameters as well. This fixes a problem that was introduced when
the listeners were moved to the module parameter system where the
`service` parameter values weren't fixed for the new naming style.
Added an explicit check for the module type that catches errors in the
type parameter. The lack of this parameter prevents the proper detection
of other parameters.
Also cleaned up and/or removed redundant sections of code. By treating
reserved parameters the same way as module declared ones, the same code
can be re-used for all types.
The common monitor parameters are now stored as module-style
parameters. This makes the error reporting as well as the type checks for
the parameters consistent with parameters declared by the modules.
The same mechanism that is used for modules can be used for the
configuration of the core objects. This removes the need for the redundant
code that validates various values that is already present in the code
that modules use.
Relaced router_options with configuration parameters in the createInstance
router entry point. The same needs to be done for the filter API as barely
any filters use the feature.
Some routers (binlogrouter) still support router_options but using it is
deprecated. This had to be done as their use wasn't deprecated in 2.2.
If a router parameter has no default value, the previous value would be
returned as an empty string. A debug assertion would be triggered when a
parameter of this type was altered.
When a new router parameter is encountered and the alteration fails, the
modified value in the service need to be removed. Previously, the new
value would have been stored in the service with an empty value which
would have caused problems.
Extended the test to cover modifications to readconnroute as well as do
checks on detection of invalid parameters.
Also allowed modifications to router_options at runtime.
The runtime configuration of a MaxScale can now be exported to a single
file. This allows modifications made via runtime configuration commands to
be "committed" for later use.
With the global configuration parameter 'query_classifier_cache'
the query classification cache can be turned on. At the moment it
does not matter what value it has; its presence simply enables the
caching.
Eventually you will be able to specify how much memory the cache
is allowed to consume.
Now takes a structure that, if present, enables the query
classification caching and specifies the properties of the
cache.
For the time being no actual properties are yet available.
The sql mode affects the result of the query classification.
Consequently, we cannot use the cached result if it was generated
when the sql mode was something else than what it currently is.
The mapping from a canonical statement to the query classification
result is maintained by the class QCInfoCache of which there exist
an instance per thread. That way no locking is needed but the
information will be cached multiple times (but that is a smaller
price to pay). Currently the information is stored in a regular
std::unordered_map, which means that the consumed amount of
memory will just keep on growing unless the number of canonical
statements used by clients happens to have an upper bound.
The LRU cache (that provides means for putting a bound on the
amount of memory used and number of items) used in the cache filter
will be generalized and be taken into use here as well.
The key is now the canonical statement itself, which means that
a fair amount of memory will be used. To preserve memory it might
make sense to use a hashed value instead, although that at least
in principle opens up the possibility for unintended collisions.
This feature will also be made configurable.
Minor cleanup:
- Unit variables places in anonymous namespace.
- Unit variables accessed via this_unit struct.
This is the first commit of many where the mapping from canonical
statement to query classification result is introduced.
The mapping is placed above the actual query classifier, so that all
query classifiers will benefit from it.
The mapping will be maintained by thread so that there will not be
any synchronization issues. Further, initially a simple map without
upper boundary will be used; if this is found to provide measurable
benefits, the map will then be replaced with an LRU mechanism so
that it becomes possible to specify just how much memory the mapping
may use.
The evq_length file held the returned number of descriptors from
the last epoll_wait() call. As such it is highly temporal and not
particularly meaningful.
That has now been removed and the instead the average number of
returned descriptors is maintained. That information changes slowly
and thus carries some meaning.