312 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2013-02-28
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains code to implement the next_char(A,T,F,W,C) SQL function.
 | |
| **
 | |
| ** The next_char(A,T,F,W,C) function finds all valid "next" characters for
 | |
| ** string A given the vocabulary in T.F.  If the W value exists and is a
 | |
| ** non-empty string, then it is an SQL expression that limits the entries
 | |
| ** in T.F that will be considered.  If C exists and is a non-empty string,
 | |
| ** then it is the name of the collating sequence to use for comparison.  If
 | |
| ** 
 | |
| ** Only the first three arguments are required.  If the C parameter is 
 | |
| ** omitted or is NULL or is an empty string, then the default collating 
 | |
| ** sequence of T.F is used for comparision.  If the W parameter is omitted
 | |
| ** or is NULL or is an empty string, then no filtering of the output is
 | |
| ** done.
 | |
| **
 | |
| ** The T.F column should be indexed using collation C or else this routine
 | |
| ** will be quite slow.
 | |
| **
 | |
| ** For example, suppose an application has a dictionary like this:
 | |
| **
 | |
| **   CREATE TABLE dictionary(word TEXT UNIQUE);
 | |
| **
 | |
| ** Further suppose that for user keypad entry, it is desired to disable
 | |
| ** (gray out) keys that are not valid as the next character.  If the
 | |
| ** the user has previously entered (say) 'cha' then to find all allowed
 | |
| ** next characters (and thereby determine when keys should not be grayed
 | |
| ** out) run the following query:
 | |
| **
 | |
| **   SELECT next_char('cha','dictionary','word');
 | |
| **
 | |
| ** IMPLEMENTATION NOTES:
 | |
| **
 | |
| ** The next_char function is implemented using recursive SQL that makes
 | |
| ** use of the table name and column name as part of a query.  If either
 | |
| ** the table name or column name are keywords or contain special characters,
 | |
| ** then they should be escaped.  For example:
 | |
| **
 | |
| **   SELECT next_char('cha','[dictionary]','[word]');
 | |
| **
 | |
| ** This also means that the table name can be a subquery:
 | |
| **
 | |
| **   SELECT next_char('cha','(SELECT word AS w FROM dictionary)','w');
 | |
| */
 | |
| #include "sqlite3ext.h"
 | |
| SQLITE_EXTENSION_INIT1
 | |
| #include <string.h>
 | |
| 
 | |
| /*
 | |
| ** A structure to hold context of the next_char() computation across
 | |
| ** nested function calls.
 | |
| */
 | |
| typedef struct nextCharContext nextCharContext;
 | |
| struct nextCharContext {
 | |
|   sqlite3 *db;                      /* Database connection */
 | |
|   sqlite3_stmt *pStmt;              /* Prepared statement used to query */
 | |
|   const unsigned char *zPrefix;     /* Prefix to scan */
 | |
|   int nPrefix;                      /* Size of zPrefix in bytes */
 | |
|   int nAlloc;                       /* Space allocated to aResult */
 | |
|   int nUsed;                        /* Space used in aResult */
 | |
|   unsigned int *aResult;            /* Array of next characters */
 | |
|   int mallocFailed;                 /* True if malloc fails */
 | |
|   int otherError;                   /* True for any other failure */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Append a result character if the character is not already in the
 | |
| ** result.
 | |
| */
 | |
| static void nextCharAppend(nextCharContext *p, unsigned c){
 | |
|   int i;
 | |
|   for(i=0; i<p->nUsed; i++){
 | |
|     if( p->aResult[i]==c ) return;
 | |
|   }
 | |
|   if( p->nUsed+1 > p->nAlloc ){
 | |
|     unsigned int *aNew;
 | |
|     int n = p->nAlloc*2 + 30;
 | |
|     aNew = sqlite3_realloc(p->aResult, n*sizeof(unsigned int));
 | |
|     if( aNew==0 ){
 | |
|       p->mallocFailed = 1;
 | |
|       return;
 | |
|     }else{
 | |
|       p->aResult = aNew;
 | |
|       p->nAlloc = n;
 | |
|     }
 | |
|   }
 | |
|   p->aResult[p->nUsed++] = c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write a character into z[] as UTF8.  Return the number of bytes needed
 | |
| ** to hold the character
 | |
| */
 | |
| static int writeUtf8(unsigned char *z, unsigned c){
 | |
|   if( c<0x00080 ){
 | |
|     z[0] = (unsigned char)(c&0xff);
 | |
|     return 1;
 | |
|   }
 | |
|   if( c<0x00800 ){
 | |
|     z[0] = 0xC0 + (unsigned char)((c>>6)&0x1F);
 | |
|     z[1] = 0x80 + (unsigned char)(c & 0x3F);
 | |
|     return 2;
 | |
|   }
 | |
|   if( c<0x10000 ){
 | |
|     z[0] = 0xE0 + (unsigned char)((c>>12)&0x0F);
 | |
|     z[1] = 0x80 + (unsigned char)((c>>6) & 0x3F);
 | |
|     z[2] = 0x80 + (unsigned char)(c & 0x3F);
 | |
|     return 3;
 | |
|   }
 | |
|   z[0] = 0xF0 + (unsigned char)((c>>18) & 0x07);
 | |
|   z[1] = 0x80 + (unsigned char)((c>>12) & 0x3F);
 | |
|   z[2] = 0x80 + (unsigned char)((c>>6) & 0x3F);
 | |
|   z[3] = 0x80 + (unsigned char)(c & 0x3F);
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read a UTF8 character out of z[] and write it into *pOut.  Return
 | |
| ** the number of bytes in z[] that were used to construct the character.
 | |
| */
 | |
| static int readUtf8(const unsigned char *z, unsigned *pOut){
 | |
|   static const unsigned char validBits[] = {
 | |
|     0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|     0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|     0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 | |
|     0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 | |
|     0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|     0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|     0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|     0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
 | |
|   };
 | |
|   unsigned c = z[0];
 | |
|   if( c<0xc0 ){
 | |
|     *pOut = c;
 | |
|     return 1;
 | |
|   }else{
 | |
|     int n = 1;
 | |
|     c = validBits[c-0xc0];
 | |
|     while( (z[n] & 0xc0)==0x80 ){
 | |
|       c = (c<<6) + (0x3f & z[n++]);
 | |
|     }
 | |
|     if( c<0x80 || (c&0xFFFFF800)==0xD800 || (c&0xFFFFFFFE)==0xFFFE ){
 | |
|       c = 0xFFFD;
 | |
|     }
 | |
|     *pOut = c;
 | |
|     return n;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The nextCharContext structure has been set up.  Add all "next" characters
 | |
| ** to the result set.
 | |
| */
 | |
| static void findNextChars(nextCharContext *p){
 | |
|   unsigned cPrev = 0;
 | |
|   unsigned char zPrev[8];
 | |
|   int n, rc;
 | |
|   
 | |
|   for(;;){
 | |
|     sqlite3_bind_text(p->pStmt, 1, (char*)p->zPrefix, p->nPrefix,
 | |
|                       SQLITE_STATIC);
 | |
|     n = writeUtf8(zPrev, cPrev+1);
 | |
|     sqlite3_bind_text(p->pStmt, 2, (char*)zPrev, n, SQLITE_STATIC);
 | |
|     rc = sqlite3_step(p->pStmt);
 | |
|     if( rc==SQLITE_DONE ){
 | |
|       sqlite3_reset(p->pStmt);
 | |
|       return;
 | |
|     }else if( rc!=SQLITE_ROW ){
 | |
|       p->otherError = rc;
 | |
|       return;
 | |
|     }else{
 | |
|       const unsigned char *zOut = sqlite3_column_text(p->pStmt, 0);
 | |
|       unsigned cNext;
 | |
|       n = readUtf8(zOut+p->nPrefix, &cNext);
 | |
|       sqlite3_reset(p->pStmt);
 | |
|       nextCharAppend(p, cNext);
 | |
|       cPrev = cNext;
 | |
|       if( p->mallocFailed ) return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** next_character(A,T,F,W)
 | |
| **
 | |
| ** Return a string composted of all next possible characters after
 | |
| ** A for elements of T.F.  If W is supplied, then it is an SQL expression
 | |
| ** that limits the elements in T.F that are considered.
 | |
| */
 | |
| static void nextCharFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   nextCharContext c;
 | |
|   const unsigned char *zTable = sqlite3_value_text(argv[1]);
 | |
|   const unsigned char *zField = sqlite3_value_text(argv[2]);
 | |
|   const unsigned char *zWhere;
 | |
|   const unsigned char *zCollName;
 | |
|   char *zWhereClause = 0;
 | |
|   char *zColl = 0;
 | |
|   char *zSql;
 | |
|   int rc;
 | |
| 
 | |
|   memset(&c, 0, sizeof(c));
 | |
|   c.db = sqlite3_context_db_handle(context);
 | |
|   c.zPrefix = sqlite3_value_text(argv[0]);
 | |
|   c.nPrefix = sqlite3_value_bytes(argv[0]);
 | |
|   if( zTable==0 || zField==0 || c.zPrefix==0 ) return;
 | |
|   if( argc>=4
 | |
|    && (zWhere = sqlite3_value_text(argv[3]))!=0
 | |
|    && zWhere[0]!=0
 | |
|   ){
 | |
|     zWhereClause = sqlite3_mprintf("AND (%s)", zWhere);
 | |
|     if( zWhereClause==0 ){
 | |
|       sqlite3_result_error_nomem(context);
 | |
|       return;
 | |
|     }
 | |
|   }else{
 | |
|     zWhereClause = "";
 | |
|   }
 | |
|   if( argc>=5
 | |
|    && (zCollName = sqlite3_value_text(argv[4]))!=0
 | |
|    && zCollName[0]!=0 
 | |
|   ){
 | |
|     zColl = sqlite3_mprintf("collate \"%w\"", zCollName);
 | |
|     if( zColl==0 ){
 | |
|       sqlite3_result_error_nomem(context);
 | |
|       if( zWhereClause[0] ) sqlite3_free(zWhereClause);
 | |
|       return;
 | |
|     }
 | |
|   }else{
 | |
|     zColl = "";
 | |
|   }
 | |
|   zSql = sqlite3_mprintf(
 | |
|     "SELECT %s FROM %s"
 | |
|     " WHERE %s>=(?1 || ?2) %s"
 | |
|     "   AND %s<=(?1 || char(1114111)) %s" /* 1114111 == 0x10ffff */
 | |
|     "   %s"
 | |
|     " ORDER BY 1 %s ASC LIMIT 1",
 | |
|     zField, zTable, zField, zColl, zField, zColl, zWhereClause, zColl
 | |
|   );
 | |
|   if( zWhereClause[0] ) sqlite3_free(zWhereClause);
 | |
|   if( zColl[0] ) sqlite3_free(zColl);
 | |
|   if( zSql==0 ){
 | |
|     sqlite3_result_error_nomem(context);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3_prepare_v2(c.db, zSql, -1, &c.pStmt, 0);
 | |
|   sqlite3_free(zSql);
 | |
|   if( rc ){
 | |
|     sqlite3_result_error(context, sqlite3_errmsg(c.db), -1);
 | |
|     return;
 | |
|   }
 | |
|   findNextChars(&c);
 | |
|   if( c.mallocFailed ){
 | |
|     sqlite3_result_error_nomem(context);
 | |
|   }else{
 | |
|     unsigned char *pRes;
 | |
|     pRes = sqlite3_malloc( c.nUsed*4 + 1 );
 | |
|     if( pRes==0 ){
 | |
|       sqlite3_result_error_nomem(context);
 | |
|     }else{
 | |
|       int i;
 | |
|       int n = 0;
 | |
|       for(i=0; i<c.nUsed; i++){
 | |
|         n += writeUtf8(pRes+n, c.aResult[i]);
 | |
|       }
 | |
|       pRes[n] = 0;
 | |
|       sqlite3_result_text(context, (const char*)pRes, n, sqlite3_free);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_finalize(c.pStmt);
 | |
|   sqlite3_free(c.aResult);
 | |
| }
 | |
| 
 | |
| #ifdef _WIN32
 | |
| __declspec(dllexport)
 | |
| #endif
 | |
| int sqlite3_nextchar_init(
 | |
|   sqlite3 *db, 
 | |
|   char **pzErrMsg, 
 | |
|   const sqlite3_api_routines *pApi
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   SQLITE_EXTENSION_INIT2(pApi);
 | |
|   (void)pzErrMsg;  /* Unused parameter */
 | |
|   rc = sqlite3_create_function(db, "next_char", 3, SQLITE_UTF8, 0,
 | |
|                                nextCharFunc, 0, 0);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3_create_function(db, "next_char", 4, SQLITE_UTF8, 0,
 | |
|                                  nextCharFunc, 0, 0);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3_create_function(db, "next_char", 5, SQLITE_UTF8, 0,
 | |
|                                  nextCharFunc, 0, 0);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | 
