39
SkySQL Top Filter %ﬂg

Overview

The top filter is a filter module for MaxScale that monitors every SQL statement that passes
through the filter. It measures the duration of that statement, the time between the statement
being sent and the first result being returned. The top N times are kept, along with the SQL text
itself and a list sorted on the execution times of the query is written to a file upon closure of the
client session.

Configuration

The configuration block for the TOP filter requires the minimal filter options in it's section within
the MaxScale.cnf file, stored in SMAXSCALE_HOME/etc/MaxScale.cnf.

[MyLogFilter]
type=filter
module=topfilter

Filter Options
The top filter does not support any fitler options currently.

Filter Parameters
The top filter accepts a number of optional parameters.

Filebase
The basename of the output file created for each session. A session index is added to the
filename for each file written.

filebase=/tmp/SqlQueryLog
The filebase may also be set as the filter, the mechanism to set the filebase via the filter option is

superseded by the parameter. If both are set the parameter setting will be used and the filter
option ignored.

Count
The number of SQL statements to store and report upon.

count=30

The default vakue for the numebr of statements recorded is 10.



Match

An optional parameter that can be used to limit the queries that will be logged by the top filter.
The parameter value is a regular expression that is used to match against the SQL text. Only
SQL statements that matches the text passed as the value of this parameter will be logged.

match=select.*from.*customer.*where

All regular expressions are evaluated with the option to ignore the case of the text, therefore a
match option of select will match both select, SELECT and any form of the word with upper or
lowercase characters.

Exclude

An optional parameter that can be used to limit the queries that will be logged by the top filter.
The parameter value is a regular expression that is used to match against the SQL text. SQL
statements that match the text passed as the value of this parameter will be excluded from the
log output.

exclude=where

All regular expressions are evaluated with the option to ignore the case of the text, therefore an
exclude option of select will exclude statements that contain both select, SELECT or any form
of the word with upper or lowercase characters.

Source

The optional source parameter defines an address that is used to match against the address
from which the client connection to MaxScale originates. Only sessions that originate from this
address will be logged.

source=127.0.0.1

User

The optional user parameter defines a user name that is used to match against the user from
which the client connection to MaxScale originates. Only sessions that are connected using this
username will result in results being gebnerated.

user=john

Examples

Example 1 - Heavily Contended Table

You have an order system and believe the updates of the PRODUCTS table is causing some
performance issues for the rest of your application. You would like to know which of the many
updates in your application is causing the issue.



Add a filter with the following definition;

[ProductsUpdateTop20]

type=filter

module=topfilter

count=20

match=UPDATE.*PRODUCTS . *WHERE
exclude=UPDATE.*PRODUCTS STOCK.*WHERE
filebase=/var/logs/top/ProductsUpdate

Note the exclude entry, this is to prevent updates to the PRODUCTS_STOCK table from being
included in the report.

Example 2 - One Application Server is Slow
One of your applications servers is slower than the rest, you believe it is related to database
access but you not not sure what is taking the time.

Add a filter with the following definition;

[SlowAppServer]

type=filter

module=topfilter

count=20

source=192.168.0.32
filebase=/var/logs/top/SlowAppServer

In order to produce a comparison with an unaffected application server you can also add a
second filter as a control.

[ControlAppServer]

type=filter

module=topfilter

count=20

source=192.168.0.42
filebase=/var/logs/top/ControlAppServer

In the router definition add both filters
filters=SlowAppServer | ControlAppServer

You will then have two sets of logs files written, one which profiles the top 20 queries of the slow
application server and another that gives you the top 20 queries of your control application



server. These two sets of files can then be compared to determine what if anythign is different
between the two.

Output Report

The following is an example report for a number of fictitious queries executed against the
employees exaple database available for MySQL.

-bash-4.1$ cat /var/logs/top/Employees-top-10.137
Top 10 longest running queries in session.

22.985 | select sum(salary), year (from date) from salaries s, (select
distinct year (from date) as yl from salaries) y where (makedate(y.yl, 1)
between s.from date and s.to date) group by y.yl

5.304 | select d.dept name as "Department", y.yl as "Year", count(*) as
"Count" from departments d, dept emp de, (select distinct year (from date) as
yl from dept emp order by 1) y where d.dept no = de.dept no and
(makedate(y.yl, 1) between de.from date and de.to date) group by y.yl,
d.dept name order by 1, 2

2.896 | select year(now()) - year(birth date) as age, gender,
avg (salary) as "Average Salary" from employees e, salaries s where e.emp no =
s.emp no and ("1988-08-01" Dbetween from date AND to date) group by
year (now()) - year(birth date), gender order by 1,2

2.160 | select dept name as "Department", sum(salary) / 12 as "Salary
Bill" from employees e, departments d, dept emp de, salaries s where e.emp no
= de.emp no and de.dept no = d.dept no and ("1988-08-01" between de.from date
AND de.to date) and ("1988-08-01" between s.from date AND s.to date) and
S.emp no = e.emp no group by dept name order by 1

0.845 | select dept name as "Department", avg(year (now()) -
year (birth date)) as "Average Age", gender from employees e, departments d,
dept emp de where e.emp no = de.emp no and de.dept no = d.dept no and

("1988-08-01" Dbetween from date AND to date) group by dept name, gender
0.668 | select year(hire date) as "Hired", d.dept name, count(*) as
"Count" from employees e, departments d, dept emp de where de.emp no =
e.emp_no and de.dept no = d.dept no group by d.dept name, year (hire date)
0.249 | select moves.n depts As "No. of Departments",
count (moves.emp no) as "No. of Employees" from (select del.emp no as emp no,
count (del.emp no) as n depts from dept emp del group by del.emp no) as moves
group by moves.n depts order by 1
0.245 | select year(now()) - year (birth date) as age, gender, count (*)
as "Count" from employees group by year(now()) - year (birth date), gender
order by 1,2
0.179 | select year (hire date) as "Hired", count(*) as "Count" from
employees group by year (hire date)



0.160 | select year (hire date) - year(birth date) as "Age", count(*) as
Count from employees group by year (hire date) - year(birth date) order by 1

___________ +_________________________________________________________________
Session started Wed Jun 18 18:41:03 2014
Connection from 127.0.0.1

Username massi

Total of 24 statements executed.

Total statement execution time 35.701 seconds
Average statement execution time 1.488 seconds
Total connection time 46.500 seconds

-bash-4.1%



