1186 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1186 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2011 March 24
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** Code for a demonstration virtual table that generates variations
 | |
| ** on an input word at increasing edit distances from the original.
 | |
| **
 | |
| ** A fuzzer virtual table is created like this:
 | |
| **
 | |
| **     CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
 | |
| **
 | |
| ** When it is created, the new fuzzer table must be supplied with the
 | |
| ** name of a "fuzzer data table", which must reside in the same database
 | |
| ** file as the new fuzzer table. The fuzzer data table contains the various
 | |
| ** transformations and their costs that the fuzzer logic uses to generate
 | |
| ** variations.
 | |
| **
 | |
| ** The fuzzer data table must contain exactly four columns (more precisely,
 | |
| ** the statement "SELECT * FROM <fuzzer_data_table>" must return records
 | |
| ** that consist of four columns). It does not matter what the columns are
 | |
| ** named. 
 | |
| **
 | |
| ** Each row in the fuzzer data table represents a single character
 | |
| ** transformation. The left most column of the row (column 0) contains an
 | |
| ** integer value - the identifier of the ruleset to which the transformation
 | |
| ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
 | |
| ** row (column 0) contains the input character or characters. The third 
 | |
| ** column contains the output character or characters. And the fourth column
 | |
| ** contains the integer cost of making the transformation. For example:
 | |
| **
 | |
| **    CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
 | |
| **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
 | |
| **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
 | |
| **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
 | |
| **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
 | |
| **
 | |
| ** The first row inserted into the fuzzer data table by the SQL script
 | |
| ** above indicates that the cost of inserting a letter 'a' is 100.  (All 
 | |
| ** costs are integers.  We recommend that costs be scaled so that the 
 | |
| ** average cost is around 100.) The second INSERT statement creates a rule
 | |
| ** saying that the cost of deleting a single letter 'b' is 87.  The third
 | |
| ** and fourth INSERT statements mean that the cost of transforming a
 | |
| ** single letter "o" into the two-letter sequence "oe" is 38 and that the
 | |
| ** cost of transforming "oe" back into "o" is 40.
 | |
| **
 | |
| ** The contents of the fuzzer data table are loaded into main memory when
 | |
| ** a fuzzer table is first created, and may be internally reloaded by the
 | |
| ** system at any subsequent time. Therefore, the fuzzer data table should be 
 | |
| ** populated before the fuzzer table is created and not modified thereafter.
 | |
| ** If you do need to modify the contents of the fuzzer data table, it is
 | |
| ** recommended that the associated fuzzer table be dropped, the fuzzer data
 | |
| ** table edited, and the fuzzer table recreated within a single transaction.
 | |
| ** Alternatively, the fuzzer data table can be edited then the database
 | |
| ** connection can be closed and reopened.
 | |
| **
 | |
| ** Once it has been created, the fuzzer table can be queried as follows:
 | |
| **
 | |
| **    SELECT word, distance FROM f
 | |
| **     WHERE word MATCH 'abcdefg'
 | |
| **       AND distance<200;
 | |
| **
 | |
| ** This first query outputs the string "abcdefg" and all strings that
 | |
| ** can be derived from that string by appling the specified transformations.
 | |
| ** The strings are output together with their total transformation cost
 | |
| ** (called "distance") and appear in order of increasing cost.  No string
 | |
| ** is output more than once.  If there are multiple ways to transform the
 | |
| ** target string into the output string then the lowest cost transform is
 | |
| ** the one that is returned.  In the example, the search is limited to 
 | |
| ** strings with a total distance of less than 200.
 | |
| **
 | |
| ** The fuzzer is a read-only table.  Any attempt to DELETE, INSERT, or
 | |
| ** UPDATE on a fuzzer table will throw an error.
 | |
| **
 | |
| ** It is important to put some kind of a limit on the fuzzer output.  This
 | |
| ** can be either in the form of a LIMIT clause at the end of the query,
 | |
| ** or better, a "distance<NNN" constraint where NNN is some number.  The
 | |
| ** running time and memory requirement is exponential in the value of NNN 
 | |
| ** so you want to make sure that NNN is not too big.  A value of NNN that
 | |
| ** is about twice the average transformation cost seems to give good results.
 | |
| **
 | |
| ** The fuzzer table can be useful for tasks such as spelling correction.
 | |
| ** Suppose there is a second table vocabulary(w) where the w column contains
 | |
| ** all correctly spelled words.   Let $word be a word you want to look up.
 | |
| **
 | |
| **   SELECT vocabulary.w FROM f, vocabulary
 | |
| **    WHERE f.word MATCH $word
 | |
| **      AND f.distance<=200
 | |
| **      AND f.word=vocabulary.w
 | |
| **    LIMIT 20
 | |
| **
 | |
| ** The query above gives the 20 closest words to the $word being tested.
 | |
| ** (Note that for good performance, the vocubulary.w column should be
 | |
| ** indexed.)
 | |
| **
 | |
| ** A similar query can be used to find all words in the dictionary that
 | |
| ** begin with some prefix $prefix:
 | |
| **
 | |
| **   SELECT vocabulary.w FROM f, vocabulary
 | |
| **    WHERE f.word MATCH $prefix
 | |
| **      AND f.distance<=200
 | |
| **      AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
 | |
| **    LIMIT 50
 | |
| **
 | |
| ** This last query will show up to 50 words out of the vocabulary that
 | |
| ** match or nearly match the $prefix.
 | |
| **
 | |
| ** MULTIPLE RULE SETS
 | |
| **
 | |
| ** Normally, the "ruleset" value associated with all character transformations
 | |
| ** in the fuzzer data table is zero. However, if required, the fuzzer table
 | |
| ** allows multiple rulesets to be defined. Each query uses only a single
 | |
| ** ruleset. This allows, for example, a single fuzzer table to support 
 | |
| ** multiple languages.
 | |
| **
 | |
| ** By default, only the rules from ruleset 0 are used. To specify an 
 | |
| ** alternative ruleset, a "ruleset = ?" expression must be added to the
 | |
| ** WHERE clause of a SELECT, where ? is the identifier of the desired 
 | |
| ** ruleset. For example:
 | |
| **
 | |
| **   SELECT vocabulary.w FROM f, vocabulary
 | |
| **    WHERE f.word MATCH $word
 | |
| **      AND f.distance<=200
 | |
| **      AND f.word=vocabulary.w
 | |
| **      AND f.ruleset=1  -- Specify the ruleset to use here
 | |
| **    LIMIT 20
 | |
| **
 | |
| ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset 
 | |
| ** 0 is used.
 | |
| **
 | |
| ** LIMITS
 | |
| **
 | |
| ** The maximum ruleset number is 2147483647.  The maximum length of either
 | |
| ** of the strings in the second or third column of the fuzzer data table
 | |
| ** is 50 bytes.  The maximum cost on a rule is 1000.
 | |
| */
 | |
| #include "sqlite3ext.h"
 | |
| SQLITE_EXTENSION_INIT1
 | |
| 
 | |
| /* If SQLITE_DEBUG is not defined, disable assert statements. */
 | |
| #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
 | |
| # define NDEBUG
 | |
| #endif
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| 
 | |
| /*
 | |
| ** Forward declaration of objects used by this implementation
 | |
| */
 | |
| typedef struct fuzzer_vtab fuzzer_vtab;
 | |
| typedef struct fuzzer_cursor fuzzer_cursor;
 | |
| typedef struct fuzzer_rule fuzzer_rule;
 | |
| typedef struct fuzzer_seen fuzzer_seen;
 | |
| typedef struct fuzzer_stem fuzzer_stem;
 | |
| 
 | |
| /*
 | |
| ** Various types.
 | |
| **
 | |
| ** fuzzer_cost is the "cost" of an edit operation.
 | |
| **
 | |
| ** fuzzer_len is the length of a matching string.  
 | |
| **
 | |
| ** fuzzer_ruleid is an ruleset identifier.
 | |
| */
 | |
| typedef int fuzzer_cost;
 | |
| typedef signed char fuzzer_len;
 | |
| typedef int fuzzer_ruleid;
 | |
| 
 | |
| /*
 | |
| ** Limits
 | |
| */
 | |
| #define FUZZER_MX_LENGTH           50   /* Maximum length of a rule string */
 | |
| #define FUZZER_MX_RULEID   2147483647   /* Maximum rule ID */
 | |
| #define FUZZER_MX_COST           1000   /* Maximum single-rule cost */
 | |
| #define FUZZER_MX_OUTPUT_LENGTH   100   /* Maximum length of an output string */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each transformation rule is stored as an instance of this object.
 | |
| ** All rules are kept on a linked list sorted by rCost.
 | |
| */
 | |
| struct fuzzer_rule {
 | |
|   fuzzer_rule *pNext;         /* Next rule in order of increasing rCost */
 | |
|   char *zFrom;                /* Transform from */
 | |
|   fuzzer_cost rCost;          /* Cost of this transformation */
 | |
|   fuzzer_len nFrom, nTo;      /* Length of the zFrom and zTo strings */
 | |
|   fuzzer_ruleid iRuleset;     /* The rule set to which this rule belongs */
 | |
|   char zTo[4];                /* Transform to (extra space appended) */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A stem object is used to generate variants.  It is also used to record
 | |
| ** previously generated outputs.
 | |
| **
 | |
| ** Every stem is added to a hash table as it is output.  Generation of
 | |
| ** duplicate stems is suppressed.
 | |
| **
 | |
| ** Active stems (those that might generate new outputs) are kepts on a linked
 | |
| ** list sorted by increasing cost.  The cost is the sum of rBaseCost and
 | |
| ** pRule->rCost.
 | |
| */
 | |
| struct fuzzer_stem {
 | |
|   char *zBasis;              /* Word being fuzzed */
 | |
|   const fuzzer_rule *pRule;  /* Current rule to apply */
 | |
|   fuzzer_stem *pNext;        /* Next stem in rCost order */
 | |
|   fuzzer_stem *pHash;        /* Next stem with same hash on zBasis */
 | |
|   fuzzer_cost rBaseCost;     /* Base cost of getting to zBasis */
 | |
|   fuzzer_cost rCostX;        /* Precomputed rBaseCost + pRule->rCost */
 | |
|   fuzzer_len nBasis;         /* Length of the zBasis string */
 | |
|   fuzzer_len n;              /* Apply pRule at this character offset */
 | |
| };
 | |
| 
 | |
| /* 
 | |
| ** A fuzzer virtual-table object 
 | |
| */
 | |
| struct fuzzer_vtab {
 | |
|   sqlite3_vtab base;         /* Base class - must be first */
 | |
|   char *zClassName;          /* Name of this class.  Default: "fuzzer" */
 | |
|   fuzzer_rule *pRule;        /* All active rules in this fuzzer */
 | |
|   int nCursor;               /* Number of active cursors */
 | |
| };
 | |
| 
 | |
| #define FUZZER_HASH  4001    /* Hash table size */
 | |
| #define FUZZER_NQUEUE  20    /* Number of slots on the stem queue */
 | |
| 
 | |
| /* A fuzzer cursor object */
 | |
| struct fuzzer_cursor {
 | |
|   sqlite3_vtab_cursor base;  /* Base class - must be first */
 | |
|   sqlite3_int64 iRowid;      /* The rowid of the current word */
 | |
|   fuzzer_vtab *pVtab;        /* The virtual table this cursor belongs to */
 | |
|   fuzzer_cost rLimit;        /* Maximum cost of any term */
 | |
|   fuzzer_stem *pStem;        /* Stem with smallest rCostX */
 | |
|   fuzzer_stem *pDone;        /* Stems already processed to completion */
 | |
|   fuzzer_stem *aQueue[FUZZER_NQUEUE];  /* Queue of stems with higher rCostX */
 | |
|   int mxQueue;               /* Largest used index in aQueue[] */
 | |
|   char *zBuf;                /* Temporary use buffer */
 | |
|   int nBuf;                  /* Bytes allocated for zBuf */
 | |
|   int nStem;                 /* Number of stems allocated */
 | |
|   int iRuleset;              /* Only process rules from this ruleset */
 | |
|   fuzzer_rule nullRule;      /* Null rule used first */
 | |
|   fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The two input rule lists are both sorted in order of increasing
 | |
| ** cost.  Merge them together into a single list, sorted by cost, and
 | |
| ** return a pointer to the head of that list.
 | |
| */
 | |
| static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
 | |
|   fuzzer_rule head;
 | |
|   fuzzer_rule *pTail;
 | |
| 
 | |
|   pTail =  &head;
 | |
|   while( pA && pB ){
 | |
|     if( pA->rCost<=pB->rCost ){
 | |
|       pTail->pNext = pA;
 | |
|       pTail = pA;
 | |
|       pA = pA->pNext;
 | |
|     }else{
 | |
|       pTail->pNext = pB;
 | |
|       pTail = pB;
 | |
|       pB = pB->pNext;
 | |
|     }
 | |
|   }
 | |
|   if( pA==0 ){
 | |
|     pTail->pNext = pB;
 | |
|   }else{
 | |
|     pTail->pNext = pA;
 | |
|   }
 | |
|   return head.pNext;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Statement pStmt currently points to a row in the fuzzer data table. This
 | |
| ** function allocates and populates a fuzzer_rule structure according to
 | |
| ** the content of the row.
 | |
| **
 | |
| ** If successful, *ppRule is set to point to the new object and SQLITE_OK
 | |
| ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
 | |
| ** to an error message and an SQLite error code returned.
 | |
| */
 | |
| static int fuzzerLoadOneRule(
 | |
|   fuzzer_vtab *p,                 /* Fuzzer virtual table handle */
 | |
|   sqlite3_stmt *pStmt,            /* Base rule on statements current row */
 | |
|   fuzzer_rule **ppRule,           /* OUT: New rule object */
 | |
|   char **pzErr                    /* OUT: Error message */
 | |
| ){
 | |
|   sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
 | |
|   const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
 | |
|   const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
 | |
|   int nCost = sqlite3_column_int(pStmt, 3);
 | |
| 
 | |
|   int rc = SQLITE_OK;             /* Return code */
 | |
|   int nFrom;                      /* Size of string zFrom, in bytes */
 | |
|   int nTo;                        /* Size of string zTo, in bytes */
 | |
|   fuzzer_rule *pRule = 0;         /* New rule object to return */
 | |
| 
 | |
|   if( zFrom==0 ) zFrom = "";
 | |
|   if( zTo==0 ) zTo = "";
 | |
|   nFrom = (int)strlen(zFrom);
 | |
|   nTo = (int)strlen(zTo);
 | |
| 
 | |
|   /* Silently ignore null transformations */
 | |
|   if( strcmp(zFrom, zTo)==0 ){
 | |
|     *ppRule = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   if( nCost<=0 || nCost>FUZZER_MX_COST ){
 | |
|     *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", 
 | |
|         p->zClassName, FUZZER_MX_COST
 | |
|     );
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else
 | |
|   if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
 | |
|     *pzErr = sqlite3_mprintf("%s: maximum string length is %d", 
 | |
|         p->zClassName, FUZZER_MX_LENGTH
 | |
|     );
 | |
|     rc = SQLITE_ERROR;    
 | |
|   }else
 | |
|   if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
 | |
|     *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", 
 | |
|         p->zClassName, FUZZER_MX_RULEID
 | |
|     );
 | |
|     rc = SQLITE_ERROR;    
 | |
|   }else{
 | |
| 
 | |
|     pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
 | |
|     if( pRule==0 ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else{
 | |
|       memset(pRule, 0, sizeof(*pRule));
 | |
|       pRule->zFrom = pRule->zTo;
 | |
|       pRule->zFrom += nTo + 1;
 | |
|       pRule->nFrom = nFrom;
 | |
|       memcpy(pRule->zFrom, zFrom, nFrom+1);
 | |
|       memcpy(pRule->zTo, zTo, nTo+1);
 | |
|       pRule->nTo = nTo;
 | |
|       pRule->rCost = nCost;
 | |
|       pRule->iRuleset = (int)iRuleset;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *ppRule = pRule;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Load the content of the fuzzer data table into memory.
 | |
| */
 | |
| static int fuzzerLoadRules(
 | |
|   sqlite3 *db,                    /* Database handle */
 | |
|   fuzzer_vtab *p,                 /* Virtual fuzzer table to configure */
 | |
|   const char *zDb,                /* Database containing rules data */
 | |
|   const char *zData,              /* Table containing rules data */
 | |
|   char **pzErr                    /* OUT: Error message */
 | |
| ){
 | |
|   int rc = SQLITE_OK;             /* Return code */
 | |
|   char *zSql;                     /* SELECT used to read from rules table */
 | |
|   fuzzer_rule *pHead = 0;
 | |
| 
 | |
|   zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
 | |
|   if( zSql==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     int rc2;                      /* finalize() return code */
 | |
|     sqlite3_stmt *pStmt = 0;
 | |
|     rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
 | |
|     }else if( sqlite3_column_count(pStmt)!=4 ){
 | |
|       *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
 | |
|           p->zClassName, zData, sqlite3_column_count(pStmt)
 | |
|       );
 | |
|       rc = SQLITE_ERROR;
 | |
|     }else{
 | |
|       while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|         fuzzer_rule *pRule = 0;
 | |
|         rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
 | |
|         if( pRule ){
 | |
|           pRule->pNext = pHead;
 | |
|           pHead = pRule;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     rc2 = sqlite3_finalize(pStmt);
 | |
|     if( rc==SQLITE_OK ) rc = rc2;
 | |
|   }
 | |
|   sqlite3_free(zSql);
 | |
| 
 | |
|   /* All rules are now in a singly linked list starting at pHead. This
 | |
|   ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to 
 | |
|   ** point to the head of the sorted list.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     unsigned int i;
 | |
|     fuzzer_rule *pX;
 | |
|     fuzzer_rule *a[15];
 | |
|     for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
 | |
|     while( (pX = pHead)!=0 ){
 | |
|       pHead = pX->pNext;
 | |
|       pX->pNext = 0;
 | |
|       for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
 | |
|         pX = fuzzerMergeRules(a[i], pX);
 | |
|         a[i] = 0;
 | |
|       }
 | |
|       a[i] = fuzzerMergeRules(a[i], pX);
 | |
|     }
 | |
|     for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
 | |
|       pX = fuzzerMergeRules(a[i], pX);
 | |
|     }
 | |
|     p->pRule = fuzzerMergeRules(p->pRule, pX);
 | |
|   }else{
 | |
|     /* An error has occurred. Setting p->pRule to point to the head of the
 | |
|     ** allocated list ensures that the list will be cleaned up in this case.
 | |
|     */
 | |
|     assert( p->pRule==0 );
 | |
|     p->pRule = pHead;
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function converts an SQL quoted string into an unquoted string
 | |
| ** and returns a pointer to a buffer allocated using sqlite3_malloc() 
 | |
| ** containing the result. The caller should eventually free this buffer
 | |
| ** using sqlite3_free.
 | |
| **
 | |
| ** Examples:
 | |
| **
 | |
| **     "abc"   becomes   abc
 | |
| **     'xyz'   becomes   xyz
 | |
| **     [pqr]   becomes   pqr
 | |
| **     `mno`   becomes   mno
 | |
| */
 | |
| static char *fuzzerDequote(const char *zIn){
 | |
|   int nIn;                        /* Size of input string, in bytes */
 | |
|   char *zOut;                     /* Output (dequoted) string */
 | |
| 
 | |
|   nIn = (int)strlen(zIn);
 | |
|   zOut = sqlite3_malloc(nIn+1);
 | |
|   if( zOut ){
 | |
|     char q = zIn[0];              /* Quote character (if any ) */
 | |
| 
 | |
|     if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
 | |
|       memcpy(zOut, zIn, nIn+1);
 | |
|     }else{
 | |
|       int iOut = 0;               /* Index of next byte to write to output */
 | |
|       int iIn;                    /* Index of next byte to read from input */
 | |
| 
 | |
|       if( q=='[' ) q = ']';
 | |
|       for(iIn=1; iIn<nIn; iIn++){
 | |
|         if( zIn[iIn]==q ) iIn++;
 | |
|         zOut[iOut++] = zIn[iIn];
 | |
|       }
 | |
|     }
 | |
|     assert( (int)strlen(zOut)<=nIn );
 | |
|   }
 | |
|   return zOut;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** xDisconnect/xDestroy method for the fuzzer module.
 | |
| */
 | |
| static int fuzzerDisconnect(sqlite3_vtab *pVtab){
 | |
|   fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
 | |
|   assert( p->nCursor==0 );
 | |
|   while( p->pRule ){
 | |
|     fuzzer_rule *pRule = p->pRule;
 | |
|     p->pRule = pRule->pNext;
 | |
|     sqlite3_free(pRule);
 | |
|   }
 | |
|   sqlite3_free(p);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** xConnect/xCreate method for the fuzzer module. Arguments are:
 | |
| **
 | |
| **   argv[0]   -> module name  ("fuzzer")
 | |
| **   argv[1]   -> database name
 | |
| **   argv[2]   -> table name
 | |
| **   argv[3]   -> fuzzer rule table name
 | |
| */
 | |
| static int fuzzerConnect(
 | |
|   sqlite3 *db,
 | |
|   void *pAux,
 | |
|   int argc, const char *const*argv,
 | |
|   sqlite3_vtab **ppVtab,
 | |
|   char **pzErr
 | |
| ){
 | |
|   int rc = SQLITE_OK;             /* Return code */
 | |
|   fuzzer_vtab *pNew = 0;          /* New virtual table */
 | |
|   const char *zModule = argv[0];
 | |
|   const char *zDb = argv[1];
 | |
| 
 | |
|   if( argc!=4 ){
 | |
|     *pzErr = sqlite3_mprintf(
 | |
|         "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
 | |
|     );
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     int nModule;                  /* Length of zModule, in bytes */
 | |
| 
 | |
|     nModule = (int)strlen(zModule);
 | |
|     pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1);
 | |
|     if( pNew==0 ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else{
 | |
|       char *zTab;                 /* Dequoted name of fuzzer data table */
 | |
| 
 | |
|       memset(pNew, 0, sizeof(*pNew));
 | |
|       pNew->zClassName = (char*)&pNew[1];
 | |
|       memcpy(pNew->zClassName, zModule, nModule+1);
 | |
| 
 | |
|       zTab = fuzzerDequote(argv[3]);
 | |
|       if( zTab==0 ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }else{
 | |
|         rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
 | |
|         sqlite3_free(zTab);
 | |
|       }
 | |
| 
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
 | |
|       }
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         fuzzerDisconnect((sqlite3_vtab *)pNew);
 | |
|         pNew = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *ppVtab = (sqlite3_vtab *)pNew;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open a new fuzzer cursor.
 | |
| */
 | |
| static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
 | |
|   fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
 | |
|   fuzzer_cursor *pCur;
 | |
|   pCur = sqlite3_malloc( sizeof(*pCur) );
 | |
|   if( pCur==0 ) return SQLITE_NOMEM;
 | |
|   memset(pCur, 0, sizeof(*pCur));
 | |
|   pCur->pVtab = p;
 | |
|   *ppCursor = &pCur->base;
 | |
|   p->nCursor++;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free all stems in a list.
 | |
| */
 | |
| static void fuzzerClearStemList(fuzzer_stem *pStem){
 | |
|   while( pStem ){
 | |
|     fuzzer_stem *pNext = pStem->pNext;
 | |
|     sqlite3_free(pStem);
 | |
|     pStem = pNext;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free up all the memory allocated by a cursor.  Set it rLimit to 0
 | |
| ** to indicate that it is at EOF.
 | |
| */
 | |
| static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
 | |
|   int i;
 | |
|   fuzzerClearStemList(pCur->pStem);
 | |
|   fuzzerClearStemList(pCur->pDone);
 | |
|   for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
 | |
|   pCur->rLimit = (fuzzer_cost)0;
 | |
|   if( clearHash && pCur->nStem ){
 | |
|     pCur->mxQueue = 0;
 | |
|     pCur->pStem = 0;
 | |
|     pCur->pDone = 0;
 | |
|     memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
 | |
|     memset(pCur->apHash, 0, sizeof(pCur->apHash));
 | |
|   }
 | |
|   pCur->nStem = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a fuzzer cursor.
 | |
| */
 | |
| static int fuzzerClose(sqlite3_vtab_cursor *cur){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
 | |
|   fuzzerClearCursor(pCur, 0);
 | |
|   sqlite3_free(pCur->zBuf);
 | |
|   pCur->pVtab->nCursor--;
 | |
|   sqlite3_free(pCur);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the current output term for a fuzzer_stem.
 | |
| */
 | |
| static int fuzzerRender(
 | |
|   fuzzer_stem *pStem,   /* The stem to be rendered */
 | |
|   char **pzBuf,         /* Write results into this buffer.  realloc if needed */
 | |
|   int *pnBuf            /* Size of the buffer */
 | |
| ){
 | |
|   const fuzzer_rule *pRule = pStem->pRule;
 | |
|   int n;                          /* Size of output term without nul-term */
 | |
|   char *z;                        /* Buffer to assemble output term in */
 | |
| 
 | |
|   n = pStem->nBasis + pRule->nTo - pRule->nFrom;
 | |
|   if( (*pnBuf)<n+1 ){
 | |
|     (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
 | |
|     if( (*pzBuf)==0 ) return SQLITE_NOMEM;
 | |
|     (*pnBuf) = n+100;
 | |
|   }
 | |
|   n = pStem->n;
 | |
|   z = *pzBuf;
 | |
|   if( n<0 ){
 | |
|     memcpy(z, pStem->zBasis, pStem->nBasis+1);
 | |
|   }else{
 | |
|     memcpy(z, pStem->zBasis, n);
 | |
|     memcpy(&z[n], pRule->zTo, pRule->nTo);
 | |
|     memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], 
 | |
|            pStem->nBasis-n-pRule->nFrom+1);
 | |
|   }
 | |
| 
 | |
|   assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute a hash on zBasis.
 | |
| */
 | |
| static unsigned int fuzzerHash(const char *z){
 | |
|   unsigned int h = 0;
 | |
|   while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
 | |
|   return h % FUZZER_HASH;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Current cost of a stem
 | |
| */
 | |
| static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
 | |
|   return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
| ** Print a description of a fuzzer_stem on stderr.
 | |
| */
 | |
| static void fuzzerStemPrint(
 | |
|   const char *zPrefix,
 | |
|   fuzzer_stem *pStem,
 | |
|   const char *zSuffix
 | |
| ){
 | |
|   if( pStem->n<0 ){
 | |
|     fprintf(stderr, "%s[%s](%d)-->self%s",
 | |
|        zPrefix,
 | |
|        pStem->zBasis, pStem->rBaseCost,
 | |
|        zSuffix
 | |
|     );
 | |
|   }else{
 | |
|     char *zBuf = 0;
 | |
|     int nBuf = 0;
 | |
|     if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
 | |
|     fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
 | |
|       zPrefix,
 | |
|       pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
 | |
|       zSuffix
 | |
|     );
 | |
|     sqlite3_free(zBuf);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return 1 if the string to which the cursor is point has already
 | |
| ** been emitted.  Return 0 if not.  Return -1 on a memory allocation
 | |
| ** failures.
 | |
| */
 | |
| static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
 | |
|   unsigned int h;
 | |
|   fuzzer_stem *pLookup;
 | |
| 
 | |
|   if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
 | |
|     return -1;
 | |
|   }
 | |
|   h = fuzzerHash(pCur->zBuf);
 | |
|   pLookup = pCur->apHash[h];
 | |
|   while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
 | |
|     pLookup = pLookup->pHash;
 | |
|   }
 | |
|   return pLookup!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If argument pRule is NULL, this function returns false.
 | |
| **
 | |
| ** Otherwise, it returns true if rule pRule should be skipped. A rule 
 | |
| ** should be skipped if it does not belong to rule-set iRuleset, or if
 | |
| ** applying it to stem pStem would create a string longer than 
 | |
| ** FUZZER_MX_OUTPUT_LENGTH bytes.
 | |
| */
 | |
| static int fuzzerSkipRule(
 | |
|   const fuzzer_rule *pRule,       /* Determine whether or not to skip this */
 | |
|   fuzzer_stem *pStem,             /* Stem rule may be applied to */
 | |
|   int iRuleset                    /* Rule-set used by the current query */
 | |
| ){
 | |
|   return pRule && (
 | |
|       (pRule->iRuleset!=iRuleset)
 | |
|    || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
 | |
|   );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Advance a fuzzer_stem to its next value.   Return 0 if there are
 | |
| ** no more values that can be generated by this fuzzer_stem.  Return
 | |
| ** -1 on a memory allocation failure.
 | |
| */
 | |
| static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
 | |
|   const fuzzer_rule *pRule;
 | |
|   while( (pRule = pStem->pRule)!=0 ){
 | |
|     assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
 | |
|     while( pStem->n < pStem->nBasis - pRule->nFrom ){
 | |
|       pStem->n++;
 | |
|       if( pRule->nFrom==0
 | |
|        || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
 | |
|       ){
 | |
|         /* Found a rewrite case.  Make sure it is not a duplicate */
 | |
|         int rc = fuzzerSeen(pCur, pStem);
 | |
|         if( rc<0 ) return -1;
 | |
|         if( rc==0 ){
 | |
|           fuzzerCost(pStem);
 | |
|           return 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     pStem->n = -1;
 | |
|     do{
 | |
|       pRule = pRule->pNext;
 | |
|     }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
 | |
|     pStem->pRule = pRule;
 | |
|     if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The two input stem lists are both sorted in order of increasing
 | |
| ** rCostX.  Merge them together into a single list, sorted by rCostX, and
 | |
| ** return a pointer to the head of that new list.
 | |
| */
 | |
| static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
 | |
|   fuzzer_stem head;
 | |
|   fuzzer_stem *pTail;
 | |
| 
 | |
|   pTail =  &head;
 | |
|   while( pA && pB ){
 | |
|     if( pA->rCostX<=pB->rCostX ){
 | |
|       pTail->pNext = pA;
 | |
|       pTail = pA;
 | |
|       pA = pA->pNext;
 | |
|     }else{
 | |
|       pTail->pNext = pB;
 | |
|       pTail = pB;
 | |
|       pB = pB->pNext;
 | |
|     }
 | |
|   }
 | |
|   if( pA==0 ){
 | |
|     pTail->pNext = pB;
 | |
|   }else{
 | |
|     pTail->pNext = pA;
 | |
|   }
 | |
|   return head.pNext;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Load pCur->pStem with the lowest-cost stem.  Return a pointer
 | |
| ** to the lowest-cost stem.
 | |
| */
 | |
| static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
 | |
|   fuzzer_stem *pBest, *pX;
 | |
|   int iBest;
 | |
|   int i;
 | |
| 
 | |
|   if( pCur->pStem==0 ){
 | |
|     iBest = -1;
 | |
|     pBest = 0;
 | |
|     for(i=0; i<=pCur->mxQueue; i++){
 | |
|       pX = pCur->aQueue[i];
 | |
|       if( pX==0 ) continue;
 | |
|       if( pBest==0 || pBest->rCostX>pX->rCostX ){
 | |
|         pBest = pX;
 | |
|         iBest = i;
 | |
|       }
 | |
|     } 
 | |
|     if( pBest ){
 | |
|       pCur->aQueue[iBest] = pBest->pNext;
 | |
|       pBest->pNext = 0;
 | |
|       pCur->pStem = pBest;
 | |
|     }
 | |
|   }
 | |
|   return pCur->pStem;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert pNew into queue of pending stems.  Then find the stem
 | |
| ** with the lowest rCostX and move it into pCur->pStem.
 | |
| ** list.  The insert is done such the pNew is in the correct order
 | |
| ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
 | |
| */
 | |
| static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
 | |
|   fuzzer_stem *pX;
 | |
|   int i;
 | |
| 
 | |
|   /* If pCur->pStem exists and is greater than pNew, then make pNew
 | |
|   ** the new pCur->pStem and insert the old pCur->pStem instead.
 | |
|   */
 | |
|   if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
 | |
|     pNew->pNext = 0;
 | |
|     pCur->pStem = pNew;
 | |
|     pNew = pX;
 | |
|   }
 | |
| 
 | |
|   /* Insert the new value */
 | |
|   pNew->pNext = 0;
 | |
|   pX = pNew;
 | |
|   for(i=0; i<=pCur->mxQueue; i++){
 | |
|     if( pCur->aQueue[i] ){
 | |
|       pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
 | |
|       pCur->aQueue[i] = 0;
 | |
|     }else{
 | |
|       pCur->aQueue[i] = pX;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if( i>pCur->mxQueue ){
 | |
|     if( i<FUZZER_NQUEUE ){
 | |
|       pCur->mxQueue = i;
 | |
|       pCur->aQueue[i] = pX;
 | |
|     }else{
 | |
|       assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
 | |
|       pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
 | |
|       pCur->aQueue[FUZZER_NQUEUE-1] = pX;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return fuzzerLowestCostStem(pCur);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a new fuzzer_stem.  Add it to the hash table but do not
 | |
| ** link it into either the pCur->pStem or pCur->pDone lists.
 | |
| */
 | |
| static fuzzer_stem *fuzzerNewStem(
 | |
|   fuzzer_cursor *pCur,
 | |
|   const char *zWord,
 | |
|   fuzzer_cost rBaseCost
 | |
| ){
 | |
|   fuzzer_stem *pNew;
 | |
|   fuzzer_rule *pRule;
 | |
|   unsigned int h;
 | |
| 
 | |
|   pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 );
 | |
|   if( pNew==0 ) return 0;
 | |
|   memset(pNew, 0, sizeof(*pNew));
 | |
|   pNew->zBasis = (char*)&pNew[1];
 | |
|   pNew->nBasis = (fuzzer_len)strlen(zWord);
 | |
|   memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
 | |
|   pRule = pCur->pVtab->pRule;
 | |
|   while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
 | |
|     pRule = pRule->pNext;
 | |
|   }
 | |
|   pNew->pRule = pRule;
 | |
|   pNew->n = -1;
 | |
|   pNew->rBaseCost = pNew->rCostX = rBaseCost;
 | |
|   h = fuzzerHash(pNew->zBasis);
 | |
|   pNew->pHash = pCur->apHash[h];
 | |
|   pCur->apHash[h] = pNew;
 | |
|   pCur->nStem++;
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Advance a cursor to its next row of output
 | |
| */
 | |
| static int fuzzerNext(sqlite3_vtab_cursor *cur){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
 | |
|   int rc;
 | |
|   fuzzer_stem *pStem, *pNew;
 | |
| 
 | |
|   pCur->iRowid++;
 | |
| 
 | |
|   /* Use the element the cursor is currently point to to create
 | |
|   ** a new stem and insert the new stem into the priority queue.
 | |
|   */
 | |
|   pStem = pCur->pStem;
 | |
|   if( pStem->rCostX>0 ){
 | |
|     rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
 | |
|     if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
 | |
|     pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
 | |
|     if( pNew ){
 | |
|       if( fuzzerAdvance(pCur, pNew)==0 ){
 | |
|         pNew->pNext = pCur->pDone;
 | |
|         pCur->pDone = pNew;
 | |
|       }else{
 | |
|         if( fuzzerInsert(pCur, pNew)==pNew ){
 | |
|           return SQLITE_OK;
 | |
|         }
 | |
|       }
 | |
|     }else{
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Adjust the priority queue so that the first element of the
 | |
|   ** stem list is the next lowest cost word.
 | |
|   */
 | |
|   while( (pStem = pCur->pStem)!=0 ){
 | |
|     int res = fuzzerAdvance(pCur, pStem);
 | |
|     if( res<0 ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }else if( res>0 ){
 | |
|       pCur->pStem = 0;
 | |
|       pStem = fuzzerInsert(pCur, pStem);
 | |
|       if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
 | |
|         if( rc<0 ) return SQLITE_NOMEM;
 | |
|         continue;
 | |
|       }
 | |
|       return SQLITE_OK;  /* New word found */
 | |
|     }
 | |
|     pCur->pStem = 0;
 | |
|     pStem->pNext = pCur->pDone;
 | |
|     pCur->pDone = pStem;
 | |
|     if( fuzzerLowestCostStem(pCur) ){
 | |
|       rc = fuzzerSeen(pCur, pCur->pStem);
 | |
|       if( rc<0 ) return SQLITE_NOMEM;
 | |
|       if( rc==0 ){
 | |
|         return SQLITE_OK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Reach this point only if queue has been exhausted and there is
 | |
|   ** nothing left to be output. */
 | |
|   pCur->rLimit = (fuzzer_cost)0;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Called to "rewind" a cursor back to the beginning so that
 | |
| ** it starts its output over again.  Always called at least once
 | |
| ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
 | |
| */
 | |
| static int fuzzerFilter(
 | |
|   sqlite3_vtab_cursor *pVtabCursor, 
 | |
|   int idxNum, const char *idxStr,
 | |
|   int argc, sqlite3_value **argv
 | |
| ){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
 | |
|   const char *zWord = "";
 | |
|   fuzzer_stem *pStem;
 | |
|   int idx;
 | |
| 
 | |
|   fuzzerClearCursor(pCur, 1);
 | |
|   pCur->rLimit = 2147483647;
 | |
|   idx = 0;
 | |
|   if( idxNum & 1 ){
 | |
|     zWord = (const char*)sqlite3_value_text(argv[0]);
 | |
|     idx++;
 | |
|   }
 | |
|   if( idxNum & 2 ){
 | |
|     pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
 | |
|     idx++;
 | |
|   }
 | |
|   if( idxNum & 4 ){
 | |
|     pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
 | |
|     idx++;
 | |
|   }
 | |
|   pCur->nullRule.pNext = pCur->pVtab->pRule;
 | |
|   pCur->nullRule.rCost = 0;
 | |
|   pCur->nullRule.nFrom = 0;
 | |
|   pCur->nullRule.nTo = 0;
 | |
|   pCur->nullRule.zFrom = "";
 | |
|   pCur->iRowid = 1;
 | |
|   assert( pCur->pStem==0 );
 | |
| 
 | |
|   /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
 | |
|   ** query will return zero rows.  */
 | |
|   if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
 | |
|     pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
 | |
|     if( pStem==0 ) return SQLITE_NOMEM;
 | |
|     pStem->pRule = &pCur->nullRule;
 | |
|     pStem->n = pStem->nBasis;
 | |
|   }else{
 | |
|     pCur->rLimit = 0;
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Only the word and distance columns have values.  All other columns
 | |
| ** return NULL
 | |
| */
 | |
| static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
 | |
|   if( i==0 ){
 | |
|     /* the "word" column */
 | |
|     if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }else if( i==1 ){
 | |
|     /* the "distance" column */
 | |
|     sqlite3_result_int(ctx, pCur->pStem->rCostX);
 | |
|   }else{
 | |
|     /* All other columns are NULL */
 | |
|     sqlite3_result_null(ctx);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The rowid.
 | |
| */
 | |
| static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
 | |
|   *pRowid = pCur->iRowid;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
 | |
| ** that the cursor has nothing more to output.
 | |
| */
 | |
| static int fuzzerEof(sqlite3_vtab_cursor *cur){
 | |
|   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
 | |
|   return pCur->rLimit<=(fuzzer_cost)0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Search for terms of these forms:
 | |
| **
 | |
| **   (A)    word MATCH $str
 | |
| **   (B1)   distance < $value
 | |
| **   (B2)   distance <= $value
 | |
| **   (C)    ruleid == $ruleid
 | |
| **
 | |
| ** The distance< and distance<= are both treated as distance<=.
 | |
| ** The query plan number is a bit vector:
 | |
| **
 | |
| **   bit 1:   Term of the form (A) found
 | |
| **   bit 2:   Term like (B1) or (B2) found
 | |
| **   bit 3:   Term like (C) found
 | |
| **
 | |
| ** If bit-1 is set, $str is always in filter.argv[0].  If bit-2 is set
 | |
| ** then $value is in filter.argv[0] if bit-1 is clear and is in 
 | |
| ** filter.argv[1] if bit-1 is set.  If bit-3 is set, then $ruleid is
 | |
| ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
 | |
| ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
 | |
| ** filter.argv[2] if both bit-1 and bit-2 are set.
 | |
| */
 | |
| static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
 | |
|   int iPlan = 0;
 | |
|   int iDistTerm = -1;
 | |
|   int iRulesetTerm = -1;
 | |
|   int i;
 | |
|   int seenMatch = 0;
 | |
|   const struct sqlite3_index_constraint *pConstraint;
 | |
|   double rCost = 1e12;
 | |
| 
 | |
|   pConstraint = pIdxInfo->aConstraint;
 | |
|   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
 | |
|     if( pConstraint->iColumn==0
 | |
|      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
 | |
|       seenMatch = 1;
 | |
|     }
 | |
|     if( pConstraint->usable==0 ) continue;
 | |
|     if( (iPlan & 1)==0 
 | |
|      && pConstraint->iColumn==0
 | |
|      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
 | |
|     ){
 | |
|       iPlan |= 1;
 | |
|       pIdxInfo->aConstraintUsage[i].argvIndex = 1;
 | |
|       pIdxInfo->aConstraintUsage[i].omit = 1;
 | |
|       rCost /= 1e6;
 | |
|     }
 | |
|     if( (iPlan & 2)==0
 | |
|      && pConstraint->iColumn==1
 | |
|      && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
 | |
|            || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
 | |
|     ){
 | |
|       iPlan |= 2;
 | |
|       iDistTerm = i;
 | |
|       rCost /= 10.0;
 | |
|     }
 | |
|     if( (iPlan & 4)==0
 | |
|      && pConstraint->iColumn==2
 | |
|      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
 | |
|     ){
 | |
|       iPlan |= 4;
 | |
|       pIdxInfo->aConstraintUsage[i].omit = 1;
 | |
|       iRulesetTerm = i;
 | |
|       rCost /= 10.0;
 | |
|     }
 | |
|   }
 | |
|   if( iPlan & 2 ){
 | |
|     pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
 | |
|   }
 | |
|   if( iPlan & 4 ){
 | |
|     int idx = 1;
 | |
|     if( iPlan & 1 ) idx++;
 | |
|     if( iPlan & 2 ) idx++;
 | |
|     pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
 | |
|   }
 | |
|   pIdxInfo->idxNum = iPlan;
 | |
|   if( pIdxInfo->nOrderBy==1
 | |
|    && pIdxInfo->aOrderBy[0].iColumn==1
 | |
|    && pIdxInfo->aOrderBy[0].desc==0
 | |
|   ){
 | |
|     pIdxInfo->orderByConsumed = 1;
 | |
|   }
 | |
|   if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
 | |
|   pIdxInfo->estimatedCost = rCost;
 | |
|    
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A virtual table module that implements the "fuzzer".
 | |
| */
 | |
| static sqlite3_module fuzzerModule = {
 | |
|   0,                           /* iVersion */
 | |
|   fuzzerConnect,
 | |
|   fuzzerConnect,
 | |
|   fuzzerBestIndex,
 | |
|   fuzzerDisconnect, 
 | |
|   fuzzerDisconnect,
 | |
|   fuzzerOpen,                  /* xOpen - open a cursor */
 | |
|   fuzzerClose,                 /* xClose - close a cursor */
 | |
|   fuzzerFilter,                /* xFilter - configure scan constraints */
 | |
|   fuzzerNext,                  /* xNext - advance a cursor */
 | |
|   fuzzerEof,                   /* xEof - check for end of scan */
 | |
|   fuzzerColumn,                /* xColumn - read data */
 | |
|   fuzzerRowid,                 /* xRowid - read data */
 | |
|   0,                           /* xUpdate */
 | |
|   0,                           /* xBegin */
 | |
|   0,                           /* xSync */
 | |
|   0,                           /* xCommit */
 | |
|   0,                           /* xRollback */
 | |
|   0,                           /* xFindMethod */
 | |
|   0,                           /* xRename */
 | |
| };
 | |
| 
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| 
 | |
| #ifdef _WIN32
 | |
| __declspec(dllexport)
 | |
| #endif
 | |
| int sqlite3_fuzzer_init(
 | |
|   sqlite3 *db, 
 | |
|   char **pzErrMsg, 
 | |
|   const sqlite3_api_routines *pApi
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   SQLITE_EXTENSION_INIT2(pApi);
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
 | |
| #endif
 | |
|   return rc;
 | |
| }
 | 
