2022-01-04 15:47:38 +02:00

585 lines
13 KiB
C++

/*
* Copyright (c) 2018 MariaDB Corporation Ab
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file and at www.mariadb.com/bsl11.
*
* Change Date: 2026-01-04
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2 or later of the General
* Public License.
*/
#pragma once
#include <maxscale/ccdefs.hh>
#include <stdio.h>
#include <openssl/sha.h>
#include <zlib.h>
#include <algorithm>
#include <array>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include <maxscale/buffer.hh>
#include <maxscale/utils.h>
#include <maxscale/jansson.hh>
#include <maxbase/string.hh>
namespace maxscale
{
/**
* Tokenize a string
*
* @param str String to tokenize
* @param delim List of delimiters (see strtok(3))
*
* @return List of tokenized strings
*/
inline std::vector<std::string> strtok(std::string str, const char* delim)
{
return mxb::strtok(str, delim);
}
/**
* @class CloserTraits utils.hh <maxscale/utils.hh>
*
* A traits class used by Closer. To be specialized for all types that are
* used with Closer.
*/
template<class T>
struct CloserTraits
{
/**
* Closes/frees/destroys a resource.
*
* @param t Close the resource *if* it has not been closed already.
*/
static void close_if(T t)
{
static_assert(sizeof(T) != sizeof(T), "The base closer should never be used");
}
/**
* Resets a reference to a resource. After the call, the value of t should
* be such that @c close_if can recognize that the reference already has
* been closed.
*
* @param t Reference to a resource.
*/
static void reset(T& t);
};
/**
* @class Closer utils.hh <maxscale/utils.hh>
*
* The template class Closer is a class that is intended to be used
* for ensuring that a C style resource is released at the end of a
* scoped block, irrespective of how that block is exited (by reaching
* the end of it, or by a return or exception in the middle of it).
*
* Closer performs the actual resource releasing using CloserTraits
* that need to be specialized for every type of resource to be managed.
*
* Example:
* @code
* void f()
* {
* FILE* pFile = fopen(...);
*
* if (pFile)
* {
* Closer<FILE*> file(pFile);
*
* // Use pFile, call functions that potentually may throw
* }
* }
* @endcode
*
* Without @c Closer all code would have to be placed within try/catch
* blocks, which quickly becomes unwieldy as the number of managed
* resources grows.
*/
template<class T>
class Closer
{
public:
/**
* Creates the closer and stores the provided resourece. Note that
* the constructor assumes that the resource exists already.
*
* @param resource The resource whose closing is to be ensured.
*/
Closer(T resource)
: m_resource(resource)
{
}
/**
* Destroys the closer and releases the resource.
*/
~Closer()
{
CloserTraits<T>::close_if(m_resource);
}
/**
* Returns the original resource. Note that the ownership of the
* resource remains with the closer.
*
* @return The resource that was provided in the constructor.
*/
T get() const
{
return m_resource;
}
/**
* Resets the closer, that is, releases the resource.
*/
void reset()
{
CloserTraits<T>::close_if(m_resource);
CloserTraits<T>::reset(m_resource);
}
/**
* Resets the closer, that is, releases the resource and assigns a
* new resource to it.
*/
void reset(T resource)
{
CloserTraits<T>::close_if(m_resource);
m_resource = resource;
}
/**
* Returns the original resource together with its ownership. That is,
* after this call the responsibility for releasing the resource belongs
* to the caller.
*
* @return The resource that was provided in the constructor.
*/
T release()
{
T resource = m_resource;
CloserTraits<T>::reset(m_resource);
return resource;
}
private:
Closer(const Closer&);
Closer& operator=(const Closer&);
private:
T m_resource;
};
}
namespace maxscale
{
/**
* @class CloserTraits<FILE*> utils.hh <maxscale/utils.hh>
*
* Specialization of @c CloserTraits for @c FILE*.
*/
template<>
struct CloserTraits<FILE*>
{
static void close_if(FILE* pFile)
{
if (pFile)
{
fclose(pFile);
}
}
static void reset(FILE*& pFile)
{
pFile = NULL;
}
};
/* Helper type for Registry. Must be specialized for each EntryType. The types
* listed below are just examples and will not compile. */
template<typename EntryType>
struct RegistryTraits
{
typedef int id_type;
typedef EntryType* entry_type;
static id_type get_id(entry_type entry)
{
static_assert(sizeof(EntryType) != sizeof(EntryType),
"get_id() and the"
" surrounding struct must be specialized for every EntryType!");
return 0;
}
static entry_type null_entry()
{
return NULL;
}
};
/**
* Class Registy wraps a map, allowing only a few operations on it. The intended
* use is simple registries, such as the session registry in Worker. The owner
* can expose a reference to this class without exposing all the methods the
* underlying container implements. When instantiating with a new EntryType, the
* traits-class RegistryTraits should be specialized for the new type as well.
*/
template<typename EntryType>
class Registry
{
Registry(const Registry&);
Registry& operator=(const Registry&);
public:
typedef typename RegistryTraits<EntryType>::id_type id_type;
typedef typename RegistryTraits<EntryType>::entry_type entry_type;
Registry()
{
}
/**
* Find an entry in the registry.
*
* @param id Entry key
* @return The found entry, or NULL if not found
*/
entry_type lookup(id_type id) const
{
entry_type rval = RegistryTraits<EntryType>::null_entry();
typename ContainerType::const_iterator iter = m_registry.find(id);
if (iter != m_registry.end())
{
rval = iter->second;
}
return rval;
}
/**
* Add an entry to the registry.
*
* @param entry The entry to add
* @return True if successful, false if id was already in
*/
bool add(entry_type entry)
{
id_type id = RegistryTraits<EntryType>::get_id(entry);
typename ContainerType::value_type new_value(id, entry);
return m_registry.insert(new_value).second;
}
/**
* Remove an entry from the registry.
*
* @param id Entry id
* @return True if an entry was removed, false if not found
*/
bool remove(id_type id)
{
entry_type rval = lookup(id);
if (rval)
{
m_registry.erase(id);
}
return rval;
}
private:
typedef typename std::unordered_map<id_type, entry_type> ContainerType;
ContainerType m_registry;
};
// binary compare of pointed-to objects
template<typename Ptr>
bool equal_pointees(const Ptr& lhs, const Ptr& rhs)
{
return *lhs == *rhs;
}
// Unary predicate for equality of pointed-to objects
template<typename T>
class EqualPointees : public std::unary_function<T, bool>
{
public:
EqualPointees(const T& lhs)
: m_ppLhs(&lhs)
{
}
bool operator()(const T& pRhs)
{
return **m_ppLhs == *pRhs;
}
private:
const T* m_ppLhs;
};
template<typename T>
EqualPointees<T> equal_pointees(const T& t)
{
return EqualPointees<T>(t);
}
/**
* Get hexadecimal string representation of @c value
*
* @param value Value to convert
*
* @return Hexadecimal string representation of @c value
*/
std::string to_hex(uint8_t value);
template<typename T, typename V>
struct hex_iterator
{
};
template<typename T>
struct hex_iterator<T, uint8_t>
{
std::string operator()(T begin, T end)
{
std::string rval;
for (auto it = begin; it != end; it++)
{
rval += to_hex(*it);
}
return rval;
}
};
/**
* Create hexadecimal representation of a type
*
* @param begin Starting iterator
* @param end End iterator
*
* @return Hexadecimal string representation of the data
*/
template<typename Iter>
std::string to_hex(Iter begin, Iter end)
{
return hex_iterator<Iter, typename std::iterator_traits<Iter>::value_type>()(begin, end);
}
/**
* Base class for checksums
*/
class Checksum
{
public:
virtual ~Checksum()
{
}
/**
* Update the checksum calculation
*
* @param buffer Buffer to add to the calculation
*/
virtual void update(GWBUF* buffer) = 0;
/**
* Finalize the calculation
*
* This function must be called before the hex function is called or
* a comparison between two Checksums is made. This resets the calculation
* state so a new checksum can be started after a call to this function is
* made.
*
* Calling finalize will overwrite the currently stored calculation.
*
* @param buffer Optional buffer to process before finalizing
*/
virtual void finalize(GWBUF* buffer = NULL) = 0;
/**
* Reset the checksum to a zero state
*/
virtual void reset() = 0;
/**
* Get hexadecimal representation of the checksum
*
* @return String containing the hexadecimal form of the checksum
*/
virtual std::string hex() const = 0;
};
/**
* A SHA1 checksum
*/
class SHA1Checksum : public Checksum
{
public:
typedef std::array<uint8_t, SHA_DIGEST_LENGTH> Sum;
SHA1Checksum()
{
SHA1_Init(&m_ctx);
m_sum.fill(0); // CentOS 6 doesn't like aggregate initialization...
}
void update(GWBUF* buffer)
{
for (GWBUF* b = buffer; b; b = b->next)
{
SHA1_Update(&m_ctx, GWBUF_DATA(b), GWBUF_LENGTH(b));
}
}
void finalize(GWBUF* buffer = NULL)
{
update(buffer);
SHA1_Final(&m_sum.front(), &m_ctx);
}
void reset()
{
SHA1_Init(&m_ctx);
}
std::string hex() const
{
return mxs::to_hex(m_sum.begin(), m_sum.end());
}
bool eq(const SHA1Checksum& rhs) const
{
return m_sum == rhs.m_sum;
}
private:
SHA_CTX m_ctx; /**< SHA1 context */
Sum m_sum; /**< Final checksum */
};
static inline bool operator==(const SHA1Checksum& lhs, const SHA1Checksum& rhs)
{
return lhs.eq(rhs);
}
static inline bool operator!=(const SHA1Checksum& lhs, const SHA1Checksum& rhs)
{
return !(lhs == rhs);
}
/**
* A CRC32 checksum
*/
class CRC32Checksum : public Checksum
{
public:
CRC32Checksum()
{
m_ctx = crc32(0L, NULL, 0);
}
void update(GWBUF* buffer)
{
for (GWBUF* b = buffer; b; b = b->next)
{
m_ctx = crc32(m_ctx, GWBUF_DATA(b), GWBUF_LENGTH(b));
}
}
void finalize(GWBUF* buffer = NULL)
{
update(buffer);
m_sum = m_ctx;
reset();
}
void reset()
{
m_ctx = crc32(0L, NULL, 0);
}
std::string hex() const
{
const uint8_t* start = reinterpret_cast<const uint8_t*>(&m_sum);
const uint8_t* end = start + sizeof(m_sum);
return mxs::to_hex(start, end);
}
bool eq(const CRC32Checksum& rhs) const
{
return m_sum == rhs.m_sum;
}
private:
uint32_t m_ctx; /**< Ongoing checksum value */
uint32_t m_sum; /**< Final checksum */
};
static inline bool operator==(const CRC32Checksum& lhs, const CRC32Checksum& rhs)
{
return lhs.eq(rhs);
}
static inline bool operator!=(const CRC32Checksum& lhs, const CRC32Checksum& rhs)
{
return !(lhs == rhs);
}
/**
* Read bytes into a 64-bit unsigned integer.
*
* @param ptr Pointer where value is stored. Read as a little-endian byte array.
* @param bytes How many bytes to read. Must be 0 to 8.
*
* @return The read value
*/
uint64_t get_byteN(const uint8_t* ptr, int bytes);
/**
* Store bytes to a byte array in little endian format.
*
* @param ptr Pointer where value should be stored
* @param value Value to store
* @param bytes How many bytes to store. Must be 0 to 8.
*
* @return The next byte after the stored value
*/
uint8_t* set_byteN(uint8_t* ptr, uint64_t value, int bytes);
/**
* C++ wrapper function for the `crypt` password hashing
*
* @param password Password to hash
* @param salt Salt to use (see man crypt)
*
* @return The hashed password
*/
std::string crypt(const std::string& password, const std::string& salt);
/**
* Get kernel version
*
* @return The kernel version as `major * 10000 + minor * 100 + patch`
*/
int get_kernel_version();
/**
* Does the system support SO_REUSEPORT
*
* @return True if the system supports SO_REUSEPORT
*/
bool have_so_reuseport();
}