/* * Copyright (c) 2016 MariaDB Corporation Ab * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file and at www.mariadb.com/bsl11. * * Change Date: 2020-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2 or later of the General * Public License. */ #include "maxscale/worker.hh" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "maxscale/modules.h" #include "maxscale/poll.h" #include "maxscale/statistics.h" #include "maxscale/workertask.hh" #define WORKER_ABSENT_ID -1 using maxscale::Worker; using maxscale::Closer; using maxscale::Semaphore; using std::vector; using std::stringstream; namespace { const int MXS_WORKER_MSG_TASK = -1; const int MXS_WORKER_MSG_DISPOSABLE_TASK = -2; /** * Unit variables. */ struct this_unit { bool initialized; // Whether the initialization has been performed. int n_workers; // How many workers there are. Worker** ppWorkers; // Array of worker instances. int number_poll_spins; // Maximum non-block polls int max_poll_sleep; // Maximum block time int epoll_listener_fd; // Shared epoll descriptor for listening descriptors. } this_unit = { false, 0, NULL, 0, 0 }; thread_local struct this_thread { int current_worker_id; // The worker id of the current thread } this_thread = { WORKER_ABSENT_ID }; /** * Structure used for sending cross-thread messages. */ typedef struct worker_message { uint32_t id; /*< Message id. */ intptr_t arg1; /*< Message specific first argument. */ intptr_t arg2; /*< Message specific second argument. */ } WORKER_MESSAGE; /** * Check error returns from epoll_ctl; impossible ones lead to crash. * * @param errornum The errno set by epoll_ctl * @param op Either EPOLL_CTL_ADD or EPOLL_CTL_DEL. */ void poll_resolve_error(int fd, int errornum, int op) { if (op == EPOLL_CTL_ADD) { if (EEXIST == errornum) { MXS_ERROR("File descriptor %d already present in an epoll instance.", fd); return; } if (ENOSPC == errornum) { MXS_ERROR("The limit imposed by /proc/sys/fs/epoll/max_user_watches was " "reached when trying to add file descriptor %d to an epoll instance.", fd); return; } } else { ss_dassert(op == EPOLL_CTL_DEL); /* Must be removing */ if (ENOENT == errornum) { MXS_ERROR("File descriptor %d was not found in epoll instance.", fd); return; } } /* Common checks for add or remove - crash MaxScale */ if (EBADF == errornum) { raise(SIGABRT); } if (EINVAL == errornum) { raise(SIGABRT); } if (ENOMEM == errornum) { raise(SIGABRT); } if (EPERM == errornum) { raise(SIGABRT); } /* Undocumented error number */ raise(SIGABRT); } } static bool modules_thread_init(); static void modules_thread_finish(); Worker::Worker(int id, int epoll_fd) : m_id(id) , m_state(STOPPED) , m_epoll_fd(epoll_fd) , m_pQueue(NULL) , m_thread(0) , m_started(false) , m_should_shutdown(false) , m_shutdown_initiated(false) { MXS_POLL_DATA::handler = &Worker::epoll_instance_handler; MXS_POLL_DATA::thread.id = id; } Worker::~Worker() { ss_dassert(!m_started); delete m_pQueue; close(m_epoll_fd); } // static bool Worker::init() { ss_dassert(!this_unit.initialized); this_unit.n_workers = config_threadcount(); this_unit.number_poll_spins = config_nbpolls(); this_unit.max_poll_sleep = config_pollsleep(); this_unit.epoll_listener_fd = epoll_create(MAX_EVENTS); if (this_unit.epoll_listener_fd != -1) { this_unit.ppWorkers = new (std::nothrow) Worker* [this_unit.n_workers] (); // Zero initialized array if (this_unit.ppWorkers) { for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = Worker::create(i, this_unit.epoll_listener_fd); if (pWorker) { this_unit.ppWorkers[i] = pWorker; } else { for (int j = i - 1; j >= 0; --j) { delete this_unit.ppWorkers[j]; } delete this_unit.ppWorkers; this_unit.ppWorkers = NULL; break; } } if (this_unit.ppWorkers) { this_unit.initialized = true; } } else { close(this_unit.epoll_listener_fd); } } else { MXS_ERROR("Could not allocate an epoll instance."); } if (this_unit.initialized) { // When the initialization has successfully been performed, we set the // current_worker_id of this thread to 0. That way any connections that // are made during service startup (after this function returns, but // bofore the workes have been started) will be handled by the worker // that will be running in the main thread. this_thread.current_worker_id = 0; } return this_unit.initialized; } void Worker::finish() { ss_dassert(this_unit.initialized); for (int i = this_unit.n_workers - 1; i >= 0; --i) { Worker* pWorker = this_unit.ppWorkers[i]; delete pWorker; this_unit.ppWorkers[i] = NULL; } delete [] this_unit.ppWorkers; this_unit.ppWorkers = NULL; close(this_unit.epoll_listener_fd); this_unit.epoll_listener_fd = 0; this_unit.initialized = false; } namespace { int64_t one_stats_get(int64_t Worker::STATISTICS::*what, enum ts_stats_type type) { int64_t best = type == TS_STATS_MAX ? LONG_MIN : (type == TS_STATS_MIX ? LONG_MAX : 0); for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = Worker::get(i); ss_dassert(pWorker); const Worker::STATISTICS& s = pWorker->statistics(); int64_t value = s.*what; switch (type) { case TS_STATS_MAX: if (value > best) { best = value; } break; case TS_STATS_MIX: if (value < best) { best = value; } break; case TS_STATS_AVG: case TS_STATS_SUM: best += value; break; } } return type == TS_STATS_AVG ? best / this_unit.n_workers : best; } } //static Worker::STATISTICS Worker::get_statistics() { STATISTICS cs; cs.n_read = one_stats_get(&STATISTICS::n_read, TS_STATS_SUM); cs.n_write = one_stats_get(&STATISTICS::n_write, TS_STATS_SUM); cs.n_error = one_stats_get(&STATISTICS::n_error, TS_STATS_SUM); cs.n_hup = one_stats_get(&STATISTICS::n_hup, TS_STATS_SUM); cs.n_accept = one_stats_get(&STATISTICS::n_accept, TS_STATS_SUM); cs.n_polls = one_stats_get(&STATISTICS::n_polls, TS_STATS_SUM); cs.n_pollev = one_stats_get(&STATISTICS::n_pollev, TS_STATS_SUM); cs.n_nbpollev = one_stats_get(&STATISTICS::n_nbpollev, TS_STATS_SUM); cs.evq_length = one_stats_get(&STATISTICS::evq_length, TS_STATS_AVG); cs.evq_max = one_stats_get(&STATISTICS::evq_max, TS_STATS_MAX); cs.blockingpolls = one_stats_get(&STATISTICS::blockingpolls, TS_STATS_SUM); cs.maxqtime = one_stats_get(&STATISTICS::maxqtime, TS_STATS_MAX); cs.maxexectime = one_stats_get(&STATISTICS::maxexectime, TS_STATS_MAX); for (int i = 0; i < Worker::STATISTICS::MAXNFDS - 1; i++) { for (int j = 0; j < this_unit.n_workers; ++j) { Worker* pWorker = Worker::get(j); ss_dassert(pWorker); cs.n_fds[i] += pWorker->statistics().n_fds[i]; } } for (int i = 0; i <= Worker::STATISTICS::N_QUEUE_TIMES; ++i) { for (int j = 0; j < this_unit.n_workers; ++j) { Worker* pWorker = Worker::get(j); ss_dassert(pWorker); cs.qtimes[i] += pWorker->statistics().qtimes[i]; cs.exectimes[i] += pWorker->statistics().exectimes[i]; } cs.qtimes[i] /= this_unit.n_workers; cs.exectimes[i] /= this_unit.n_workers; } return cs; } //static int64_t Worker::get_one_statistic(POLL_STAT what) { int64_t rv = 0; int64_t Worker::STATISTICS::*member = NULL; enum ts_stats_type approach; switch (what) { case POLL_STAT_READ: member = &Worker::STATISTICS::n_read; approach = TS_STATS_SUM; break; case POLL_STAT_WRITE: member = &Worker::STATISTICS::n_write; approach = TS_STATS_SUM; break; case POLL_STAT_ERROR: member = &Worker::STATISTICS::n_error; approach = TS_STATS_SUM; break; case POLL_STAT_HANGUP: member = &Worker::STATISTICS::n_hup; approach = TS_STATS_SUM; break; case POLL_STAT_ACCEPT: member = &Worker::STATISTICS::n_accept; approach = TS_STATS_SUM; break; case POLL_STAT_EVQ_LEN: member = &Worker::STATISTICS::evq_length; approach = TS_STATS_AVG; break; case POLL_STAT_EVQ_MAX: member = &Worker::STATISTICS::evq_max; approach = TS_STATS_MAX; break; case POLL_STAT_MAX_QTIME: member = &Worker::STATISTICS::maxqtime; approach = TS_STATS_MAX; break; case POLL_STAT_MAX_EXECTIME: member = &Worker::STATISTICS::maxexectime; approach = TS_STATS_MAX; break; default: ss_dassert(!true); } if (member) { rv = one_stats_get(member, approach); } return rv; } bool Worker::add_fd(int fd, uint32_t events, MXS_POLL_DATA* pData) { bool rv = true; // Must be edge-triggered. events |= EPOLLET; struct epoll_event ev; ev.events = events; ev.data.ptr = pData; pData->thread.id = m_id; if (epoll_ctl(m_epoll_fd, EPOLL_CTL_ADD, fd, &ev) != 0) { poll_resolve_error(fd, errno, EPOLL_CTL_ADD); rv = false; } return rv; } //static bool Worker::add_shared_fd(int fd, uint32_t events, MXS_POLL_DATA* pData) { bool rv = true; // This must be level-triggered. Since this is intended for listening // sockets and each worker will call accept() just once before going // back the epoll_wait(), using EPOLLET would mean that if there are // more clients to be accepted than there are threads returning from // epoll_wait() for an event, then some clients would be accepted only // when a new client has connected, thus causing a new EPOLLIN event. events &= ~EPOLLET; struct epoll_event ev; ev.events = events; ev.data.ptr = pData; pData->thread.id = 0; // TODO: Remove the thread id altogether. if (epoll_ctl(this_unit.epoll_listener_fd, EPOLL_CTL_ADD, fd, &ev) != 0) { poll_resolve_error(fd, errno, EPOLL_CTL_ADD); rv = false; } return rv; } bool Worker::remove_fd(int fd) { bool rv = true; struct epoll_event ev = {}; if (epoll_ctl(m_epoll_fd, EPOLL_CTL_DEL, fd, &ev) != 0) { poll_resolve_error(fd, errno, EPOLL_CTL_DEL); rv = false; } return rv; } //static bool Worker::remove_shared_fd(int fd) { bool rv = true; struct epoll_event ev = {}; if (epoll_ctl(this_unit.epoll_listener_fd, EPOLL_CTL_DEL, fd, &ev) != 0) { poll_resolve_error(fd, errno, EPOLL_CTL_DEL); rv = false; } return rv; } int mxs_worker_id(MXS_WORKER* pWorker) { return static_cast(pWorker)->id(); } bool mxs_worker_should_shutdown(MXS_WORKER* pWorker) { return static_cast(pWorker)->should_shutdown(); } Worker* Worker::get(int worker_id) { ss_dassert(worker_id < this_unit.n_workers); return this_unit.ppWorkers[worker_id]; } MXS_WORKER* mxs_worker_get(int worker_id) { return Worker::get(worker_id); } int mxs_worker_get_current_id() { return Worker::get_current_id(); } Worker* Worker::get_current() { Worker* pWorker = NULL; int worker_id = get_current_id(); if (worker_id != WORKER_ABSENT_ID) { pWorker = Worker::get(worker_id); } return pWorker; } int Worker::get_current_id() { return this_thread.current_worker_id; } //static void Worker::set_nonblocking_polls(unsigned int nbpolls) { this_unit.number_poll_spins = nbpolls; } //static void Worker::set_maxwait(unsigned int maxwait) { this_unit.max_poll_sleep = maxwait; } bool Worker::post(Task* pTask, Semaphore* pSem, enum execute_mode_t mode) { // No logging here, function must be signal safe. bool rval = true; if (mode == Worker::EXECUTE_AUTO && Worker::get_current() == this) { pTask->execute(*this); if (pSem) { pSem->post(); } } else { intptr_t arg1 = reinterpret_cast(pTask); intptr_t arg2 = reinterpret_cast(pSem); rval = post_message(MXS_WORKER_MSG_TASK, arg1, arg2); } return rval; } bool Worker::post(std::auto_ptr sTask, enum execute_mode_t mode) { // No logging here, function must be signal safe. return post_disposable(sTask.release(), mode); } // private bool Worker::post_disposable(DisposableTask* pTask, enum execute_mode_t mode) { bool posted = true; pTask->inc_ref(); if (mode == Worker::EXECUTE_AUTO && Worker::get_current() == this) { pTask->execute(*this); pTask->dec_ref(); } else { intptr_t arg1 = reinterpret_cast(pTask); posted = post_message(MXS_WORKER_MSG_DISPOSABLE_TASK, arg1, 0); if (!posted) { pTask->dec_ref(); } } return posted; } //static size_t Worker::broadcast(Task* pTask, Semaphore* pSem) { // No logging here, function must be signal safe. size_t n = 0; for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = this_unit.ppWorkers[i]; if (pWorker->post(pTask, pSem)) { ++n; } } return n; } //static size_t Worker::broadcast(std::auto_ptr sTask) { DisposableTask* pTask = sTask.release(); pTask->inc_ref(); size_t n = 0; for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = this_unit.ppWorkers[i]; if (pWorker->post_disposable(pTask)) { ++n; } } pTask->dec_ref(); return n; } //static size_t Worker::execute_serially(Task& task) { Semaphore sem; size_t n = 0; for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = this_unit.ppWorkers[i]; if (pWorker->post(&task, &sem)) { sem.wait(); ++n; } } return n; } //static size_t Worker::execute_concurrently(Task& task) { Semaphore sem; return sem.wait_n(Worker::broadcast(&task, &sem)); } bool Worker::post_message(uint32_t msg_id, intptr_t arg1, intptr_t arg2) { // NOTE: No logging here, this function must be signal safe. MessageQueue::Message message(msg_id, arg1, arg2); return m_pQueue->post(message); } bool mxs_worker_post_message(MXS_WORKER* pWorker, uint32_t msg_id, intptr_t arg1, intptr_t arg2) { return static_cast(pWorker)->post_message(msg_id, arg1, arg2); } size_t Worker::broadcast_message(uint32_t msg_id, intptr_t arg1, intptr_t arg2) { // NOTE: No logging here, this function must be signal safe. size_t n = 0; for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = this_unit.ppWorkers[i]; if (pWorker->post_message(msg_id, arg1, arg2)) { ++n; } } return n; } size_t mxs_worker_broadcast_message(uint32_t msg_id, intptr_t arg1, intptr_t arg2) { return Worker::broadcast_message(msg_id, arg1, arg2); } bool mxs_worker_register_session(MXS_SESSION* session) { Worker* worker = Worker::get_current(); ss_dassert(worker); return worker->session_registry().add(session); } bool mxs_worker_deregister_session(uint64_t id) { Worker* worker = Worker::get_current(); ss_dassert(worker); return worker->session_registry().remove(id); } MXS_SESSION* mxs_worker_find_session(uint64_t id) { Worker* worker = Worker::get_current(); ss_dassert(worker); return worker->session_registry().lookup(id); } Worker::SessionsById& Worker::session_registry() { return m_sessions; } class WorkerInfoTask: public maxscale::WorkerTask { public: WorkerInfoTask(const char* host, uint32_t nthreads): m_host(host) { m_data.resize(nthreads); } void execute(Worker& worker) { json_t* stats = json_object(); const Worker::STATISTICS& s = worker.get_local_statistics(); json_object_set_new(stats, "reads", json_integer(s.n_read)); json_object_set_new(stats, "writes", json_integer(s.n_write)); json_object_set_new(stats, "errors", json_integer(s.n_error)); json_object_set_new(stats, "hangups", json_integer(s.n_hup)); json_object_set_new(stats, "accepts", json_integer(s.n_accept)); json_object_set_new(stats, "blocking_polls", json_integer(s.blockingpolls)); json_object_set_new(stats, "event_queue_length", json_integer(s.evq_length)); json_object_set_new(stats, "max_event_queue_length", json_integer(s.evq_max)); json_object_set_new(stats, "max_exec_time", json_integer(s.maxexectime)); json_object_set_new(stats, "max_queue_time", json_integer(s.maxqtime)); json_t* attr = json_object(); json_object_set_new(attr, "stats", stats); int idx = worker.get_current_id(); stringstream ss; ss << idx; json_t* json = json_object(); json_object_set_new(json, CN_ID, json_string(ss.str().c_str())); json_object_set_new(json, CN_TYPE, json_string(CN_THREADS)); json_object_set_new(json, CN_ATTRIBUTES, attr); json_object_set_new(json, CN_LINKS, mxs_json_self_link(m_host, CN_THREADS, ss.str().c_str())); ss_dassert((size_t)idx < m_data.size()); m_data[idx] = json; } json_t* resource() { json_t* arr = json_array(); for (vector::iterator it = m_data.begin(); it != m_data.end(); it++) { json_array_append_new(arr, *it); } return mxs_json_resource(m_host, MXS_JSON_API_THREADS, arr); } json_t* resource(int id) { stringstream self; self << MXS_JSON_API_THREADS << id; return mxs_json_resource(m_host, self.str().c_str(), m_data[id]); } private: vector m_data; const char* m_host; }; json_t* mxs_worker_to_json(const char* host, int id) { Worker* target = Worker::get(id); WorkerInfoTask task(host, id + 1); Semaphore sem; target->post(&task, &sem); sem.wait(); return task.resource(id); } json_t* mxs_worker_list_to_json(const char* host) { WorkerInfoTask task(host, config_threadcount()); Worker::execute_concurrently(task); return task.resource(); } void Worker::run() { this_thread.current_worker_id = m_id; poll_waitevents(); this_thread.current_worker_id = WORKER_ABSENT_ID; MXS_NOTICE("Worker %d has shut down.", m_id); } bool Worker::start() { m_started = true; if (!thread_start(&m_thread, &Worker::thread_main, this)) { m_started = false; } return m_started; } void Worker::join() { if (m_started) { MXS_NOTICE("Waiting for worker %d.", m_id); thread_wait(m_thread); MXS_NOTICE("Waited for worker %d.", m_id); m_started = false; } } void Worker::shutdown() { // NOTE: No logging here, this function must be signal safe. if (!m_shutdown_initiated) { if (post_message(MXS_WORKER_MSG_SHUTDOWN, 0, 0)) { m_shutdown_initiated = true; } } } void Worker::shutdown_all() { // NOTE: No logging here, this function must be signal safe. for (int i = 0; i < this_unit.n_workers; ++i) { Worker* pWorker = this_unit.ppWorkers[i]; pWorker->shutdown(); } } /** * Creates a worker instance. * - Allocates the structure. * - Creates a pipe. * - Adds the read descriptor to the polling mechanism. * * @param worker_id The id of the worker. * @param epoll_listener_fd The file descriptor of the epoll set to which listening * sockets will be placed. * * @return A worker instance if successful, otherwise NULL. */ //static Worker* Worker::create(int worker_id, int epoll_listener_fd) { Worker* pThis = NULL; int epoll_fd = epoll_create(MAX_EVENTS); if (epoll_fd != -1) { pThis = new (std::nothrow) Worker(worker_id, epoll_fd); if (pThis) { struct epoll_event ev; ev.events = EPOLLIN; MXS_POLL_DATA* pData = pThis; ev.data.ptr = pData; // Necessary for pointer adjustment, otherwise downcast will not work. // The shared epoll instance descriptor is *not* added using EPOLLET (edge-triggered) // because we want it to be level-triggered. That way, as long as there is a single // active (accept() can be called) listening socket, epoll_wait() will return an event // for it. It must be like that because each worker will call accept() just once before // calling epoll_wait() again. The end result is that as long as the load of different // workers is roughly the same, the client connections will be distributed evenly across // the workers. If the load is not the same, then a worker with less load will get more // clients that a worker with more load. if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, epoll_listener_fd, &ev) == 0) { MXS_NOTICE("Epoll instance for listening sockets added to worker epoll instance."); MessageQueue* pQueue = MessageQueue::create(pThis); if (pQueue) { if (pQueue->add_to_worker(pThis)) { pThis->m_pQueue = pQueue; } else { MXS_ERROR("Could not add message queue to worker."); delete pThis; pThis = NULL; } } else { MXS_ERROR("Could not create message queue for worker."); delete pThis; pThis = NULL; } } else { MXS_ERROR("Could not add epoll instance for listening sockets to " "epoll instance of worker: %s", mxs_strerror(errno)); delete pThis; pThis = NULL; } } else { MXS_OOM(); close(epoll_fd); } } else { MXS_ERROR("Could not create epoll-instance for worker: %s", mxs_strerror(errno)); } return pThis; } /** * The worker message handler. * * @param msg_id The message id. * @param arg1 Message specific first argument. * @param arg2 Message specific second argument. */ void Worker::handle_message(MessageQueue& queue, const MessageQueue::Message& msg) { switch (msg.id()) { case MXS_WORKER_MSG_PING: { ss_dassert(msg.arg1() == 0); char* zArg2 = reinterpret_cast(msg.arg2()); const char* zMessage = zArg2 ? zArg2 : "Alive and kicking"; MXS_NOTICE("Worker[%d]: %s.", m_id, zMessage); MXS_FREE(zArg2); } break; case MXS_WORKER_MSG_SHUTDOWN: { MXS_NOTICE("Worker %d received shutdown message.", m_id); m_should_shutdown = true; } break; case MXS_WORKER_MSG_CALL: { void (*f)(int, void*) = (void (*)(int, void*))msg.arg1(); f(m_id, (void*)msg.arg2()); } break; case MXS_WORKER_MSG_TASK: { Task *pTask = reinterpret_cast(msg.arg1()); Semaphore* pSem = reinterpret_cast(msg.arg2()); pTask->execute(*this); if (pSem) { pSem->post(); } } break; case MXS_WORKER_MSG_DISPOSABLE_TASK: { DisposableTask *pTask = reinterpret_cast(msg.arg1()); pTask->execute(*this); pTask->dec_ref(); } break; default: MXS_ERROR("Worker received unknown message %d.", msg.id()); } } /** * The entry point of each worker thread. * * @param arg A worker. */ //static void Worker::thread_main(void* pArg) { if (modules_thread_init()) { Worker* pWorker = static_cast(pArg); pWorker->run(); modules_thread_finish(); } else { MXS_ERROR("Could not perform thread initialization for all modules. Thread exits."); } } /** * The main polling loop */ void Worker::poll_waitevents() { struct epoll_event events[MAX_EVENTS]; int i, nfds, timeout_bias = 1; int poll_spins = 0; m_state = IDLE; while (!should_shutdown()) { m_state = POLLING; atomic_add_int64(&m_statistics.n_polls, 1); if ((nfds = epoll_wait(m_epoll_fd, events, MAX_EVENTS, 0)) == -1) { int eno = errno; errno = 0; MXS_DEBUG("%lu [poll_waitevents] epoll_wait returned " "%d, errno %d", pthread_self(), nfds, eno); } /* * If there are no new descriptors from the non-blocking call * and nothing to process on the event queue then for do a * blocking call to epoll_wait. * * We calculate a timeout bias to alter the length of the blocking * call based on the time since we last received an event to process */ else if (nfds == 0 && poll_spins++ > this_unit.number_poll_spins) { if (timeout_bias < 10) { timeout_bias++; } atomic_add_int64(&m_statistics.blockingpolls, 1); nfds = epoll_wait(m_epoll_fd, events, MAX_EVENTS, (this_unit.max_poll_sleep * timeout_bias) / 10); if (nfds == 0) { poll_spins = 0; } } if (nfds > 0) { m_statistics.evq_length = nfds; if (nfds > m_statistics.evq_max) { m_statistics.evq_max = nfds; } timeout_bias = 1; if (poll_spins <= this_unit.number_poll_spins + 1) { atomic_add_int64(&m_statistics.n_nbpollev, 1); } poll_spins = 0; MXS_DEBUG("%lu [poll_waitevents] epoll_wait found %d fds", pthread_self(), nfds); atomic_add_int64(&m_statistics.n_pollev, 1); m_state = PROCESSING; m_statistics.n_fds[(nfds < STATISTICS::MAXNFDS ? (nfds - 1) : STATISTICS::MAXNFDS - 1)]++; } uint64_t cycle_start = hkheartbeat; for (int i = 0; i < nfds; i++) { /** Calculate event queue statistics */ int64_t started = hkheartbeat; int64_t qtime = started - cycle_start; if (qtime > STATISTICS::N_QUEUE_TIMES) { m_statistics.qtimes[STATISTICS::N_QUEUE_TIMES]++; } else { m_statistics.qtimes[qtime]++; } m_statistics.maxqtime = MXS_MAX(m_statistics.maxqtime, qtime); MXS_POLL_DATA *data = (MXS_POLL_DATA*)events[i].data.ptr; uint32_t actions = data->handler(data, m_id, events[i].events); if (actions & MXS_POLL_ACCEPT) { atomic_add_int64(&m_statistics.n_accept, 1); } if (actions & MXS_POLL_READ) { atomic_add_int64(&m_statistics.n_read, 1); } if (actions & MXS_POLL_WRITE) { atomic_add_int64(&m_statistics.n_write, 1); } if (actions & MXS_POLL_HUP) { atomic_add_int64(&m_statistics.n_hup, 1); } if (actions & MXS_POLL_ERROR) { atomic_add_int64(&m_statistics.n_error, 1); } /** Calculate event execution statistics */ qtime = hkheartbeat - started; if (qtime > STATISTICS::N_QUEUE_TIMES) { m_statistics.exectimes[STATISTICS::N_QUEUE_TIMES]++; } else { m_statistics.exectimes[qtime % STATISTICS::N_QUEUE_TIMES]++; } m_statistics.maxexectime = MXS_MAX(m_statistics.maxexectime, qtime); } dcb_process_idle_sessions(m_id); m_state = ZPROCESSING; /** Process closed DCBs */ dcb_process_zombies(m_id); m_state = IDLE; } /*< while(1) */ m_state = STOPPED; } /** * Callback for events occurring on the shared epoll instance. * * @param pData Will point to a Worker instance. * @param wid The worker id. * @param events The events. * * @return What actions were performed. */ //static uint32_t Worker::epoll_instance_handler(struct mxs_poll_data* pData, int wid, uint32_t events) { Worker* pWorker = static_cast(pData); ss_dassert(pWorker->m_id == wid); return pWorker->handle_epoll_events(events); } /** * Handler for events occurring in the shared epoll instance. * * @param events The events. * * @return What actions were performed. */ uint32_t Worker::handle_epoll_events(uint32_t events) { struct epoll_event epoll_events[1]; // We extract just one event int nfds = epoll_wait(this_unit.epoll_listener_fd, epoll_events, 1, 0); uint32_t actions = MXS_POLL_NOP; if (nfds == -1) { MXS_ERROR("epoll_wait failed: %s", mxs_strerror(errno)); } else if (nfds == 0) { MXS_DEBUG("No events for worker %d.", m_id); } else { MXS_DEBUG("1 event for worker %d.", m_id); MXS_POLL_DATA* pData = static_cast(epoll_events[0].data.ptr); actions = pData->handler(pData, m_id, epoll_events[0].events); } return actions; } /** * Calls thread_init on all loaded modules. * * @return True, if all modules were successfully initialized. */ static bool modules_thread_init() { bool initialized = false; MXS_MODULE_ITERATOR i = mxs_module_iterator_get(NULL); MXS_MODULE* module = NULL; while ((module = mxs_module_iterator_get_next(&i)) != NULL) { if (module->thread_init) { int rc = (module->thread_init)(); if (rc != 0) { break; } } } if (module) { // If module is non-NULL it means that the initialization failed for // that module. We now need to call finish on all modules that were // successfully initialized. MXS_MODULE* failed_module = module; i = mxs_module_iterator_get(NULL); while ((module = mxs_module_iterator_get_next(&i)) != failed_module) { if (module->thread_finish) { (module->thread_finish)(); } } } else { initialized = true; } return initialized; } /** * Calls thread_finish on all loaded modules. */ static void modules_thread_finish() { MXS_MODULE_ITERATOR i = mxs_module_iterator_get(NULL); MXS_MODULE* module = NULL; while ((module = mxs_module_iterator_get_next(&i)) != NULL) { if (module->thread_finish) { (module->thread_finish)(); } } }