3513 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3513 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code for implementations of the r-tree and r*-tree
 | |
| ** algorithms packaged as an SQLite virtual table module.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Database Format of R-Tree Tables
 | |
| ** --------------------------------
 | |
| **
 | |
| ** The data structure for a single virtual r-tree table is stored in three 
 | |
| ** native SQLite tables declared as follows. In each case, the '%' character
 | |
| ** in the table name is replaced with the user-supplied name of the r-tree
 | |
| ** table.
 | |
| **
 | |
| **   CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
 | |
| **   CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
 | |
| **   CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
 | |
| **
 | |
| ** The data for each node of the r-tree structure is stored in the %_node
 | |
| ** table. For each node that is not the root node of the r-tree, there is
 | |
| ** an entry in the %_parent table associating the node with its parent.
 | |
| ** And for each row of data in the table, there is an entry in the %_rowid
 | |
| ** table that maps from the entries rowid to the id of the node that it
 | |
| ** is stored on.
 | |
| **
 | |
| ** The root node of an r-tree always exists, even if the r-tree table is
 | |
| ** empty. The nodeno of the root node is always 1. All other nodes in the
 | |
| ** table must be the same size as the root node. The content of each node
 | |
| ** is formatted as follows:
 | |
| **
 | |
| **   1. If the node is the root node (node 1), then the first 2 bytes
 | |
| **      of the node contain the tree depth as a big-endian integer.
 | |
| **      For non-root nodes, the first 2 bytes are left unused.
 | |
| **
 | |
| **   2. The next 2 bytes contain the number of entries currently 
 | |
| **      stored in the node.
 | |
| **
 | |
| **   3. The remainder of the node contains the node entries. Each entry
 | |
| **      consists of a single 8-byte integer followed by an even number
 | |
| **      of 4-byte coordinates. For leaf nodes the integer is the rowid
 | |
| **      of a record. For internal nodes it is the node number of a
 | |
| **      child page.
 | |
| */
 | |
| 
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
 | |
| 
 | |
| #ifndef SQLITE_CORE
 | |
|   #include "sqlite3ext.h"
 | |
|   SQLITE_EXTENSION_INIT1
 | |
| #else
 | |
|   #include "sqlite3.h"
 | |
| #endif
 | |
| 
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #ifndef SQLITE_AMALGAMATION
 | |
| #include "sqlite3rtree.h"
 | |
| typedef sqlite3_int64 i64;
 | |
| typedef unsigned char u8;
 | |
| typedef unsigned short u16;
 | |
| typedef unsigned int u32;
 | |
| #endif
 | |
| 
 | |
| /*  The following macro is used to suppress compiler warnings.
 | |
| */
 | |
| #ifndef UNUSED_PARAMETER
 | |
| # define UNUSED_PARAMETER(x) (void)(x)
 | |
| #endif
 | |
| 
 | |
| typedef struct Rtree Rtree;
 | |
| typedef struct RtreeCursor RtreeCursor;
 | |
| typedef struct RtreeNode RtreeNode;
 | |
| typedef struct RtreeCell RtreeCell;
 | |
| typedef struct RtreeConstraint RtreeConstraint;
 | |
| typedef struct RtreeMatchArg RtreeMatchArg;
 | |
| typedef struct RtreeGeomCallback RtreeGeomCallback;
 | |
| typedef union RtreeCoord RtreeCoord;
 | |
| typedef struct RtreeSearchPoint RtreeSearchPoint;
 | |
| 
 | |
| /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
 | |
| #define RTREE_MAX_DIMENSIONS 5
 | |
| 
 | |
| /* Size of hash table Rtree.aHash. This hash table is not expected to
 | |
| ** ever contain very many entries, so a fixed number of buckets is 
 | |
| ** used.
 | |
| */
 | |
| #define HASHSIZE 97
 | |
| 
 | |
| /* The xBestIndex method of this virtual table requires an estimate of
 | |
| ** the number of rows in the virtual table to calculate the costs of
 | |
| ** various strategies. If possible, this estimate is loaded from the
 | |
| ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
 | |
| ** Otherwise, if no sqlite_stat1 entry is available, use 
 | |
| ** RTREE_DEFAULT_ROWEST.
 | |
| */
 | |
| #define RTREE_DEFAULT_ROWEST 1048576
 | |
| #define RTREE_MIN_ROWEST         100
 | |
| 
 | |
| /* 
 | |
| ** An rtree virtual-table object.
 | |
| */
 | |
| struct Rtree {
 | |
|   sqlite3_vtab base;          /* Base class.  Must be first */
 | |
|   sqlite3 *db;                /* Host database connection */
 | |
|   int iNodeSize;              /* Size in bytes of each node in the node table */
 | |
|   u8 nDim;                    /* Number of dimensions */
 | |
|   u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
 | |
|   u8 nBytesPerCell;           /* Bytes consumed per cell */
 | |
|   int iDepth;                 /* Current depth of the r-tree structure */
 | |
|   char *zDb;                  /* Name of database containing r-tree table */
 | |
|   char *zName;                /* Name of r-tree table */ 
 | |
|   int nBusy;                  /* Current number of users of this structure */
 | |
|   i64 nRowEst;                /* Estimated number of rows in this table */
 | |
| 
 | |
|   /* List of nodes removed during a CondenseTree operation. List is
 | |
|   ** linked together via the pointer normally used for hash chains -
 | |
|   ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
 | |
|   ** headed by the node (leaf nodes have RtreeNode.iNode==0).
 | |
|   */
 | |
|   RtreeNode *pDeleted;
 | |
|   int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */
 | |
| 
 | |
|   /* Statements to read/write/delete a record from xxx_node */
 | |
|   sqlite3_stmt *pReadNode;
 | |
|   sqlite3_stmt *pWriteNode;
 | |
|   sqlite3_stmt *pDeleteNode;
 | |
| 
 | |
|   /* Statements to read/write/delete a record from xxx_rowid */
 | |
|   sqlite3_stmt *pReadRowid;
 | |
|   sqlite3_stmt *pWriteRowid;
 | |
|   sqlite3_stmt *pDeleteRowid;
 | |
| 
 | |
|   /* Statements to read/write/delete a record from xxx_parent */
 | |
|   sqlite3_stmt *pReadParent;
 | |
|   sqlite3_stmt *pWriteParent;
 | |
|   sqlite3_stmt *pDeleteParent;
 | |
| 
 | |
|   RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
 | |
| };
 | |
| 
 | |
| /* Possible values for Rtree.eCoordType: */
 | |
| #define RTREE_COORD_REAL32 0
 | |
| #define RTREE_COORD_INT32  1
 | |
| 
 | |
| /*
 | |
| ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
 | |
| ** only deal with integer coordinates.  No floating point operations
 | |
| ** will be done.
 | |
| */
 | |
| #ifdef SQLITE_RTREE_INT_ONLY
 | |
|   typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
 | |
|   typedef int RtreeValue;                  /* Low accuracy coordinate */
 | |
| # define RTREE_ZERO 0
 | |
| #else
 | |
|   typedef double RtreeDValue;              /* High accuracy coordinate */
 | |
|   typedef float RtreeValue;                /* Low accuracy coordinate */
 | |
| # define RTREE_ZERO 0.0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When doing a search of an r-tree, instances of the following structure
 | |
| ** record intermediate results from the tree walk.
 | |
| **
 | |
| ** The id is always a node-id.  For iLevel>=1 the id is the node-id of
 | |
| ** the node that the RtreeSearchPoint represents.  When iLevel==0, however,
 | |
| ** the id is of the parent node and the cell that RtreeSearchPoint
 | |
| ** represents is the iCell-th entry in the parent node.
 | |
| */
 | |
| struct RtreeSearchPoint {
 | |
|   RtreeDValue rScore;    /* The score for this node.  Smallest goes first. */
 | |
|   sqlite3_int64 id;      /* Node ID */
 | |
|   u8 iLevel;             /* 0=entries.  1=leaf node.  2+ for higher */
 | |
|   u8 eWithin;            /* PARTLY_WITHIN or FULLY_WITHIN */
 | |
|   u8 iCell;              /* Cell index within the node */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The minimum number of cells allowed for a node is a third of the 
 | |
| ** maximum. In Gutman's notation:
 | |
| **
 | |
| **     m = M/3
 | |
| **
 | |
| ** If an R*-tree "Reinsert" operation is required, the same number of
 | |
| ** cells are removed from the overfull node and reinserted into the tree.
 | |
| */
 | |
| #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
 | |
| #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
 | |
| #define RTREE_MAXCELLS 51
 | |
| 
 | |
| /*
 | |
| ** The smallest possible node-size is (512-64)==448 bytes. And the largest
 | |
| ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
 | |
| ** Therefore all non-root nodes must contain at least 3 entries. Since 
 | |
| ** 2^40 is greater than 2^64, an r-tree structure always has a depth of
 | |
| ** 40 or less.
 | |
| */
 | |
| #define RTREE_MAX_DEPTH 40
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Number of entries in the cursor RtreeNode cache.  The first entry is
 | |
| ** used to cache the RtreeNode for RtreeCursor.sPoint.  The remaining
 | |
| ** entries cache the RtreeNode for the first elements of the priority queue.
 | |
| */
 | |
| #define RTREE_CACHE_SZ  5
 | |
| 
 | |
| /* 
 | |
| ** An rtree cursor object.
 | |
| */
 | |
| struct RtreeCursor {
 | |
|   sqlite3_vtab_cursor base;         /* Base class.  Must be first */
 | |
|   u8 atEOF;                         /* True if at end of search */
 | |
|   u8 bPoint;                        /* True if sPoint is valid */
 | |
|   int iStrategy;                    /* Copy of idxNum search parameter */
 | |
|   int nConstraint;                  /* Number of entries in aConstraint */
 | |
|   RtreeConstraint *aConstraint;     /* Search constraints. */
 | |
|   int nPointAlloc;                  /* Number of slots allocated for aPoint[] */
 | |
|   int nPoint;                       /* Number of slots used in aPoint[] */
 | |
|   int mxLevel;                      /* iLevel value for root of the tree */
 | |
|   RtreeSearchPoint *aPoint;         /* Priority queue for search points */
 | |
|   RtreeSearchPoint sPoint;          /* Cached next search point */
 | |
|   RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
 | |
|   u32 anQueue[RTREE_MAX_DEPTH+1];   /* Number of queued entries by iLevel */
 | |
| };
 | |
| 
 | |
| /* Return the Rtree of a RtreeCursor */
 | |
| #define RTREE_OF_CURSOR(X)   ((Rtree*)((X)->base.pVtab))
 | |
| 
 | |
| /*
 | |
| ** A coordinate can be either a floating point number or a integer.  All
 | |
| ** coordinates within a single R-Tree are always of the same time.
 | |
| */
 | |
| union RtreeCoord {
 | |
|   RtreeValue f;      /* Floating point value */
 | |
|   int i;             /* Integer value */
 | |
|   u32 u;             /* Unsigned for byte-order conversions */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
 | |
| ** formatted as a RtreeDValue (double or int64). This macro assumes that local
 | |
| ** variable pRtree points to the Rtree structure associated with the
 | |
| ** RtreeCoord.
 | |
| */
 | |
| #ifdef SQLITE_RTREE_INT_ONLY
 | |
| # define DCOORD(coord) ((RtreeDValue)coord.i)
 | |
| #else
 | |
| # define DCOORD(coord) (                           \
 | |
|     (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
 | |
|       ((double)coord.f) :                           \
 | |
|       ((double)coord.i)                             \
 | |
|   )
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** A search constraint.
 | |
| */
 | |
| struct RtreeConstraint {
 | |
|   int iCoord;                     /* Index of constrained coordinate */
 | |
|   int op;                         /* Constraining operation */
 | |
|   union {
 | |
|     RtreeDValue rValue;             /* Constraint value. */
 | |
|     int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
 | |
|     int (*xQueryFunc)(sqlite3_rtree_query_info*);
 | |
|   } u;
 | |
|   sqlite3_rtree_query_info *pInfo;  /* xGeom and xQueryFunc argument */
 | |
| };
 | |
| 
 | |
| /* Possible values for RtreeConstraint.op */
 | |
| #define RTREE_EQ    0x41  /* A */
 | |
| #define RTREE_LE    0x42  /* B */
 | |
| #define RTREE_LT    0x43  /* C */
 | |
| #define RTREE_GE    0x44  /* D */
 | |
| #define RTREE_GT    0x45  /* E */
 | |
| #define RTREE_MATCH 0x46  /* F: Old-style sqlite3_rtree_geometry_callback() */
 | |
| #define RTREE_QUERY 0x47  /* G: New-style sqlite3_rtree_query_callback() */
 | |
| 
 | |
| 
 | |
| /* 
 | |
| ** An rtree structure node.
 | |
| */
 | |
| struct RtreeNode {
 | |
|   RtreeNode *pParent;         /* Parent node */
 | |
|   i64 iNode;                  /* The node number */
 | |
|   int nRef;                   /* Number of references to this node */
 | |
|   int isDirty;                /* True if the node needs to be written to disk */
 | |
|   u8 *zData;                  /* Content of the node, as should be on disk */
 | |
|   RtreeNode *pNext;           /* Next node in this hash collision chain */
 | |
| };
 | |
| 
 | |
| /* Return the number of cells in a node  */
 | |
| #define NCELL(pNode) readInt16(&(pNode)->zData[2])
 | |
| 
 | |
| /* 
 | |
| ** A single cell from a node, deserialized
 | |
| */
 | |
| struct RtreeCell {
 | |
|   i64 iRowid;                                 /* Node or entry ID */
 | |
|   RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];  /* Bounding box coordinates */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This object becomes the sqlite3_user_data() for the SQL functions
 | |
| ** that are created by sqlite3_rtree_geometry_callback() and
 | |
| ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
 | |
| ** operators in order to constrain a search.
 | |
| **
 | |
| ** xGeom and xQueryFunc are the callback functions.  Exactly one of 
 | |
| ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
 | |
| ** SQL function was created using sqlite3_rtree_geometry_callback() or
 | |
| ** sqlite3_rtree_query_callback().
 | |
| ** 
 | |
| ** This object is deleted automatically by the destructor mechanism in
 | |
| ** sqlite3_create_function_v2().
 | |
| */
 | |
| struct RtreeGeomCallback {
 | |
|   int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
 | |
|   int (*xQueryFunc)(sqlite3_rtree_query_info*);
 | |
|   void (*xDestructor)(void*);
 | |
|   void *pContext;
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Value for the first field of every RtreeMatchArg object. The MATCH
 | |
| ** operator tests that the first field of a blob operand matches this
 | |
| ** value to avoid operating on invalid blobs (which could cause a segfault).
 | |
| */
 | |
| #define RTREE_GEOMETRY_MAGIC 0x891245AB
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure (in the form of a BLOB) is returned by
 | |
| ** the SQL functions that sqlite3_rtree_geometry_callback() and
 | |
| ** sqlite3_rtree_query_callback() create, and is read as the right-hand
 | |
| ** operand to the MATCH operator of an R-Tree.
 | |
| */
 | |
| struct RtreeMatchArg {
 | |
|   u32 magic;                  /* Always RTREE_GEOMETRY_MAGIC */
 | |
|   RtreeGeomCallback cb;       /* Info about the callback functions */
 | |
|   int nParam;                 /* Number of parameters to the SQL function */
 | |
|   sqlite3_value **apSqlParam; /* Original SQL parameter values */
 | |
|   RtreeDValue aParam[1];      /* Values for parameters to the SQL function */
 | |
| };
 | |
| 
 | |
| #ifndef MAX
 | |
| # define MAX(x,y) ((x) < (y) ? (y) : (x))
 | |
| #endif
 | |
| #ifndef MIN
 | |
| # define MIN(x,y) ((x) > (y) ? (y) : (x))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Functions to deserialize a 16 bit integer, 32 bit real number and
 | |
| ** 64 bit integer. The deserialized value is returned.
 | |
| */
 | |
| static int readInt16(u8 *p){
 | |
|   return (p[0]<<8) + p[1];
 | |
| }
 | |
| static void readCoord(u8 *p, RtreeCoord *pCoord){
 | |
|   pCoord->u = (
 | |
|     (((u32)p[0]) << 24) + 
 | |
|     (((u32)p[1]) << 16) + 
 | |
|     (((u32)p[2]) <<  8) + 
 | |
|     (((u32)p[3]) <<  0)
 | |
|   );
 | |
| }
 | |
| static i64 readInt64(u8 *p){
 | |
|   return (
 | |
|     (((i64)p[0]) << 56) + 
 | |
|     (((i64)p[1]) << 48) + 
 | |
|     (((i64)p[2]) << 40) + 
 | |
|     (((i64)p[3]) << 32) + 
 | |
|     (((i64)p[4]) << 24) + 
 | |
|     (((i64)p[5]) << 16) + 
 | |
|     (((i64)p[6]) <<  8) + 
 | |
|     (((i64)p[7]) <<  0)
 | |
|   );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Functions to serialize a 16 bit integer, 32 bit real number and
 | |
| ** 64 bit integer. The value returned is the number of bytes written
 | |
| ** to the argument buffer (always 2, 4 and 8 respectively).
 | |
| */
 | |
| static int writeInt16(u8 *p, int i){
 | |
|   p[0] = (i>> 8)&0xFF;
 | |
|   p[1] = (i>> 0)&0xFF;
 | |
|   return 2;
 | |
| }
 | |
| static int writeCoord(u8 *p, RtreeCoord *pCoord){
 | |
|   u32 i;
 | |
|   assert( sizeof(RtreeCoord)==4 );
 | |
|   assert( sizeof(u32)==4 );
 | |
|   i = pCoord->u;
 | |
|   p[0] = (i>>24)&0xFF;
 | |
|   p[1] = (i>>16)&0xFF;
 | |
|   p[2] = (i>> 8)&0xFF;
 | |
|   p[3] = (i>> 0)&0xFF;
 | |
|   return 4;
 | |
| }
 | |
| static int writeInt64(u8 *p, i64 i){
 | |
|   p[0] = (i>>56)&0xFF;
 | |
|   p[1] = (i>>48)&0xFF;
 | |
|   p[2] = (i>>40)&0xFF;
 | |
|   p[3] = (i>>32)&0xFF;
 | |
|   p[4] = (i>>24)&0xFF;
 | |
|   p[5] = (i>>16)&0xFF;
 | |
|   p[6] = (i>> 8)&0xFF;
 | |
|   p[7] = (i>> 0)&0xFF;
 | |
|   return 8;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Increment the reference count of node p.
 | |
| */
 | |
| static void nodeReference(RtreeNode *p){
 | |
|   if( p ){
 | |
|     p->nRef++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the content of node p (set all bytes to 0x00).
 | |
| */
 | |
| static void nodeZero(Rtree *pRtree, RtreeNode *p){
 | |
|   memset(&p->zData[2], 0, pRtree->iNodeSize-2);
 | |
|   p->isDirty = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given a node number iNode, return the corresponding key to use
 | |
| ** in the Rtree.aHash table.
 | |
| */
 | |
| static int nodeHash(i64 iNode){
 | |
|   return iNode % HASHSIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Search the node hash table for node iNode. If found, return a pointer
 | |
| ** to it. Otherwise, return 0.
 | |
| */
 | |
| static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
 | |
|   RtreeNode *p;
 | |
|   for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add node pNode to the node hash table.
 | |
| */
 | |
| static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
 | |
|   int iHash;
 | |
|   assert( pNode->pNext==0 );
 | |
|   iHash = nodeHash(pNode->iNode);
 | |
|   pNode->pNext = pRtree->aHash[iHash];
 | |
|   pRtree->aHash[iHash] = pNode;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove node pNode from the node hash table.
 | |
| */
 | |
| static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
 | |
|   RtreeNode **pp;
 | |
|   if( pNode->iNode!=0 ){
 | |
|     pp = &pRtree->aHash[nodeHash(pNode->iNode)];
 | |
|     for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
 | |
|     *pp = pNode->pNext;
 | |
|     pNode->pNext = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
 | |
| ** indicating that node has not yet been assigned a node number. It is
 | |
| ** assigned a node number when nodeWrite() is called to write the
 | |
| ** node contents out to the database.
 | |
| */
 | |
| static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
 | |
|   RtreeNode *pNode;
 | |
|   pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
 | |
|   if( pNode ){
 | |
|     memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
 | |
|     pNode->zData = (u8 *)&pNode[1];
 | |
|     pNode->nRef = 1;
 | |
|     pNode->pParent = pParent;
 | |
|     pNode->isDirty = 1;
 | |
|     nodeReference(pParent);
 | |
|   }
 | |
|   return pNode;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Obtain a reference to an r-tree node.
 | |
| */
 | |
| static int nodeAcquire(
 | |
|   Rtree *pRtree,             /* R-tree structure */
 | |
|   i64 iNode,                 /* Node number to load */
 | |
|   RtreeNode *pParent,        /* Either the parent node or NULL */
 | |
|   RtreeNode **ppNode         /* OUT: Acquired node */
 | |
| ){
 | |
|   int rc;
 | |
|   int rc2 = SQLITE_OK;
 | |
|   RtreeNode *pNode;
 | |
| 
 | |
|   /* Check if the requested node is already in the hash table. If so,
 | |
|   ** increase its reference count and return it.
 | |
|   */
 | |
|   if( (pNode = nodeHashLookup(pRtree, iNode)) ){
 | |
|     assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
 | |
|     if( pParent && !pNode->pParent ){
 | |
|       nodeReference(pParent);
 | |
|       pNode->pParent = pParent;
 | |
|     }
 | |
|     pNode->nRef++;
 | |
|     *ppNode = pNode;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
 | |
|   rc = sqlite3_step(pRtree->pReadNode);
 | |
|   if( rc==SQLITE_ROW ){
 | |
|     const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
 | |
|     if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
 | |
|       pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
 | |
|       if( !pNode ){
 | |
|         rc2 = SQLITE_NOMEM;
 | |
|       }else{
 | |
|         pNode->pParent = pParent;
 | |
|         pNode->zData = (u8 *)&pNode[1];
 | |
|         pNode->nRef = 1;
 | |
|         pNode->iNode = iNode;
 | |
|         pNode->isDirty = 0;
 | |
|         pNode->pNext = 0;
 | |
|         memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
 | |
|         nodeReference(pParent);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   rc = sqlite3_reset(pRtree->pReadNode);
 | |
|   if( rc==SQLITE_OK ) rc = rc2;
 | |
| 
 | |
|   /* If the root node was just loaded, set pRtree->iDepth to the height
 | |
|   ** of the r-tree structure. A height of zero means all data is stored on
 | |
|   ** the root node. A height of one means the children of the root node
 | |
|   ** are the leaves, and so on. If the depth as specified on the root node
 | |
|   ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
 | |
|   */
 | |
|   if( pNode && iNode==1 ){
 | |
|     pRtree->iDepth = readInt16(pNode->zData);
 | |
|     if( pRtree->iDepth>RTREE_MAX_DEPTH ){
 | |
|       rc = SQLITE_CORRUPT_VTAB;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If no error has occurred so far, check if the "number of entries"
 | |
|   ** field on the node is too large. If so, set the return code to 
 | |
|   ** SQLITE_CORRUPT_VTAB.
 | |
|   */
 | |
|   if( pNode && rc==SQLITE_OK ){
 | |
|     if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
 | |
|       rc = SQLITE_CORRUPT_VTAB;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( pNode!=0 ){
 | |
|       nodeHashInsert(pRtree, pNode);
 | |
|     }else{
 | |
|       rc = SQLITE_CORRUPT_VTAB;
 | |
|     }
 | |
|     *ppNode = pNode;
 | |
|   }else{
 | |
|     sqlite3_free(pNode);
 | |
|     *ppNode = 0;
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Overwrite cell iCell of node pNode with the contents of pCell.
 | |
| */
 | |
| static void nodeOverwriteCell(
 | |
|   Rtree *pRtree,             /* The overall R-Tree */
 | |
|   RtreeNode *pNode,          /* The node into which the cell is to be written */
 | |
|   RtreeCell *pCell,          /* The cell to write */
 | |
|   int iCell                  /* Index into pNode into which pCell is written */
 | |
| ){
 | |
|   int ii;
 | |
|   u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
 | |
|   p += writeInt64(p, pCell->iRowid);
 | |
|   for(ii=0; ii<(pRtree->nDim*2); ii++){
 | |
|     p += writeCoord(p, &pCell->aCoord[ii]);
 | |
|   }
 | |
|   pNode->isDirty = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the cell with index iCell from node pNode.
 | |
| */
 | |
| static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
 | |
|   u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
 | |
|   u8 *pSrc = &pDst[pRtree->nBytesPerCell];
 | |
|   int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
 | |
|   memmove(pDst, pSrc, nByte);
 | |
|   writeInt16(&pNode->zData[2], NCELL(pNode)-1);
 | |
|   pNode->isDirty = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert the contents of cell pCell into node pNode. If the insert
 | |
| ** is successful, return SQLITE_OK.
 | |
| **
 | |
| ** If there is not enough free space in pNode, return SQLITE_FULL.
 | |
| */
 | |
| static int nodeInsertCell(
 | |
|   Rtree *pRtree,                /* The overall R-Tree */
 | |
|   RtreeNode *pNode,             /* Write new cell into this node */
 | |
|   RtreeCell *pCell              /* The cell to be inserted */
 | |
| ){
 | |
|   int nCell;                    /* Current number of cells in pNode */
 | |
|   int nMaxCell;                 /* Maximum number of cells for pNode */
 | |
| 
 | |
|   nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
 | |
|   nCell = NCELL(pNode);
 | |
| 
 | |
|   assert( nCell<=nMaxCell );
 | |
|   if( nCell<nMaxCell ){
 | |
|     nodeOverwriteCell(pRtree, pNode, pCell, nCell);
 | |
|     writeInt16(&pNode->zData[2], nCell+1);
 | |
|     pNode->isDirty = 1;
 | |
|   }
 | |
| 
 | |
|   return (nCell==nMaxCell);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the node is dirty, write it out to the database.
 | |
| */
 | |
| static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pNode->isDirty ){
 | |
|     sqlite3_stmt *p = pRtree->pWriteNode;
 | |
|     if( pNode->iNode ){
 | |
|       sqlite3_bind_int64(p, 1, pNode->iNode);
 | |
|     }else{
 | |
|       sqlite3_bind_null(p, 1);
 | |
|     }
 | |
|     sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
 | |
|     sqlite3_step(p);
 | |
|     pNode->isDirty = 0;
 | |
|     rc = sqlite3_reset(p);
 | |
|     if( pNode->iNode==0 && rc==SQLITE_OK ){
 | |
|       pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
 | |
|       nodeHashInsert(pRtree, pNode);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release a reference to a node. If the node is dirty and the reference
 | |
| ** count drops to zero, the node data is written to the database.
 | |
| */
 | |
| static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pNode ){
 | |
|     assert( pNode->nRef>0 );
 | |
|     pNode->nRef--;
 | |
|     if( pNode->nRef==0 ){
 | |
|       if( pNode->iNode==1 ){
 | |
|         pRtree->iDepth = -1;
 | |
|       }
 | |
|       if( pNode->pParent ){
 | |
|         rc = nodeRelease(pRtree, pNode->pParent);
 | |
|       }
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = nodeWrite(pRtree, pNode);
 | |
|       }
 | |
|       nodeHashDelete(pRtree, pNode);
 | |
|       sqlite3_free(pNode);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the 64-bit integer value associated with cell iCell of
 | |
| ** node pNode. If pNode is a leaf node, this is a rowid. If it is
 | |
| ** an internal node, then the 64-bit integer is a child page number.
 | |
| */
 | |
| static i64 nodeGetRowid(
 | |
|   Rtree *pRtree,       /* The overall R-Tree */
 | |
|   RtreeNode *pNode,    /* The node from which to extract the ID */
 | |
|   int iCell            /* The cell index from which to extract the ID */
 | |
| ){
 | |
|   assert( iCell<NCELL(pNode) );
 | |
|   return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return coordinate iCoord from cell iCell in node pNode.
 | |
| */
 | |
| static void nodeGetCoord(
 | |
|   Rtree *pRtree,               /* The overall R-Tree */
 | |
|   RtreeNode *pNode,            /* The node from which to extract a coordinate */
 | |
|   int iCell,                   /* The index of the cell within the node */
 | |
|   int iCoord,                  /* Which coordinate to extract */
 | |
|   RtreeCoord *pCoord           /* OUT: Space to write result to */
 | |
| ){
 | |
|   readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Deserialize cell iCell of node pNode. Populate the structure pointed
 | |
| ** to by pCell with the results.
 | |
| */
 | |
| static void nodeGetCell(
 | |
|   Rtree *pRtree,               /* The overall R-Tree */
 | |
|   RtreeNode *pNode,            /* The node containing the cell to be read */
 | |
|   int iCell,                   /* Index of the cell within the node */
 | |
|   RtreeCell *pCell             /* OUT: Write the cell contents here */
 | |
| ){
 | |
|   u8 *pData;
 | |
|   RtreeCoord *pCoord;
 | |
|   int ii;
 | |
|   pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
 | |
|   pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
 | |
|   pCoord = pCell->aCoord;
 | |
|   for(ii=0; ii<pRtree->nDim*2; ii++){
 | |
|     readCoord(&pData[ii*4], &pCoord[ii]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Forward declaration for the function that does the work of
 | |
| ** the virtual table module xCreate() and xConnect() methods.
 | |
| */
 | |
| static int rtreeInit(
 | |
|   sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
 | |
| );
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xCreate method.
 | |
| */
 | |
| static int rtreeCreate(
 | |
|   sqlite3 *db,
 | |
|   void *pAux,
 | |
|   int argc, const char *const*argv,
 | |
|   sqlite3_vtab **ppVtab,
 | |
|   char **pzErr
 | |
| ){
 | |
|   return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xConnect method.
 | |
| */
 | |
| static int rtreeConnect(
 | |
|   sqlite3 *db,
 | |
|   void *pAux,
 | |
|   int argc, const char *const*argv,
 | |
|   sqlite3_vtab **ppVtab,
 | |
|   char **pzErr
 | |
| ){
 | |
|   return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Increment the r-tree reference count.
 | |
| */
 | |
| static void rtreeReference(Rtree *pRtree){
 | |
|   pRtree->nBusy++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Decrement the r-tree reference count. When the reference count reaches
 | |
| ** zero the structure is deleted.
 | |
| */
 | |
| static void rtreeRelease(Rtree *pRtree){
 | |
|   pRtree->nBusy--;
 | |
|   if( pRtree->nBusy==0 ){
 | |
|     sqlite3_finalize(pRtree->pReadNode);
 | |
|     sqlite3_finalize(pRtree->pWriteNode);
 | |
|     sqlite3_finalize(pRtree->pDeleteNode);
 | |
|     sqlite3_finalize(pRtree->pReadRowid);
 | |
|     sqlite3_finalize(pRtree->pWriteRowid);
 | |
|     sqlite3_finalize(pRtree->pDeleteRowid);
 | |
|     sqlite3_finalize(pRtree->pReadParent);
 | |
|     sqlite3_finalize(pRtree->pWriteParent);
 | |
|     sqlite3_finalize(pRtree->pDeleteParent);
 | |
|     sqlite3_free(pRtree);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xDisconnect method.
 | |
| */
 | |
| static int rtreeDisconnect(sqlite3_vtab *pVtab){
 | |
|   rtreeRelease((Rtree *)pVtab);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xDestroy method.
 | |
| */
 | |
| static int rtreeDestroy(sqlite3_vtab *pVtab){
 | |
|   Rtree *pRtree = (Rtree *)pVtab;
 | |
|   int rc;
 | |
|   char *zCreate = sqlite3_mprintf(
 | |
|     "DROP TABLE '%q'.'%q_node';"
 | |
|     "DROP TABLE '%q'.'%q_rowid';"
 | |
|     "DROP TABLE '%q'.'%q_parent';",
 | |
|     pRtree->zDb, pRtree->zName, 
 | |
|     pRtree->zDb, pRtree->zName,
 | |
|     pRtree->zDb, pRtree->zName
 | |
|   );
 | |
|   if( !zCreate ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
 | |
|     sqlite3_free(zCreate);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rtreeRelease(pRtree);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xOpen method.
 | |
| */
 | |
| static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
 | |
|   int rc = SQLITE_NOMEM;
 | |
|   RtreeCursor *pCsr;
 | |
| 
 | |
|   pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
 | |
|   if( pCsr ){
 | |
|     memset(pCsr, 0, sizeof(RtreeCursor));
 | |
|     pCsr->base.pVtab = pVTab;
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   *ppCursor = (sqlite3_vtab_cursor *)pCsr;
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free the RtreeCursor.aConstraint[] array and its contents.
 | |
| */
 | |
| static void freeCursorConstraints(RtreeCursor *pCsr){
 | |
|   if( pCsr->aConstraint ){
 | |
|     int i;                        /* Used to iterate through constraint array */
 | |
|     for(i=0; i<pCsr->nConstraint; i++){
 | |
|       sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
 | |
|       if( pInfo ){
 | |
|         if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
 | |
|         sqlite3_free(pInfo);
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(pCsr->aConstraint);
 | |
|     pCsr->aConstraint = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xClose method.
 | |
| */
 | |
| static int rtreeClose(sqlite3_vtab_cursor *cur){
 | |
|   Rtree *pRtree = (Rtree *)(cur->pVtab);
 | |
|   int ii;
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)cur;
 | |
|   freeCursorConstraints(pCsr);
 | |
|   sqlite3_free(pCsr->aPoint);
 | |
|   for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
 | |
|   sqlite3_free(pCsr);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rtree virtual table module xEof method.
 | |
| **
 | |
| ** Return non-zero if the cursor does not currently point to a valid 
 | |
| ** record (i.e if the scan has finished), or zero otherwise.
 | |
| */
 | |
| static int rtreeEof(sqlite3_vtab_cursor *cur){
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)cur;
 | |
|   return pCsr->atEOF;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert raw bits from the on-disk RTree record into a coordinate value.
 | |
| ** The on-disk format is big-endian and needs to be converted for little-
 | |
| ** endian platforms.  The on-disk record stores integer coordinates if
 | |
| ** eInt is true and it stores 32-bit floating point records if eInt is
 | |
| ** false.  a[] is the four bytes of the on-disk record to be decoded.
 | |
| ** Store the results in "r".
 | |
| **
 | |
| ** There are three versions of this macro, one each for little-endian and
 | |
| ** big-endian processors and a third generic implementation.  The endian-
 | |
| ** specific implementations are much faster and are preferred if the
 | |
| ** processor endianness is known at compile-time.  The SQLITE_BYTEORDER
 | |
| ** macro is part of sqliteInt.h and hence the endian-specific
 | |
| ** implementation will only be used if this module is compiled as part
 | |
| ** of the amalgamation.
 | |
| */
 | |
| #if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234
 | |
| #define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | |
|     RtreeCoord c;    /* Coordinate decoded */                   \
 | |
|     memcpy(&c.u,a,4);                                           \
 | |
|     c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)|                   \
 | |
|           ((c.u&0xff)<<24)|((c.u&0xff00)<<8);                   \
 | |
|     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | |
| }
 | |
| #elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321
 | |
| #define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | |
|     RtreeCoord c;    /* Coordinate decoded */                   \
 | |
|     memcpy(&c.u,a,4);                                           \
 | |
|     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | |
| }
 | |
| #else
 | |
| #define RTREE_DECODE_COORD(eInt, a, r) {                        \
 | |
|     RtreeCoord c;    /* Coordinate decoded */                   \
 | |
|     c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16)                     \
 | |
|            +((u32)a[2]<<8) + a[3];                              \
 | |
|     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Check the RTree node or entry given by pCellData and p against the MATCH
 | |
| ** constraint pConstraint.  
 | |
| */
 | |
| static int rtreeCallbackConstraint(
 | |
|   RtreeConstraint *pConstraint,  /* The constraint to test */
 | |
|   int eInt,                      /* True if RTree holding integer coordinates */
 | |
|   u8 *pCellData,                 /* Raw cell content */
 | |
|   RtreeSearchPoint *pSearch,     /* Container of this cell */
 | |
|   sqlite3_rtree_dbl *prScore,    /* OUT: score for the cell */
 | |
|   int *peWithin                  /* OUT: visibility of the cell */
 | |
| ){
 | |
|   int i;                                                /* Loop counter */
 | |
|   sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
 | |
|   int nCoord = pInfo->nCoord;                           /* No. of coordinates */
 | |
|   int rc;                                             /* Callback return code */
 | |
|   sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2];   /* Decoded coordinates */
 | |
| 
 | |
|   assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
 | |
|   assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
 | |
| 
 | |
|   if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
 | |
|     pInfo->iRowid = readInt64(pCellData);
 | |
|   }
 | |
|   pCellData += 8;
 | |
|   for(i=0; i<nCoord; i++, pCellData += 4){
 | |
|     RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]);
 | |
|   }
 | |
|   if( pConstraint->op==RTREE_MATCH ){
 | |
|     rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
 | |
|                               nCoord, aCoord, &i);
 | |
|     if( i==0 ) *peWithin = NOT_WITHIN;
 | |
|     *prScore = RTREE_ZERO;
 | |
|   }else{
 | |
|     pInfo->aCoord = aCoord;
 | |
|     pInfo->iLevel = pSearch->iLevel - 1;
 | |
|     pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
 | |
|     pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
 | |
|     rc = pConstraint->u.xQueryFunc(pInfo);
 | |
|     if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
 | |
|     if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
 | |
|       *prScore = pInfo->rScore;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Check the internal RTree node given by pCellData against constraint p.
 | |
| ** If this constraint cannot be satisfied by any child within the node,
 | |
| ** set *peWithin to NOT_WITHIN.
 | |
| */
 | |
| static void rtreeNonleafConstraint(
 | |
|   RtreeConstraint *p,        /* The constraint to test */
 | |
|   int eInt,                  /* True if RTree holds integer coordinates */
 | |
|   u8 *pCellData,             /* Raw cell content as appears on disk */
 | |
|   int *peWithin              /* Adjust downward, as appropriate */
 | |
| ){
 | |
|   sqlite3_rtree_dbl val;     /* Coordinate value convert to a double */
 | |
| 
 | |
|   /* p->iCoord might point to either a lower or upper bound coordinate
 | |
|   ** in a coordinate pair.  But make pCellData point to the lower bound.
 | |
|   */
 | |
|   pCellData += 8 + 4*(p->iCoord&0xfe);
 | |
| 
 | |
|   assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
 | |
|       || p->op==RTREE_GT || p->op==RTREE_EQ );
 | |
|   switch( p->op ){
 | |
|     case RTREE_LE:
 | |
|     case RTREE_LT:
 | |
|     case RTREE_EQ:
 | |
|       RTREE_DECODE_COORD(eInt, pCellData, val);
 | |
|       /* val now holds the lower bound of the coordinate pair */
 | |
|       if( p->u.rValue>=val ) return;
 | |
|       if( p->op!=RTREE_EQ ) break;  /* RTREE_LE and RTREE_LT end here */
 | |
|       /* Fall through for the RTREE_EQ case */
 | |
| 
 | |
|     default: /* RTREE_GT or RTREE_GE,  or fallthrough of RTREE_EQ */
 | |
|       pCellData += 4;
 | |
|       RTREE_DECODE_COORD(eInt, pCellData, val);
 | |
|       /* val now holds the upper bound of the coordinate pair */
 | |
|       if( p->u.rValue<=val ) return;
 | |
|   }
 | |
|   *peWithin = NOT_WITHIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check the leaf RTree cell given by pCellData against constraint p.
 | |
| ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
 | |
| ** If the constraint is satisfied, leave *peWithin unchanged.
 | |
| **
 | |
| ** The constraint is of the form:  xN op $val
 | |
| **
 | |
| ** The op is given by p->op.  The xN is p->iCoord-th coordinate in
 | |
| ** pCellData.  $val is given by p->u.rValue.
 | |
| */
 | |
| static void rtreeLeafConstraint(
 | |
|   RtreeConstraint *p,        /* The constraint to test */
 | |
|   int eInt,                  /* True if RTree holds integer coordinates */
 | |
|   u8 *pCellData,             /* Raw cell content as appears on disk */
 | |
|   int *peWithin              /* Adjust downward, as appropriate */
 | |
| ){
 | |
|   RtreeDValue xN;      /* Coordinate value converted to a double */
 | |
| 
 | |
|   assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
 | |
|       || p->op==RTREE_GT || p->op==RTREE_EQ );
 | |
|   pCellData += 8 + p->iCoord*4;
 | |
|   RTREE_DECODE_COORD(eInt, pCellData, xN);
 | |
|   switch( p->op ){
 | |
|     case RTREE_LE: if( xN <= p->u.rValue ) return;  break;
 | |
|     case RTREE_LT: if( xN <  p->u.rValue ) return;  break;
 | |
|     case RTREE_GE: if( xN >= p->u.rValue ) return;  break;
 | |
|     case RTREE_GT: if( xN >  p->u.rValue ) return;  break;
 | |
|     default:       if( xN == p->u.rValue ) return;  break;
 | |
|   }
 | |
|   *peWithin = NOT_WITHIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** One of the cells in node pNode is guaranteed to have a 64-bit 
 | |
| ** integer value equal to iRowid. Return the index of this cell.
 | |
| */
 | |
| static int nodeRowidIndex(
 | |
|   Rtree *pRtree, 
 | |
|   RtreeNode *pNode, 
 | |
|   i64 iRowid,
 | |
|   int *piIndex
 | |
| ){
 | |
|   int ii;
 | |
|   int nCell = NCELL(pNode);
 | |
|   assert( nCell<200 );
 | |
|   for(ii=0; ii<nCell; ii++){
 | |
|     if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
 | |
|       *piIndex = ii;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_CORRUPT_VTAB;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index of the cell containing a pointer to node pNode
 | |
| ** in its parent. If pNode is the root node, return -1.
 | |
| */
 | |
| static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
 | |
|   RtreeNode *pParent = pNode->pParent;
 | |
|   if( pParent ){
 | |
|     return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
 | |
|   }
 | |
|   *piIndex = -1;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare two search points.  Return negative, zero, or positive if the first
 | |
| ** is less than, equal to, or greater than the second.
 | |
| **
 | |
| ** The rScore is the primary key.  Smaller rScore values come first.
 | |
| ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
 | |
| ** iLevel values coming first.  In this way, if rScore is the same for all
 | |
| ** SearchPoints, then iLevel becomes the deciding factor and the result
 | |
| ** is a depth-first search, which is the desired default behavior.
 | |
| */
 | |
| static int rtreeSearchPointCompare(
 | |
|   const RtreeSearchPoint *pA,
 | |
|   const RtreeSearchPoint *pB
 | |
| ){
 | |
|   if( pA->rScore<pB->rScore ) return -1;
 | |
|   if( pA->rScore>pB->rScore ) return +1;
 | |
|   if( pA->iLevel<pB->iLevel ) return -1;
 | |
|   if( pA->iLevel>pB->iLevel ) return +1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Interchange to search points in a cursor.
 | |
| */
 | |
| static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
 | |
|   RtreeSearchPoint t = p->aPoint[i];
 | |
|   assert( i<j );
 | |
|   p->aPoint[i] = p->aPoint[j];
 | |
|   p->aPoint[j] = t;
 | |
|   i++; j++;
 | |
|   if( i<RTREE_CACHE_SZ ){
 | |
|     if( j>=RTREE_CACHE_SZ ){
 | |
|       nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
 | |
|       p->aNode[i] = 0;
 | |
|     }else{
 | |
|       RtreeNode *pTemp = p->aNode[i];
 | |
|       p->aNode[i] = p->aNode[j];
 | |
|       p->aNode[j] = pTemp;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the search point with the lowest current score.
 | |
| */
 | |
| static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
 | |
|   return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Get the RtreeNode for the search point with the lowest score.
 | |
| */
 | |
| static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
 | |
|   sqlite3_int64 id;
 | |
|   int ii = 1 - pCur->bPoint;
 | |
|   assert( ii==0 || ii==1 );
 | |
|   assert( pCur->bPoint || pCur->nPoint );
 | |
|   if( pCur->aNode[ii]==0 ){
 | |
|     assert( pRC!=0 );
 | |
|     id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
 | |
|     *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
 | |
|   }
 | |
|   return pCur->aNode[ii];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Push a new element onto the priority queue
 | |
| */
 | |
| static RtreeSearchPoint *rtreeEnqueue(
 | |
|   RtreeCursor *pCur,    /* The cursor */
 | |
|   RtreeDValue rScore,   /* Score for the new search point */
 | |
|   u8 iLevel             /* Level for the new search point */
 | |
| ){
 | |
|   int i, j;
 | |
|   RtreeSearchPoint *pNew;
 | |
|   if( pCur->nPoint>=pCur->nPointAlloc ){
 | |
|     int nNew = pCur->nPointAlloc*2 + 8;
 | |
|     pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
 | |
|     if( pNew==0 ) return 0;
 | |
|     pCur->aPoint = pNew;
 | |
|     pCur->nPointAlloc = nNew;
 | |
|   }
 | |
|   i = pCur->nPoint++;
 | |
|   pNew = pCur->aPoint + i;
 | |
|   pNew->rScore = rScore;
 | |
|   pNew->iLevel = iLevel;
 | |
|   assert( iLevel<=RTREE_MAX_DEPTH );
 | |
|   while( i>0 ){
 | |
|     RtreeSearchPoint *pParent;
 | |
|     j = (i-1)/2;
 | |
|     pParent = pCur->aPoint + j;
 | |
|     if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
 | |
|     rtreeSearchPointSwap(pCur, j, i);
 | |
|     i = j;
 | |
|     pNew = pParent;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a new RtreeSearchPoint and return a pointer to it.  Return
 | |
| ** NULL if malloc fails.
 | |
| */
 | |
| static RtreeSearchPoint *rtreeSearchPointNew(
 | |
|   RtreeCursor *pCur,    /* The cursor */
 | |
|   RtreeDValue rScore,   /* Score for the new search point */
 | |
|   u8 iLevel             /* Level for the new search point */
 | |
| ){
 | |
|   RtreeSearchPoint *pNew, *pFirst;
 | |
|   pFirst = rtreeSearchPointFirst(pCur);
 | |
|   pCur->anQueue[iLevel]++;
 | |
|   if( pFirst==0
 | |
|    || pFirst->rScore>rScore 
 | |
|    || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
 | |
|   ){
 | |
|     if( pCur->bPoint ){
 | |
|       int ii;
 | |
|       pNew = rtreeEnqueue(pCur, rScore, iLevel);
 | |
|       if( pNew==0 ) return 0;
 | |
|       ii = (int)(pNew - pCur->aPoint) + 1;
 | |
|       if( ii<RTREE_CACHE_SZ ){
 | |
|         assert( pCur->aNode[ii]==0 );
 | |
|         pCur->aNode[ii] = pCur->aNode[0];
 | |
|        }else{
 | |
|         nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
 | |
|       }
 | |
|       pCur->aNode[0] = 0;
 | |
|       *pNew = pCur->sPoint;
 | |
|     }
 | |
|     pCur->sPoint.rScore = rScore;
 | |
|     pCur->sPoint.iLevel = iLevel;
 | |
|     pCur->bPoint = 1;
 | |
|     return &pCur->sPoint;
 | |
|   }else{
 | |
|     return rtreeEnqueue(pCur, rScore, iLevel);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* Tracing routines for the RtreeSearchPoint queue */
 | |
| static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
 | |
|   if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
 | |
|   printf(" %d.%05lld.%02d %g %d",
 | |
|     p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
 | |
|   );
 | |
|   idx++;
 | |
|   if( idx<RTREE_CACHE_SZ ){
 | |
|     printf(" %p\n", pCur->aNode[idx]);
 | |
|   }else{
 | |
|     printf("\n");
 | |
|   }
 | |
| }
 | |
| static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
 | |
|   int ii;
 | |
|   printf("=== %9s ", zPrefix);
 | |
|   if( pCur->bPoint ){
 | |
|     tracePoint(&pCur->sPoint, -1, pCur);
 | |
|   }
 | |
|   for(ii=0; ii<pCur->nPoint; ii++){
 | |
|     if( ii>0 || pCur->bPoint ) printf("              ");
 | |
|     tracePoint(&pCur->aPoint[ii], ii, pCur);
 | |
|   }
 | |
| }
 | |
| # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
 | |
| #else
 | |
| # define RTREE_QUEUE_TRACE(A,B)   /* no-op */
 | |
| #endif
 | |
| 
 | |
| /* Remove the search point with the lowest current score.
 | |
| */
 | |
| static void rtreeSearchPointPop(RtreeCursor *p){
 | |
|   int i, j, k, n;
 | |
|   i = 1 - p->bPoint;
 | |
|   assert( i==0 || i==1 );
 | |
|   if( p->aNode[i] ){
 | |
|     nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
 | |
|     p->aNode[i] = 0;
 | |
|   }
 | |
|   if( p->bPoint ){
 | |
|     p->anQueue[p->sPoint.iLevel]--;
 | |
|     p->bPoint = 0;
 | |
|   }else if( p->nPoint ){
 | |
|     p->anQueue[p->aPoint[0].iLevel]--;
 | |
|     n = --p->nPoint;
 | |
|     p->aPoint[0] = p->aPoint[n];
 | |
|     if( n<RTREE_CACHE_SZ-1 ){
 | |
|       p->aNode[1] = p->aNode[n+1];
 | |
|       p->aNode[n+1] = 0;
 | |
|     }
 | |
|     i = 0;
 | |
|     while( (j = i*2+1)<n ){
 | |
|       k = j+1;
 | |
|       if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
 | |
|         if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
 | |
|           rtreeSearchPointSwap(p, i, k);
 | |
|           i = k;
 | |
|         }else{
 | |
|           break;
 | |
|         }
 | |
|       }else{
 | |
|         if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
 | |
|           rtreeSearchPointSwap(p, i, j);
 | |
|           i = j;
 | |
|         }else{
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Continue the search on cursor pCur until the front of the queue
 | |
| ** contains an entry suitable for returning as a result-set row,
 | |
| ** or until the RtreeSearchPoint queue is empty, indicating that the
 | |
| ** query has completed.
 | |
| */
 | |
| static int rtreeStepToLeaf(RtreeCursor *pCur){
 | |
|   RtreeSearchPoint *p;
 | |
|   Rtree *pRtree = RTREE_OF_CURSOR(pCur);
 | |
|   RtreeNode *pNode;
 | |
|   int eWithin;
 | |
|   int rc = SQLITE_OK;
 | |
|   int nCell;
 | |
|   int nConstraint = pCur->nConstraint;
 | |
|   int ii;
 | |
|   int eInt;
 | |
|   RtreeSearchPoint x;
 | |
| 
 | |
|   eInt = pRtree->eCoordType==RTREE_COORD_INT32;
 | |
|   while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
 | |
|     pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
 | |
|     if( rc ) return rc;
 | |
|     nCell = NCELL(pNode);
 | |
|     assert( nCell<200 );
 | |
|     while( p->iCell<nCell ){
 | |
|       sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
 | |
|       u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
 | |
|       eWithin = FULLY_WITHIN;
 | |
|       for(ii=0; ii<nConstraint; ii++){
 | |
|         RtreeConstraint *pConstraint = pCur->aConstraint + ii;
 | |
|         if( pConstraint->op>=RTREE_MATCH ){
 | |
|           rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
 | |
|                                        &rScore, &eWithin);
 | |
|           if( rc ) return rc;
 | |
|         }else if( p->iLevel==1 ){
 | |
|           rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
 | |
|         }else{
 | |
|           rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
 | |
|         }
 | |
|         if( eWithin==NOT_WITHIN ) break;
 | |
|       }
 | |
|       p->iCell++;
 | |
|       if( eWithin==NOT_WITHIN ) continue;
 | |
|       x.iLevel = p->iLevel - 1;
 | |
|       if( x.iLevel ){
 | |
|         x.id = readInt64(pCellData);
 | |
|         x.iCell = 0;
 | |
|       }else{
 | |
|         x.id = p->id;
 | |
|         x.iCell = p->iCell - 1;
 | |
|       }
 | |
|       if( p->iCell>=nCell ){
 | |
|         RTREE_QUEUE_TRACE(pCur, "POP-S:");
 | |
|         rtreeSearchPointPop(pCur);
 | |
|       }
 | |
|       if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
 | |
|       p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
 | |
|       if( p==0 ) return SQLITE_NOMEM;
 | |
|       p->eWithin = eWithin;
 | |
|       p->id = x.id;
 | |
|       p->iCell = x.iCell;
 | |
|       RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
 | |
|       break;
 | |
|     }
 | |
|     if( p->iCell>=nCell ){
 | |
|       RTREE_QUEUE_TRACE(pCur, "POP-Se:");
 | |
|       rtreeSearchPointPop(pCur);
 | |
|     }
 | |
|   }
 | |
|   pCur->atEOF = p==0;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xNext method.
 | |
| */
 | |
| static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   /* Move to the next entry that matches the configured constraints. */
 | |
|   RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
 | |
|   rtreeSearchPointPop(pCsr);
 | |
|   rc = rtreeStepToLeaf(pCsr);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xRowid method.
 | |
| */
 | |
| static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | |
|   RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
 | |
|   int rc = SQLITE_OK;
 | |
|   RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
 | |
|   if( rc==SQLITE_OK && p ){
 | |
|     *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xColumn method.
 | |
| */
 | |
| static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
 | |
|   Rtree *pRtree = (Rtree *)cur->pVtab;
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)cur;
 | |
|   RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
 | |
|   RtreeCoord c;
 | |
|   int rc = SQLITE_OK;
 | |
|   RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
 | |
| 
 | |
|   if( rc ) return rc;
 | |
|   if( p==0 ) return SQLITE_OK;
 | |
|   if( i==0 ){
 | |
|     sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
 | |
|   }else{
 | |
|     if( rc ) return rc;
 | |
|     nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
 | |
| #ifndef SQLITE_RTREE_INT_ONLY
 | |
|     if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | |
|       sqlite3_result_double(ctx, c.f);
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       assert( pRtree->eCoordType==RTREE_COORD_INT32 );
 | |
|       sqlite3_result_int(ctx, c.i);
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Use nodeAcquire() to obtain the leaf node containing the record with 
 | |
| ** rowid iRowid. If successful, set *ppLeaf to point to the node and
 | |
| ** return SQLITE_OK. If there is no such record in the table, set
 | |
| ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
 | |
| ** to zero and return an SQLite error code.
 | |
| */
 | |
| static int findLeafNode(
 | |
|   Rtree *pRtree,              /* RTree to search */
 | |
|   i64 iRowid,                 /* The rowid searching for */
 | |
|   RtreeNode **ppLeaf,         /* Write the node here */
 | |
|   sqlite3_int64 *piNode       /* Write the node-id here */
 | |
| ){
 | |
|   int rc;
 | |
|   *ppLeaf = 0;
 | |
|   sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
 | |
|   if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
 | |
|     i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
 | |
|     if( piNode ) *piNode = iNode;
 | |
|     rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
 | |
|     sqlite3_reset(pRtree->pReadRowid);
 | |
|   }else{
 | |
|     rc = sqlite3_reset(pRtree->pReadRowid);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called to configure the RtreeConstraint object passed
 | |
| ** as the second argument for a MATCH constraint. The value passed as the
 | |
| ** first argument to this function is the right-hand operand to the MATCH
 | |
| ** operator.
 | |
| */
 | |
| static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
 | |
|   RtreeMatchArg *pBlob;              /* BLOB returned by geometry function */
 | |
|   sqlite3_rtree_query_info *pInfo;   /* Callback information */
 | |
|   int nBlob;                         /* Size of the geometry function blob */
 | |
|   int nExpected;                     /* Expected size of the BLOB */
 | |
| 
 | |
|   /* Check that value is actually a blob. */
 | |
|   if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;
 | |
| 
 | |
|   /* Check that the blob is roughly the right size. */
 | |
|   nBlob = sqlite3_value_bytes(pValue);
 | |
|   if( nBlob<(int)sizeof(RtreeMatchArg) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob );
 | |
|   if( !pInfo ) return SQLITE_NOMEM;
 | |
|   memset(pInfo, 0, sizeof(*pInfo));
 | |
|   pBlob = (RtreeMatchArg*)&pInfo[1];
 | |
| 
 | |
|   memcpy(pBlob, sqlite3_value_blob(pValue), nBlob);
 | |
|   nExpected = (int)(sizeof(RtreeMatchArg) +
 | |
|                     pBlob->nParam*sizeof(sqlite3_value*) +
 | |
|                     (pBlob->nParam-1)*sizeof(RtreeDValue));
 | |
|   if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){
 | |
|     sqlite3_free(pInfo);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   pInfo->pContext = pBlob->cb.pContext;
 | |
|   pInfo->nParam = pBlob->nParam;
 | |
|   pInfo->aParam = pBlob->aParam;
 | |
|   pInfo->apSqlParam = pBlob->apSqlParam;
 | |
| 
 | |
|   if( pBlob->cb.xGeom ){
 | |
|     pCons->u.xGeom = pBlob->cb.xGeom;
 | |
|   }else{
 | |
|     pCons->op = RTREE_QUERY;
 | |
|     pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
 | |
|   }
 | |
|   pCons->pInfo = pInfo;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Rtree virtual table module xFilter method.
 | |
| */
 | |
| static int rtreeFilter(
 | |
|   sqlite3_vtab_cursor *pVtabCursor, 
 | |
|   int idxNum, const char *idxStr,
 | |
|   int argc, sqlite3_value **argv
 | |
| ){
 | |
|   Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
 | |
|   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
 | |
|   RtreeNode *pRoot = 0;
 | |
|   int ii;
 | |
|   int rc = SQLITE_OK;
 | |
|   int iCell = 0;
 | |
| 
 | |
|   rtreeReference(pRtree);
 | |
| 
 | |
|   /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
 | |
|   freeCursorConstraints(pCsr);
 | |
|   sqlite3_free(pCsr->aPoint);
 | |
|   memset(pCsr, 0, sizeof(RtreeCursor));
 | |
|   pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
 | |
| 
 | |
|   pCsr->iStrategy = idxNum;
 | |
|   if( idxNum==1 ){
 | |
|     /* Special case - lookup by rowid. */
 | |
|     RtreeNode *pLeaf;        /* Leaf on which the required cell resides */
 | |
|     RtreeSearchPoint *p;     /* Search point for the the leaf */
 | |
|     i64 iRowid = sqlite3_value_int64(argv[0]);
 | |
|     i64 iNode = 0;
 | |
|     rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
 | |
|     if( rc==SQLITE_OK && pLeaf!=0 ){
 | |
|       p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
 | |
|       assert( p!=0 );  /* Always returns pCsr->sPoint */
 | |
|       pCsr->aNode[0] = pLeaf;
 | |
|       p->id = iNode;
 | |
|       p->eWithin = PARTLY_WITHIN;
 | |
|       rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
 | |
|       p->iCell = iCell;
 | |
|       RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
 | |
|     }else{
 | |
|       pCsr->atEOF = 1;
 | |
|     }
 | |
|   }else{
 | |
|     /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 
 | |
|     ** with the configured constraints. 
 | |
|     */
 | |
|     rc = nodeAcquire(pRtree, 1, 0, &pRoot);
 | |
|     if( rc==SQLITE_OK && argc>0 ){
 | |
|       pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
 | |
|       pCsr->nConstraint = argc;
 | |
|       if( !pCsr->aConstraint ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }else{
 | |
|         memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
 | |
|         memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
 | |
|         assert( (idxStr==0 && argc==0)
 | |
|                 || (idxStr && (int)strlen(idxStr)==argc*2) );
 | |
|         for(ii=0; ii<argc; ii++){
 | |
|           RtreeConstraint *p = &pCsr->aConstraint[ii];
 | |
|           p->op = idxStr[ii*2];
 | |
|           p->iCoord = idxStr[ii*2+1]-'0';
 | |
|           if( p->op>=RTREE_MATCH ){
 | |
|             /* A MATCH operator. The right-hand-side must be a blob that
 | |
|             ** can be cast into an RtreeMatchArg object. One created using
 | |
|             ** an sqlite3_rtree_geometry_callback() SQL user function.
 | |
|             */
 | |
|             rc = deserializeGeometry(argv[ii], p);
 | |
|             if( rc!=SQLITE_OK ){
 | |
|               break;
 | |
|             }
 | |
|             p->pInfo->nCoord = pRtree->nDim*2;
 | |
|             p->pInfo->anQueue = pCsr->anQueue;
 | |
|             p->pInfo->mxLevel = pRtree->iDepth + 1;
 | |
|           }else{
 | |
| #ifdef SQLITE_RTREE_INT_ONLY
 | |
|             p->u.rValue = sqlite3_value_int64(argv[ii]);
 | |
| #else
 | |
|             p->u.rValue = sqlite3_value_double(argv[ii]);
 | |
| #endif
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       RtreeSearchPoint *pNew;
 | |
|       pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1);
 | |
|       if( pNew==0 ) return SQLITE_NOMEM;
 | |
|       pNew->id = 1;
 | |
|       pNew->iCell = 0;
 | |
|       pNew->eWithin = PARTLY_WITHIN;
 | |
|       assert( pCsr->bPoint==1 );
 | |
|       pCsr->aNode[0] = pRoot;
 | |
|       pRoot = 0;
 | |
|       RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
 | |
|       rc = rtreeStepToLeaf(pCsr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   nodeRelease(pRtree, pRoot);
 | |
|   rtreeRelease(pRtree);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
 | |
| ** extension is currently being used by a version of SQLite too old to
 | |
| ** support estimatedRows. In that case this function is a no-op.
 | |
| */
 | |
| static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
 | |
| #if SQLITE_VERSION_NUMBER>=3008002
 | |
|   if( sqlite3_libversion_number()>=3008002 ){
 | |
|     pIdxInfo->estimatedRows = nRow;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rtree virtual table module xBestIndex method. There are three
 | |
| ** table scan strategies to choose from (in order from most to 
 | |
| ** least desirable):
 | |
| **
 | |
| **   idxNum     idxStr        Strategy
 | |
| **   ------------------------------------------------
 | |
| **     1        Unused        Direct lookup by rowid.
 | |
| **     2        See below     R-tree query or full-table scan.
 | |
| **   ------------------------------------------------
 | |
| **
 | |
| ** If strategy 1 is used, then idxStr is not meaningful. If strategy
 | |
| ** 2 is used, idxStr is formatted to contain 2 bytes for each 
 | |
| ** constraint used. The first two bytes of idxStr correspond to 
 | |
| ** the constraint in sqlite3_index_info.aConstraintUsage[] with
 | |
| ** (argvIndex==1) etc.
 | |
| **
 | |
| ** The first of each pair of bytes in idxStr identifies the constraint
 | |
| ** operator as follows:
 | |
| **
 | |
| **   Operator    Byte Value
 | |
| **   ----------------------
 | |
| **      =        0x41 ('A')
 | |
| **     <=        0x42 ('B')
 | |
| **      <        0x43 ('C')
 | |
| **     >=        0x44 ('D')
 | |
| **      >        0x45 ('E')
 | |
| **   MATCH       0x46 ('F')
 | |
| **   ----------------------
 | |
| **
 | |
| ** The second of each pair of bytes identifies the coordinate column
 | |
| ** to which the constraint applies. The leftmost coordinate column
 | |
| ** is 'a', the second from the left 'b' etc.
 | |
| */
 | |
| static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
 | |
|   Rtree *pRtree = (Rtree*)tab;
 | |
|   int rc = SQLITE_OK;
 | |
|   int ii;
 | |
|   int bMatch = 0;                 /* True if there exists a MATCH constraint */
 | |
|   i64 nRow;                       /* Estimated rows returned by this scan */
 | |
| 
 | |
|   int iIdx = 0;
 | |
|   char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
 | |
|   memset(zIdxStr, 0, sizeof(zIdxStr));
 | |
| 
 | |
|   /* Check if there exists a MATCH constraint - even an unusable one. If there
 | |
|   ** is, do not consider the lookup-by-rowid plan as using such a plan would
 | |
|   ** require the VDBE to evaluate the MATCH constraint, which is not currently
 | |
|   ** possible. */
 | |
|   for(ii=0; ii<pIdxInfo->nConstraint; ii++){
 | |
|     if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
 | |
|       bMatch = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert( pIdxInfo->idxStr==0 );
 | |
|   for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
 | |
|     struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
 | |
| 
 | |
|     if( bMatch==0 && p->usable 
 | |
|      && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 
 | |
|     ){
 | |
|       /* We have an equality constraint on the rowid. Use strategy 1. */
 | |
|       int jj;
 | |
|       for(jj=0; jj<ii; jj++){
 | |
|         pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
 | |
|         pIdxInfo->aConstraintUsage[jj].omit = 0;
 | |
|       }
 | |
|       pIdxInfo->idxNum = 1;
 | |
|       pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
 | |
|       pIdxInfo->aConstraintUsage[jj].omit = 1;
 | |
| 
 | |
|       /* This strategy involves a two rowid lookups on an B-Tree structures
 | |
|       ** and then a linear search of an R-Tree node. This should be 
 | |
|       ** considered almost as quick as a direct rowid lookup (for which 
 | |
|       ** sqlite uses an internal cost of 0.0). It is expected to return
 | |
|       ** a single row.
 | |
|       */ 
 | |
|       pIdxInfo->estimatedCost = 30.0;
 | |
|       setEstimatedRows(pIdxInfo, 1);
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
| 
 | |
|     if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
 | |
|       u8 op;
 | |
|       switch( p->op ){
 | |
|         case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
 | |
|         case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
 | |
|         case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
 | |
|         case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
 | |
|         case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
 | |
|         default:
 | |
|           assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
 | |
|           op = RTREE_MATCH; 
 | |
|           break;
 | |
|       }
 | |
|       zIdxStr[iIdx++] = op;
 | |
|       zIdxStr[iIdx++] = p->iColumn - 1 + '0';
 | |
|       pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
 | |
|       pIdxInfo->aConstraintUsage[ii].omit = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pIdxInfo->idxNum = 2;
 | |
|   pIdxInfo->needToFreeIdxStr = 1;
 | |
|   if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   nRow = pRtree->nRowEst / (iIdx + 1);
 | |
|   pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
 | |
|   setEstimatedRows(pIdxInfo, nRow);
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the N-dimensional volumn of the cell stored in *p.
 | |
| */
 | |
| static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
 | |
|   RtreeDValue area = (RtreeDValue)1;
 | |
|   int ii;
 | |
|   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
 | |
|     area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
 | |
|   }
 | |
|   return area;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the margin length of cell p. The margin length is the sum
 | |
| ** of the objects size in each dimension.
 | |
| */
 | |
| static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
 | |
|   RtreeDValue margin = (RtreeDValue)0;
 | |
|   int ii;
 | |
|   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
 | |
|     margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
 | |
|   }
 | |
|   return margin;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Store the union of cells p1 and p2 in p1.
 | |
| */
 | |
| static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
 | |
|   int ii;
 | |
|   if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | |
|     for(ii=0; ii<(pRtree->nDim*2); ii+=2){
 | |
|       p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
 | |
|       p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
 | |
|     }
 | |
|   }else{
 | |
|     for(ii=0; ii<(pRtree->nDim*2); ii+=2){
 | |
|       p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
 | |
|       p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the area covered by p2 is a subset of the area covered
 | |
| ** by p1. False otherwise.
 | |
| */
 | |
| static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
 | |
|   int ii;
 | |
|   int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
 | |
|   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
 | |
|     RtreeCoord *a1 = &p1->aCoord[ii];
 | |
|     RtreeCoord *a2 = &p2->aCoord[ii];
 | |
|     if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 
 | |
|      || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 
 | |
|     ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount cell p would grow by if it were unioned with pCell.
 | |
| */
 | |
| static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
 | |
|   RtreeDValue area;
 | |
|   RtreeCell cell;
 | |
|   memcpy(&cell, p, sizeof(RtreeCell));
 | |
|   area = cellArea(pRtree, &cell);
 | |
|   cellUnion(pRtree, &cell, pCell);
 | |
|   return (cellArea(pRtree, &cell)-area);
 | |
| }
 | |
| 
 | |
| static RtreeDValue cellOverlap(
 | |
|   Rtree *pRtree, 
 | |
|   RtreeCell *p, 
 | |
|   RtreeCell *aCell, 
 | |
|   int nCell
 | |
| ){
 | |
|   int ii;
 | |
|   RtreeDValue overlap = RTREE_ZERO;
 | |
|   for(ii=0; ii<nCell; ii++){
 | |
|     int jj;
 | |
|     RtreeDValue o = (RtreeDValue)1;
 | |
|     for(jj=0; jj<(pRtree->nDim*2); jj+=2){
 | |
|       RtreeDValue x1, x2;
 | |
|       x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
 | |
|       x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
 | |
|       if( x2<x1 ){
 | |
|         o = (RtreeDValue)0;
 | |
|         break;
 | |
|       }else{
 | |
|         o = o * (x2-x1);
 | |
|       }
 | |
|     }
 | |
|     overlap += o;
 | |
|   }
 | |
|   return overlap;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function implements the ChooseLeaf algorithm from Gutman[84].
 | |
| ** ChooseSubTree in r*tree terminology.
 | |
| */
 | |
| static int ChooseLeaf(
 | |
|   Rtree *pRtree,               /* Rtree table */
 | |
|   RtreeCell *pCell,            /* Cell to insert into rtree */
 | |
|   int iHeight,                 /* Height of sub-tree rooted at pCell */
 | |
|   RtreeNode **ppLeaf           /* OUT: Selected leaf page */
 | |
| ){
 | |
|   int rc;
 | |
|   int ii;
 | |
|   RtreeNode *pNode;
 | |
|   rc = nodeAcquire(pRtree, 1, 0, &pNode);
 | |
| 
 | |
|   for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
 | |
|     int iCell;
 | |
|     sqlite3_int64 iBest = 0;
 | |
| 
 | |
|     RtreeDValue fMinGrowth = RTREE_ZERO;
 | |
|     RtreeDValue fMinArea = RTREE_ZERO;
 | |
| 
 | |
|     int nCell = NCELL(pNode);
 | |
|     RtreeCell cell;
 | |
|     RtreeNode *pChild;
 | |
| 
 | |
|     RtreeCell *aCell = 0;
 | |
| 
 | |
|     /* Select the child node which will be enlarged the least if pCell
 | |
|     ** is inserted into it. Resolve ties by choosing the entry with
 | |
|     ** the smallest area.
 | |
|     */
 | |
|     for(iCell=0; iCell<nCell; iCell++){
 | |
|       int bBest = 0;
 | |
|       RtreeDValue growth;
 | |
|       RtreeDValue area;
 | |
|       nodeGetCell(pRtree, pNode, iCell, &cell);
 | |
|       growth = cellGrowth(pRtree, &cell, pCell);
 | |
|       area = cellArea(pRtree, &cell);
 | |
|       if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
 | |
|         bBest = 1;
 | |
|       }
 | |
|       if( bBest ){
 | |
|         fMinGrowth = growth;
 | |
|         fMinArea = area;
 | |
|         iBest = cell.iRowid;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     sqlite3_free(aCell);
 | |
|     rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
 | |
|     nodeRelease(pRtree, pNode);
 | |
|     pNode = pChild;
 | |
|   }
 | |
| 
 | |
|   *ppLeaf = pNode;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A cell with the same content as pCell has just been inserted into
 | |
| ** the node pNode. This function updates the bounding box cells in
 | |
| ** all ancestor elements.
 | |
| */
 | |
| static int AdjustTree(
 | |
|   Rtree *pRtree,                    /* Rtree table */
 | |
|   RtreeNode *pNode,                 /* Adjust ancestry of this node. */
 | |
|   RtreeCell *pCell                  /* This cell was just inserted */
 | |
| ){
 | |
|   RtreeNode *p = pNode;
 | |
|   while( p->pParent ){
 | |
|     RtreeNode *pParent = p->pParent;
 | |
|     RtreeCell cell;
 | |
|     int iCell;
 | |
| 
 | |
|     if( nodeParentIndex(pRtree, p, &iCell) ){
 | |
|       return SQLITE_CORRUPT_VTAB;
 | |
|     }
 | |
| 
 | |
|     nodeGetCell(pRtree, pParent, iCell, &cell);
 | |
|     if( !cellContains(pRtree, &cell, pCell) ){
 | |
|       cellUnion(pRtree, &cell, pCell);
 | |
|       nodeOverwriteCell(pRtree, pParent, &cell, iCell);
 | |
|     }
 | |
|  
 | |
|     p = pParent;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
 | |
| */
 | |
| static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
 | |
|   sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
 | |
|   sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
 | |
|   sqlite3_step(pRtree->pWriteRowid);
 | |
|   return sqlite3_reset(pRtree->pWriteRowid);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write mapping (iNode->iPar) to the <rtree>_parent table.
 | |
| */
 | |
| static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
 | |
|   sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
 | |
|   sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
 | |
|   sqlite3_step(pRtree->pWriteParent);
 | |
|   return sqlite3_reset(pRtree->pWriteParent);
 | |
| }
 | |
| 
 | |
| static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Arguments aIdx, aDistance and aSpare all point to arrays of size
 | |
| ** nIdx. The aIdx array contains the set of integers from 0 to 
 | |
| ** (nIdx-1) in no particular order. This function sorts the values
 | |
| ** in aIdx according to the indexed values in aDistance. For
 | |
| ** example, assuming the inputs:
 | |
| **
 | |
| **   aIdx      = { 0,   1,   2,   3 }
 | |
| **   aDistance = { 5.0, 2.0, 7.0, 6.0 }
 | |
| **
 | |
| ** this function sets the aIdx array to contain:
 | |
| **
 | |
| **   aIdx      = { 0,   1,   2,   3 }
 | |
| **
 | |
| ** The aSpare array is used as temporary working space by the
 | |
| ** sorting algorithm.
 | |
| */
 | |
| static void SortByDistance(
 | |
|   int *aIdx, 
 | |
|   int nIdx, 
 | |
|   RtreeDValue *aDistance, 
 | |
|   int *aSpare
 | |
| ){
 | |
|   if( nIdx>1 ){
 | |
|     int iLeft = 0;
 | |
|     int iRight = 0;
 | |
| 
 | |
|     int nLeft = nIdx/2;
 | |
|     int nRight = nIdx-nLeft;
 | |
|     int *aLeft = aIdx;
 | |
|     int *aRight = &aIdx[nLeft];
 | |
| 
 | |
|     SortByDistance(aLeft, nLeft, aDistance, aSpare);
 | |
|     SortByDistance(aRight, nRight, aDistance, aSpare);
 | |
| 
 | |
|     memcpy(aSpare, aLeft, sizeof(int)*nLeft);
 | |
|     aLeft = aSpare;
 | |
| 
 | |
|     while( iLeft<nLeft || iRight<nRight ){
 | |
|       if( iLeft==nLeft ){
 | |
|         aIdx[iLeft+iRight] = aRight[iRight];
 | |
|         iRight++;
 | |
|       }else if( iRight==nRight ){
 | |
|         aIdx[iLeft+iRight] = aLeft[iLeft];
 | |
|         iLeft++;
 | |
|       }else{
 | |
|         RtreeDValue fLeft = aDistance[aLeft[iLeft]];
 | |
|         RtreeDValue fRight = aDistance[aRight[iRight]];
 | |
|         if( fLeft<fRight ){
 | |
|           aIdx[iLeft+iRight] = aLeft[iLeft];
 | |
|           iLeft++;
 | |
|         }else{
 | |
|           aIdx[iLeft+iRight] = aRight[iRight];
 | |
|           iRight++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|     /* Check that the sort worked */
 | |
|     {
 | |
|       int jj;
 | |
|       for(jj=1; jj<nIdx; jj++){
 | |
|         RtreeDValue left = aDistance[aIdx[jj-1]];
 | |
|         RtreeDValue right = aDistance[aIdx[jj]];
 | |
|         assert( left<=right );
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Arguments aIdx, aCell and aSpare all point to arrays of size
 | |
| ** nIdx. The aIdx array contains the set of integers from 0 to 
 | |
| ** (nIdx-1) in no particular order. This function sorts the values
 | |
| ** in aIdx according to dimension iDim of the cells in aCell. The
 | |
| ** minimum value of dimension iDim is considered first, the
 | |
| ** maximum used to break ties.
 | |
| **
 | |
| ** The aSpare array is used as temporary working space by the
 | |
| ** sorting algorithm.
 | |
| */
 | |
| static void SortByDimension(
 | |
|   Rtree *pRtree,
 | |
|   int *aIdx, 
 | |
|   int nIdx, 
 | |
|   int iDim, 
 | |
|   RtreeCell *aCell, 
 | |
|   int *aSpare
 | |
| ){
 | |
|   if( nIdx>1 ){
 | |
| 
 | |
|     int iLeft = 0;
 | |
|     int iRight = 0;
 | |
| 
 | |
|     int nLeft = nIdx/2;
 | |
|     int nRight = nIdx-nLeft;
 | |
|     int *aLeft = aIdx;
 | |
|     int *aRight = &aIdx[nLeft];
 | |
| 
 | |
|     SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
 | |
|     SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
 | |
| 
 | |
|     memcpy(aSpare, aLeft, sizeof(int)*nLeft);
 | |
|     aLeft = aSpare;
 | |
|     while( iLeft<nLeft || iRight<nRight ){
 | |
|       RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
 | |
|       RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
 | |
|       RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
 | |
|       RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
 | |
|       if( (iLeft!=nLeft) && ((iRight==nRight)
 | |
|        || (xleft1<xright1)
 | |
|        || (xleft1==xright1 && xleft2<xright2)
 | |
|       )){
 | |
|         aIdx[iLeft+iRight] = aLeft[iLeft];
 | |
|         iLeft++;
 | |
|       }else{
 | |
|         aIdx[iLeft+iRight] = aRight[iRight];
 | |
|         iRight++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|     /* Check that the sort worked */
 | |
|     {
 | |
|       int jj;
 | |
|       for(jj=1; jj<nIdx; jj++){
 | |
|         RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
 | |
|         RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
 | |
|         RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
 | |
|         RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
 | |
|         assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
 | |
| */
 | |
| static int splitNodeStartree(
 | |
|   Rtree *pRtree,
 | |
|   RtreeCell *aCell,
 | |
|   int nCell,
 | |
|   RtreeNode *pLeft,
 | |
|   RtreeNode *pRight,
 | |
|   RtreeCell *pBboxLeft,
 | |
|   RtreeCell *pBboxRight
 | |
| ){
 | |
|   int **aaSorted;
 | |
|   int *aSpare;
 | |
|   int ii;
 | |
| 
 | |
|   int iBestDim = 0;
 | |
|   int iBestSplit = 0;
 | |
|   RtreeDValue fBestMargin = RTREE_ZERO;
 | |
| 
 | |
|   int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
 | |
| 
 | |
|   aaSorted = (int **)sqlite3_malloc(nByte);
 | |
|   if( !aaSorted ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
 | |
|   memset(aaSorted, 0, nByte);
 | |
|   for(ii=0; ii<pRtree->nDim; ii++){
 | |
|     int jj;
 | |
|     aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
 | |
|     for(jj=0; jj<nCell; jj++){
 | |
|       aaSorted[ii][jj] = jj;
 | |
|     }
 | |
|     SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
 | |
|   }
 | |
| 
 | |
|   for(ii=0; ii<pRtree->nDim; ii++){
 | |
|     RtreeDValue margin = RTREE_ZERO;
 | |
|     RtreeDValue fBestOverlap = RTREE_ZERO;
 | |
|     RtreeDValue fBestArea = RTREE_ZERO;
 | |
|     int iBestLeft = 0;
 | |
|     int nLeft;
 | |
| 
 | |
|     for(
 | |
|       nLeft=RTREE_MINCELLS(pRtree); 
 | |
|       nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
 | |
|       nLeft++
 | |
|     ){
 | |
|       RtreeCell left;
 | |
|       RtreeCell right;
 | |
|       int kk;
 | |
|       RtreeDValue overlap;
 | |
|       RtreeDValue area;
 | |
| 
 | |
|       memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
 | |
|       memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
 | |
|       for(kk=1; kk<(nCell-1); kk++){
 | |
|         if( kk<nLeft ){
 | |
|           cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
 | |
|         }else{
 | |
|           cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
 | |
|         }
 | |
|       }
 | |
|       margin += cellMargin(pRtree, &left);
 | |
|       margin += cellMargin(pRtree, &right);
 | |
|       overlap = cellOverlap(pRtree, &left, &right, 1);
 | |
|       area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
 | |
|       if( (nLeft==RTREE_MINCELLS(pRtree))
 | |
|        || (overlap<fBestOverlap)
 | |
|        || (overlap==fBestOverlap && area<fBestArea)
 | |
|       ){
 | |
|         iBestLeft = nLeft;
 | |
|         fBestOverlap = overlap;
 | |
|         fBestArea = area;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if( ii==0 || margin<fBestMargin ){
 | |
|       iBestDim = ii;
 | |
|       fBestMargin = margin;
 | |
|       iBestSplit = iBestLeft;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
 | |
|   memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
 | |
|   for(ii=0; ii<nCell; ii++){
 | |
|     RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
 | |
|     RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
 | |
|     RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
 | |
|     nodeInsertCell(pRtree, pTarget, pCell);
 | |
|     cellUnion(pRtree, pBbox, pCell);
 | |
|   }
 | |
| 
 | |
|   sqlite3_free(aaSorted);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int updateMapping(
 | |
|   Rtree *pRtree, 
 | |
|   i64 iRowid, 
 | |
|   RtreeNode *pNode, 
 | |
|   int iHeight
 | |
| ){
 | |
|   int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
 | |
|   xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
 | |
|   if( iHeight>0 ){
 | |
|     RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
 | |
|     if( pChild ){
 | |
|       nodeRelease(pRtree, pChild->pParent);
 | |
|       nodeReference(pNode);
 | |
|       pChild->pParent = pNode;
 | |
|     }
 | |
|   }
 | |
|   return xSetMapping(pRtree, iRowid, pNode->iNode);
 | |
| }
 | |
| 
 | |
| static int SplitNode(
 | |
|   Rtree *pRtree,
 | |
|   RtreeNode *pNode,
 | |
|   RtreeCell *pCell,
 | |
|   int iHeight
 | |
| ){
 | |
|   int i;
 | |
|   int newCellIsRight = 0;
 | |
| 
 | |
|   int rc = SQLITE_OK;
 | |
|   int nCell = NCELL(pNode);
 | |
|   RtreeCell *aCell;
 | |
|   int *aiUsed;
 | |
| 
 | |
|   RtreeNode *pLeft = 0;
 | |
|   RtreeNode *pRight = 0;
 | |
| 
 | |
|   RtreeCell leftbbox;
 | |
|   RtreeCell rightbbox;
 | |
| 
 | |
|   /* Allocate an array and populate it with a copy of pCell and 
 | |
|   ** all cells from node pLeft. Then zero the original node.
 | |
|   */
 | |
|   aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
 | |
|   if( !aCell ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto splitnode_out;
 | |
|   }
 | |
|   aiUsed = (int *)&aCell[nCell+1];
 | |
|   memset(aiUsed, 0, sizeof(int)*(nCell+1));
 | |
|   for(i=0; i<nCell; i++){
 | |
|     nodeGetCell(pRtree, pNode, i, &aCell[i]);
 | |
|   }
 | |
|   nodeZero(pRtree, pNode);
 | |
|   memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
 | |
|   nCell++;
 | |
| 
 | |
|   if( pNode->iNode==1 ){
 | |
|     pRight = nodeNew(pRtree, pNode);
 | |
|     pLeft = nodeNew(pRtree, pNode);
 | |
|     pRtree->iDepth++;
 | |
|     pNode->isDirty = 1;
 | |
|     writeInt16(pNode->zData, pRtree->iDepth);
 | |
|   }else{
 | |
|     pLeft = pNode;
 | |
|     pRight = nodeNew(pRtree, pLeft->pParent);
 | |
|     nodeReference(pLeft);
 | |
|   }
 | |
| 
 | |
|   if( !pLeft || !pRight ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto splitnode_out;
 | |
|   }
 | |
| 
 | |
|   memset(pLeft->zData, 0, pRtree->iNodeSize);
 | |
|   memset(pRight->zData, 0, pRtree->iNodeSize);
 | |
| 
 | |
|   rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
 | |
|                          &leftbbox, &rightbbox);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     goto splitnode_out;
 | |
|   }
 | |
| 
 | |
|   /* Ensure both child nodes have node numbers assigned to them by calling
 | |
|   ** nodeWrite(). Node pRight always needs a node number, as it was created
 | |
|   ** by nodeNew() above. But node pLeft sometimes already has a node number.
 | |
|   ** In this case avoid the all to nodeWrite().
 | |
|   */
 | |
|   if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
 | |
|    || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
 | |
|   ){
 | |
|     goto splitnode_out;
 | |
|   }
 | |
| 
 | |
|   rightbbox.iRowid = pRight->iNode;
 | |
|   leftbbox.iRowid = pLeft->iNode;
 | |
| 
 | |
|   if( pNode->iNode==1 ){
 | |
|     rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto splitnode_out;
 | |
|     }
 | |
|   }else{
 | |
|     RtreeNode *pParent = pLeft->pParent;
 | |
|     int iCell;
 | |
|     rc = nodeParentIndex(pRtree, pLeft, &iCell);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
 | |
|       rc = AdjustTree(pRtree, pParent, &leftbbox);
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto splitnode_out;
 | |
|     }
 | |
|   }
 | |
|   if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
 | |
|     goto splitnode_out;
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<NCELL(pRight); i++){
 | |
|     i64 iRowid = nodeGetRowid(pRtree, pRight, i);
 | |
|     rc = updateMapping(pRtree, iRowid, pRight, iHeight);
 | |
|     if( iRowid==pCell->iRowid ){
 | |
|       newCellIsRight = 1;
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto splitnode_out;
 | |
|     }
 | |
|   }
 | |
|   if( pNode->iNode==1 ){
 | |
|     for(i=0; i<NCELL(pLeft); i++){
 | |
|       i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
 | |
|       rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto splitnode_out;
 | |
|       }
 | |
|     }
 | |
|   }else if( newCellIsRight==0 ){
 | |
|     rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = nodeRelease(pRtree, pRight);
 | |
|     pRight = 0;
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = nodeRelease(pRtree, pLeft);
 | |
|     pLeft = 0;
 | |
|   }
 | |
| 
 | |
| splitnode_out:
 | |
|   nodeRelease(pRtree, pRight);
 | |
|   nodeRelease(pRtree, pLeft);
 | |
|   sqlite3_free(aCell);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If node pLeaf is not the root of the r-tree and its pParent pointer is 
 | |
| ** still NULL, load all ancestor nodes of pLeaf into memory and populate
 | |
| ** the pLeaf->pParent chain all the way up to the root node.
 | |
| **
 | |
| ** This operation is required when a row is deleted (or updated - an update
 | |
| ** is implemented as a delete followed by an insert). SQLite provides the
 | |
| ** rowid of the row to delete, which can be used to find the leaf on which
 | |
| ** the entry resides (argument pLeaf). Once the leaf is located, this 
 | |
| ** function is called to determine its ancestry.
 | |
| */
 | |
| static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
 | |
|   int rc = SQLITE_OK;
 | |
|   RtreeNode *pChild = pLeaf;
 | |
|   while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
 | |
|     int rc2 = SQLITE_OK;          /* sqlite3_reset() return code */
 | |
|     sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
 | |
|     rc = sqlite3_step(pRtree->pReadParent);
 | |
|     if( rc==SQLITE_ROW ){
 | |
|       RtreeNode *pTest;           /* Used to test for reference loops */
 | |
|       i64 iNode;                  /* Node number of parent node */
 | |
| 
 | |
|       /* Before setting pChild->pParent, test that we are not creating a
 | |
|       ** loop of references (as we would if, say, pChild==pParent). We don't
 | |
|       ** want to do this as it leads to a memory leak when trying to delete
 | |
|       ** the referenced counted node structures.
 | |
|       */
 | |
|       iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
 | |
|       for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
 | |
|       if( !pTest ){
 | |
|         rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
 | |
|       }
 | |
|     }
 | |
|     rc = sqlite3_reset(pRtree->pReadParent);
 | |
|     if( rc==SQLITE_OK ) rc = rc2;
 | |
|     if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
 | |
|     pChild = pChild->pParent;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int deleteCell(Rtree *, RtreeNode *, int, int);
 | |
| 
 | |
| static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
 | |
|   int rc;
 | |
|   int rc2;
 | |
|   RtreeNode *pParent = 0;
 | |
|   int iCell;
 | |
| 
 | |
|   assert( pNode->nRef==1 );
 | |
| 
 | |
|   /* Remove the entry in the parent cell. */
 | |
|   rc = nodeParentIndex(pRtree, pNode, &iCell);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pParent = pNode->pParent;
 | |
|     pNode->pParent = 0;
 | |
|     rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
 | |
|   }
 | |
|   rc2 = nodeRelease(pRtree, pParent);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = rc2;
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Remove the xxx_node entry. */
 | |
|   sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
 | |
|   sqlite3_step(pRtree->pDeleteNode);
 | |
|   if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Remove the xxx_parent entry. */
 | |
|   sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
 | |
|   sqlite3_step(pRtree->pDeleteParent);
 | |
|   if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
 | |
|     return rc;
 | |
|   }
 | |
|   
 | |
|   /* Remove the node from the in-memory hash table and link it into
 | |
|   ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
 | |
|   */
 | |
|   nodeHashDelete(pRtree, pNode);
 | |
|   pNode->iNode = iHeight;
 | |
|   pNode->pNext = pRtree->pDeleted;
 | |
|   pNode->nRef++;
 | |
|   pRtree->pDeleted = pNode;
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
 | |
|   RtreeNode *pParent = pNode->pParent;
 | |
|   int rc = SQLITE_OK; 
 | |
|   if( pParent ){
 | |
|     int ii; 
 | |
|     int nCell = NCELL(pNode);
 | |
|     RtreeCell box;                            /* Bounding box for pNode */
 | |
|     nodeGetCell(pRtree, pNode, 0, &box);
 | |
|     for(ii=1; ii<nCell; ii++){
 | |
|       RtreeCell cell;
 | |
|       nodeGetCell(pRtree, pNode, ii, &cell);
 | |
|       cellUnion(pRtree, &box, &cell);
 | |
|     }
 | |
|     box.iRowid = pNode->iNode;
 | |
|     rc = nodeParentIndex(pRtree, pNode, &ii);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       nodeOverwriteCell(pRtree, pParent, &box, ii);
 | |
|       rc = fixBoundingBox(pRtree, pParent);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the cell at index iCell of node pNode. After removing the
 | |
| ** cell, adjust the r-tree data structure if required.
 | |
| */
 | |
| static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
 | |
|   RtreeNode *pParent;
 | |
|   int rc;
 | |
| 
 | |
|   if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Remove the cell from the node. This call just moves bytes around
 | |
|   ** the in-memory node image, so it cannot fail.
 | |
|   */
 | |
|   nodeDeleteCell(pRtree, pNode, iCell);
 | |
| 
 | |
|   /* If the node is not the tree root and now has less than the minimum
 | |
|   ** number of cells, remove it from the tree. Otherwise, update the
 | |
|   ** cell in the parent node so that it tightly contains the updated
 | |
|   ** node.
 | |
|   */
 | |
|   pParent = pNode->pParent;
 | |
|   assert( pParent || pNode->iNode==1 );
 | |
|   if( pParent ){
 | |
|     if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
 | |
|       rc = removeNode(pRtree, pNode, iHeight);
 | |
|     }else{
 | |
|       rc = fixBoundingBox(pRtree, pNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int Reinsert(
 | |
|   Rtree *pRtree, 
 | |
|   RtreeNode *pNode, 
 | |
|   RtreeCell *pCell, 
 | |
|   int iHeight
 | |
| ){
 | |
|   int *aOrder;
 | |
|   int *aSpare;
 | |
|   RtreeCell *aCell;
 | |
|   RtreeDValue *aDistance;
 | |
|   int nCell;
 | |
|   RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
 | |
|   int iDim;
 | |
|   int ii;
 | |
|   int rc = SQLITE_OK;
 | |
|   int n;
 | |
| 
 | |
|   memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
 | |
| 
 | |
|   nCell = NCELL(pNode)+1;
 | |
|   n = (nCell+1)&(~1);
 | |
| 
 | |
|   /* Allocate the buffers used by this operation. The allocation is
 | |
|   ** relinquished before this function returns.
 | |
|   */
 | |
|   aCell = (RtreeCell *)sqlite3_malloc(n * (
 | |
|     sizeof(RtreeCell)     +         /* aCell array */
 | |
|     sizeof(int)           +         /* aOrder array */
 | |
|     sizeof(int)           +         /* aSpare array */
 | |
|     sizeof(RtreeDValue)             /* aDistance array */
 | |
|   ));
 | |
|   if( !aCell ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   aOrder    = (int *)&aCell[n];
 | |
|   aSpare    = (int *)&aOrder[n];
 | |
|   aDistance = (RtreeDValue *)&aSpare[n];
 | |
| 
 | |
|   for(ii=0; ii<nCell; ii++){
 | |
|     if( ii==(nCell-1) ){
 | |
|       memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
 | |
|     }else{
 | |
|       nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
 | |
|     }
 | |
|     aOrder[ii] = ii;
 | |
|     for(iDim=0; iDim<pRtree->nDim; iDim++){
 | |
|       aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
 | |
|       aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
 | |
|     }
 | |
|   }
 | |
|   for(iDim=0; iDim<pRtree->nDim; iDim++){
 | |
|     aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
 | |
|   }
 | |
| 
 | |
|   for(ii=0; ii<nCell; ii++){
 | |
|     aDistance[ii] = RTREE_ZERO;
 | |
|     for(iDim=0; iDim<pRtree->nDim; iDim++){
 | |
|       RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
 | |
|                                DCOORD(aCell[ii].aCoord[iDim*2]));
 | |
|       aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SortByDistance(aOrder, nCell, aDistance, aSpare);
 | |
|   nodeZero(pRtree, pNode);
 | |
| 
 | |
|   for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
 | |
|     RtreeCell *p = &aCell[aOrder[ii]];
 | |
|     nodeInsertCell(pRtree, pNode, p);
 | |
|     if( p->iRowid==pCell->iRowid ){
 | |
|       if( iHeight==0 ){
 | |
|         rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
 | |
|       }else{
 | |
|         rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = fixBoundingBox(pRtree, pNode);
 | |
|   }
 | |
|   for(; rc==SQLITE_OK && ii<nCell; ii++){
 | |
|     /* Find a node to store this cell in. pNode->iNode currently contains
 | |
|     ** the height of the sub-tree headed by the cell.
 | |
|     */
 | |
|     RtreeNode *pInsert;
 | |
|     RtreeCell *p = &aCell[aOrder[ii]];
 | |
|     rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       int rc2;
 | |
|       rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
 | |
|       rc2 = nodeRelease(pRtree, pInsert);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = rc2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3_free(aCell);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert cell pCell into node pNode. Node pNode is the head of a 
 | |
| ** subtree iHeight high (leaf nodes have iHeight==0).
 | |
| */
 | |
| static int rtreeInsertCell(
 | |
|   Rtree *pRtree,
 | |
|   RtreeNode *pNode,
 | |
|   RtreeCell *pCell,
 | |
|   int iHeight
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( iHeight>0 ){
 | |
|     RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
 | |
|     if( pChild ){
 | |
|       nodeRelease(pRtree, pChild->pParent);
 | |
|       nodeReference(pNode);
 | |
|       pChild->pParent = pNode;
 | |
|     }
 | |
|   }
 | |
|   if( nodeInsertCell(pRtree, pNode, pCell) ){
 | |
|     if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
 | |
|       rc = SplitNode(pRtree, pNode, pCell, iHeight);
 | |
|     }else{
 | |
|       pRtree->iReinsertHeight = iHeight;
 | |
|       rc = Reinsert(pRtree, pNode, pCell, iHeight);
 | |
|     }
 | |
|   }else{
 | |
|     rc = AdjustTree(pRtree, pNode, pCell);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( iHeight==0 ){
 | |
|         rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
 | |
|       }else{
 | |
|         rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
 | |
|   int ii;
 | |
|   int rc = SQLITE_OK;
 | |
|   int nCell = NCELL(pNode);
 | |
| 
 | |
|   for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
 | |
|     RtreeNode *pInsert;
 | |
|     RtreeCell cell;
 | |
|     nodeGetCell(pRtree, pNode, ii, &cell);
 | |
| 
 | |
|     /* Find a node to store this cell in. pNode->iNode currently contains
 | |
|     ** the height of the sub-tree headed by the cell.
 | |
|     */
 | |
|     rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       int rc2;
 | |
|       rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
 | |
|       rc2 = nodeRelease(pRtree, pInsert);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = rc2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Select a currently unused rowid for a new r-tree record.
 | |
| */
 | |
| static int newRowid(Rtree *pRtree, i64 *piRowid){
 | |
|   int rc;
 | |
|   sqlite3_bind_null(pRtree->pWriteRowid, 1);
 | |
|   sqlite3_bind_null(pRtree->pWriteRowid, 2);
 | |
|   sqlite3_step(pRtree->pWriteRowid);
 | |
|   rc = sqlite3_reset(pRtree->pWriteRowid);
 | |
|   *piRowid = sqlite3_last_insert_rowid(pRtree->db);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the entry with rowid=iDelete from the r-tree structure.
 | |
| */
 | |
| static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
 | |
|   int rc;                         /* Return code */
 | |
|   RtreeNode *pLeaf = 0;           /* Leaf node containing record iDelete */
 | |
|   int iCell;                      /* Index of iDelete cell in pLeaf */
 | |
|   RtreeNode *pRoot;               /* Root node of rtree structure */
 | |
| 
 | |
| 
 | |
|   /* Obtain a reference to the root node to initialize Rtree.iDepth */
 | |
|   rc = nodeAcquire(pRtree, 1, 0, &pRoot);
 | |
| 
 | |
|   /* Obtain a reference to the leaf node that contains the entry 
 | |
|   ** about to be deleted. 
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
 | |
|   }
 | |
| 
 | |
|   /* Delete the cell in question from the leaf node. */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     int rc2;
 | |
|     rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = deleteCell(pRtree, pLeaf, iCell, 0);
 | |
|     }
 | |
|     rc2 = nodeRelease(pRtree, pLeaf);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = rc2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Delete the corresponding entry in the <rtree>_rowid table. */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
 | |
|     sqlite3_step(pRtree->pDeleteRowid);
 | |
|     rc = sqlite3_reset(pRtree->pDeleteRowid);
 | |
|   }
 | |
| 
 | |
|   /* Check if the root node now has exactly one child. If so, remove
 | |
|   ** it, schedule the contents of the child for reinsertion and 
 | |
|   ** reduce the tree height by one.
 | |
|   **
 | |
|   ** This is equivalent to copying the contents of the child into
 | |
|   ** the root node (the operation that Gutman's paper says to perform 
 | |
|   ** in this scenario).
 | |
|   */
 | |
|   if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
 | |
|     int rc2;
 | |
|     RtreeNode *pChild;
 | |
|     i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
 | |
|     rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
 | |
|     }
 | |
|     rc2 = nodeRelease(pRtree, pChild);
 | |
|     if( rc==SQLITE_OK ) rc = rc2;
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pRtree->iDepth--;
 | |
|       writeInt16(pRoot->zData, pRtree->iDepth);
 | |
|       pRoot->isDirty = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Re-insert the contents of any underfull nodes removed from the tree. */
 | |
|   for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = reinsertNodeContent(pRtree, pLeaf);
 | |
|     }
 | |
|     pRtree->pDeleted = pLeaf->pNext;
 | |
|     sqlite3_free(pLeaf);
 | |
|   }
 | |
| 
 | |
|   /* Release the reference to the root node. */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = nodeRelease(pRtree, pRoot);
 | |
|   }else{
 | |
|     nodeRelease(pRtree, pRoot);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rounding constants for float->double conversion.
 | |
| */
 | |
| #define RNDTOWARDS  (1.0 - 1.0/8388608.0)  /* Round towards zero */
 | |
| #define RNDAWAY     (1.0 + 1.0/8388608.0)  /* Round away from zero */
 | |
| 
 | |
| #if !defined(SQLITE_RTREE_INT_ONLY)
 | |
| /*
 | |
| ** Convert an sqlite3_value into an RtreeValue (presumably a float)
 | |
| ** while taking care to round toward negative or positive, respectively.
 | |
| */
 | |
| static RtreeValue rtreeValueDown(sqlite3_value *v){
 | |
|   double d = sqlite3_value_double(v);
 | |
|   float f = (float)d;
 | |
|   if( f>d ){
 | |
|     f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
 | |
|   }
 | |
|   return f;
 | |
| }
 | |
| static RtreeValue rtreeValueUp(sqlite3_value *v){
 | |
|   double d = sqlite3_value_double(v);
 | |
|   float f = (float)d;
 | |
|   if( f<d ){
 | |
|     f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
 | |
|   }
 | |
|   return f;
 | |
| }
 | |
| #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The xUpdate method for rtree module virtual tables.
 | |
| */
 | |
| static int rtreeUpdate(
 | |
|   sqlite3_vtab *pVtab, 
 | |
|   int nData, 
 | |
|   sqlite3_value **azData, 
 | |
|   sqlite_int64 *pRowid
 | |
| ){
 | |
|   Rtree *pRtree = (Rtree *)pVtab;
 | |
|   int rc = SQLITE_OK;
 | |
|   RtreeCell cell;                 /* New cell to insert if nData>1 */
 | |
|   int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */
 | |
| 
 | |
|   rtreeReference(pRtree);
 | |
|   assert(nData>=1);
 | |
| 
 | |
|   cell.iRowid = 0;  /* Used only to suppress a compiler warning */
 | |
| 
 | |
|   /* Constraint handling. A write operation on an r-tree table may return
 | |
|   ** SQLITE_CONSTRAINT for two reasons:
 | |
|   **
 | |
|   **   1. A duplicate rowid value, or
 | |
|   **   2. The supplied data violates the "x2>=x1" constraint.
 | |
|   **
 | |
|   ** In the first case, if the conflict-handling mode is REPLACE, then
 | |
|   ** the conflicting row can be removed before proceeding. In the second
 | |
|   ** case, SQLITE_CONSTRAINT must be returned regardless of the
 | |
|   ** conflict-handling mode specified by the user.
 | |
|   */
 | |
|   if( nData>1 ){
 | |
|     int ii;
 | |
| 
 | |
|     /* Populate the cell.aCoord[] array. The first coordinate is azData[3].
 | |
|     **
 | |
|     ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
 | |
|     ** with "column" that are interpreted as table constraints.
 | |
|     ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
 | |
|     ** This problem was discovered after years of use, so we silently ignore
 | |
|     ** these kinds of misdeclared tables to avoid breaking any legacy.
 | |
|     */
 | |
|     assert( nData<=(pRtree->nDim*2 + 3) );
 | |
| 
 | |
| #ifndef SQLITE_RTREE_INT_ONLY
 | |
|     if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
 | |
|       for(ii=0; ii<nData-4; ii+=2){
 | |
|         cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
 | |
|         cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
 | |
|         if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
 | |
|           rc = SQLITE_CONSTRAINT;
 | |
|           goto constraint;
 | |
|         }
 | |
|       }
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       for(ii=0; ii<nData-4; ii+=2){
 | |
|         cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
 | |
|         cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
 | |
|         if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
 | |
|           rc = SQLITE_CONSTRAINT;
 | |
|           goto constraint;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If a rowid value was supplied, check if it is already present in 
 | |
|     ** the table. If so, the constraint has failed. */
 | |
|     if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
 | |
|       cell.iRowid = sqlite3_value_int64(azData[2]);
 | |
|       if( sqlite3_value_type(azData[0])==SQLITE_NULL
 | |
|        || sqlite3_value_int64(azData[0])!=cell.iRowid
 | |
|       ){
 | |
|         int steprc;
 | |
|         sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
 | |
|         steprc = sqlite3_step(pRtree->pReadRowid);
 | |
|         rc = sqlite3_reset(pRtree->pReadRowid);
 | |
|         if( SQLITE_ROW==steprc ){
 | |
|           if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
 | |
|             rc = rtreeDeleteRowid(pRtree, cell.iRowid);
 | |
|           }else{
 | |
|             rc = SQLITE_CONSTRAINT;
 | |
|             goto constraint;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       bHaveRowid = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If azData[0] is not an SQL NULL value, it is the rowid of a
 | |
|   ** record to delete from the r-tree table. The following block does
 | |
|   ** just that.
 | |
|   */
 | |
|   if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
 | |
|     rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
 | |
|   }
 | |
| 
 | |
|   /* If the azData[] array contains more than one element, elements
 | |
|   ** (azData[2]..azData[argc-1]) contain a new record to insert into
 | |
|   ** the r-tree structure.
 | |
|   */
 | |
|   if( rc==SQLITE_OK && nData>1 ){
 | |
|     /* Insert the new record into the r-tree */
 | |
|     RtreeNode *pLeaf = 0;
 | |
| 
 | |
|     /* Figure out the rowid of the new row. */
 | |
|     if( bHaveRowid==0 ){
 | |
|       rc = newRowid(pRtree, &cell.iRowid);
 | |
|     }
 | |
|     *pRowid = cell.iRowid;
 | |
| 
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       int rc2;
 | |
|       pRtree->iReinsertHeight = -1;
 | |
|       rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
 | |
|       rc2 = nodeRelease(pRtree, pLeaf);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = rc2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| constraint:
 | |
|   rtreeRelease(pRtree);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The xRename method for rtree module virtual tables.
 | |
| */
 | |
| static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
 | |
|   Rtree *pRtree = (Rtree *)pVtab;
 | |
|   int rc = SQLITE_NOMEM;
 | |
|   char *zSql = sqlite3_mprintf(
 | |
|     "ALTER TABLE %Q.'%q_node'   RENAME TO \"%w_node\";"
 | |
|     "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
 | |
|     "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
 | |
|     , pRtree->zDb, pRtree->zName, zNewName 
 | |
|     , pRtree->zDb, pRtree->zName, zNewName 
 | |
|     , pRtree->zDb, pRtree->zName, zNewName
 | |
|   );
 | |
|   if( zSql ){
 | |
|     rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
 | |
|     sqlite3_free(zSql);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function populates the pRtree->nRowEst variable with an estimate
 | |
| ** of the number of rows in the virtual table. If possible, this is based
 | |
| ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
 | |
| */
 | |
| static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
 | |
|   const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
 | |
|   char *zSql;
 | |
|   sqlite3_stmt *p;
 | |
|   int rc;
 | |
|   i64 nRow = 0;
 | |
| 
 | |
|   zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
 | |
|   if( zSql==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
 | |
|       rc = sqlite3_finalize(p);
 | |
|     }else if( rc!=SQLITE_NOMEM ){
 | |
|       rc = SQLITE_OK;
 | |
|     }
 | |
| 
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( nRow==0 ){
 | |
|         pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
 | |
|       }else{
 | |
|         pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(zSql);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static sqlite3_module rtreeModule = {
 | |
|   0,                          /* iVersion */
 | |
|   rtreeCreate,                /* xCreate - create a table */
 | |
|   rtreeConnect,               /* xConnect - connect to an existing table */
 | |
|   rtreeBestIndex,             /* xBestIndex - Determine search strategy */
 | |
|   rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
 | |
|   rtreeDestroy,               /* xDestroy - Drop a table */
 | |
|   rtreeOpen,                  /* xOpen - open a cursor */
 | |
|   rtreeClose,                 /* xClose - close a cursor */
 | |
|   rtreeFilter,                /* xFilter - configure scan constraints */
 | |
|   rtreeNext,                  /* xNext - advance a cursor */
 | |
|   rtreeEof,                   /* xEof */
 | |
|   rtreeColumn,                /* xColumn - read data */
 | |
|   rtreeRowid,                 /* xRowid - read data */
 | |
|   rtreeUpdate,                /* xUpdate - write data */
 | |
|   0,                          /* xBegin - begin transaction */
 | |
|   0,                          /* xSync - sync transaction */
 | |
|   0,                          /* xCommit - commit transaction */
 | |
|   0,                          /* xRollback - rollback transaction */
 | |
|   0,                          /* xFindFunction - function overloading */
 | |
|   rtreeRename,                /* xRename - rename the table */
 | |
|   0,                          /* xSavepoint */
 | |
|   0,                          /* xRelease */
 | |
|   0                           /* xRollbackTo */
 | |
| };
 | |
| 
 | |
| static int rtreeSqlInit(
 | |
|   Rtree *pRtree, 
 | |
|   sqlite3 *db, 
 | |
|   const char *zDb, 
 | |
|   const char *zPrefix, 
 | |
|   int isCreate
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   #define N_STATEMENT 9
 | |
|   static const char *azSql[N_STATEMENT] = {
 | |
|     /* Read and write the xxx_node table */
 | |
|     "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
 | |
|     "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
 | |
|     "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
 | |
| 
 | |
|     /* Read and write the xxx_rowid table */
 | |
|     "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
 | |
|     "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
 | |
|     "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
 | |
| 
 | |
|     /* Read and write the xxx_parent table */
 | |
|     "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
 | |
|     "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
 | |
|     "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
 | |
|   };
 | |
|   sqlite3_stmt **appStmt[N_STATEMENT];
 | |
|   int i;
 | |
| 
 | |
|   pRtree->db = db;
 | |
| 
 | |
|   if( isCreate ){
 | |
|     char *zCreate = sqlite3_mprintf(
 | |
| "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
 | |
| "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
 | |
| "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,"
 | |
|                                   " parentnode INTEGER);"
 | |
| "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
 | |
|       zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
 | |
|     );
 | |
|     if( !zCreate ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     rc = sqlite3_exec(db, zCreate, 0, 0, 0);
 | |
|     sqlite3_free(zCreate);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   appStmt[0] = &pRtree->pReadNode;
 | |
|   appStmt[1] = &pRtree->pWriteNode;
 | |
|   appStmt[2] = &pRtree->pDeleteNode;
 | |
|   appStmt[3] = &pRtree->pReadRowid;
 | |
|   appStmt[4] = &pRtree->pWriteRowid;
 | |
|   appStmt[5] = &pRtree->pDeleteRowid;
 | |
|   appStmt[6] = &pRtree->pReadParent;
 | |
|   appStmt[7] = &pRtree->pWriteParent;
 | |
|   appStmt[8] = &pRtree->pDeleteParent;
 | |
| 
 | |
|   rc = rtreeQueryStat1(db, pRtree);
 | |
|   for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
 | |
|     char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
 | |
|     if( zSql ){
 | |
|       rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); 
 | |
|     }else{
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }
 | |
|     sqlite3_free(zSql);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The second argument to this function contains the text of an SQL statement
 | |
| ** that returns a single integer value. The statement is compiled and executed
 | |
| ** using database connection db. If successful, the integer value returned
 | |
| ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
 | |
| ** code is returned and the value of *piVal after returning is not defined.
 | |
| */
 | |
| static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
 | |
|   int rc = SQLITE_NOMEM;
 | |
|   if( zSql ){
 | |
|     sqlite3_stmt *pStmt = 0;
 | |
|     rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|         *piVal = sqlite3_column_int(pStmt, 0);
 | |
|       }
 | |
|       rc = sqlite3_finalize(pStmt);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called from within the xConnect() or xCreate() method to
 | |
| ** determine the node-size used by the rtree table being created or connected
 | |
| ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
 | |
| ** Otherwise, an SQLite error code is returned.
 | |
| **
 | |
| ** If this function is being called as part of an xConnect(), then the rtree
 | |
| ** table already exists. In this case the node-size is determined by inspecting
 | |
| ** the root node of the tree.
 | |
| **
 | |
| ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 
 | |
| ** This ensures that each node is stored on a single database page. If the 
 | |
| ** database page-size is so large that more than RTREE_MAXCELLS entries 
 | |
| ** would fit in a single node, use a smaller node-size.
 | |
| */
 | |
| static int getNodeSize(
 | |
|   sqlite3 *db,                    /* Database handle */
 | |
|   Rtree *pRtree,                  /* Rtree handle */
 | |
|   int isCreate,                   /* True for xCreate, false for xConnect */
 | |
|   char **pzErr                    /* OUT: Error message, if any */
 | |
| ){
 | |
|   int rc;
 | |
|   char *zSql;
 | |
|   if( isCreate ){
 | |
|     int iPageSize = 0;
 | |
|     zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
 | |
|     rc = getIntFromStmt(db, zSql, &iPageSize);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pRtree->iNodeSize = iPageSize-64;
 | |
|       if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
 | |
|         pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
 | |
|       }
 | |
|     }else{
 | |
|       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | |
|     }
 | |
|   }else{
 | |
|     zSql = sqlite3_mprintf(
 | |
|         "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
 | |
|         pRtree->zDb, pRtree->zName
 | |
|     );
 | |
|     rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3_free(zSql);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This function is the implementation of both the xConnect and xCreate
 | |
| ** methods of the r-tree virtual table.
 | |
| **
 | |
| **   argv[0]   -> module name
 | |
| **   argv[1]   -> database name
 | |
| **   argv[2]   -> table name
 | |
| **   argv[...] -> column names...
 | |
| */
 | |
| static int rtreeInit(
 | |
|   sqlite3 *db,                        /* Database connection */
 | |
|   void *pAux,                         /* One of the RTREE_COORD_* constants */
 | |
|   int argc, const char *const*argv,   /* Parameters to CREATE TABLE statement */
 | |
|   sqlite3_vtab **ppVtab,              /* OUT: New virtual table */
 | |
|   char **pzErr,                       /* OUT: Error message, if any */
 | |
|   int isCreate                        /* True for xCreate, false for xConnect */
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   Rtree *pRtree;
 | |
|   int nDb;              /* Length of string argv[1] */
 | |
|   int nName;            /* Length of string argv[2] */
 | |
|   int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
 | |
| 
 | |
|   const char *aErrMsg[] = {
 | |
|     0,                                                    /* 0 */
 | |
|     "Wrong number of columns for an rtree table",         /* 1 */
 | |
|     "Too few columns for an rtree table",                 /* 2 */
 | |
|     "Too many columns for an rtree table"                 /* 3 */
 | |
|   };
 | |
| 
 | |
|   int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
 | |
|   if( aErrMsg[iErr] ){
 | |
|     *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
 | |
| 
 | |
|   /* Allocate the sqlite3_vtab structure */
 | |
|   nDb = (int)strlen(argv[1]);
 | |
|   nName = (int)strlen(argv[2]);
 | |
|   pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
 | |
|   if( !pRtree ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
 | |
|   pRtree->nBusy = 1;
 | |
|   pRtree->base.pModule = &rtreeModule;
 | |
|   pRtree->zDb = (char *)&pRtree[1];
 | |
|   pRtree->zName = &pRtree->zDb[nDb+1];
 | |
|   pRtree->nDim = (argc-4)/2;
 | |
|   pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
 | |
|   pRtree->eCoordType = eCoordType;
 | |
|   memcpy(pRtree->zDb, argv[1], nDb);
 | |
|   memcpy(pRtree->zName, argv[2], nName);
 | |
| 
 | |
|   /* Figure out the node size to use. */
 | |
|   rc = getNodeSize(db, pRtree, isCreate, pzErr);
 | |
| 
 | |
|   /* Create/Connect to the underlying relational database schema. If
 | |
|   ** that is successful, call sqlite3_declare_vtab() to configure
 | |
|   ** the r-tree table schema.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
 | |
|       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | |
|     }else{
 | |
|       char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
 | |
|       char *zTmp;
 | |
|       int ii;
 | |
|       for(ii=4; zSql && ii<argc; ii++){
 | |
|         zTmp = zSql;
 | |
|         zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
 | |
|         sqlite3_free(zTmp);
 | |
|       }
 | |
|       if( zSql ){
 | |
|         zTmp = zSql;
 | |
|         zSql = sqlite3_mprintf("%s);", zTmp);
 | |
|         sqlite3_free(zTmp);
 | |
|       }
 | |
|       if( !zSql ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
 | |
|         *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
 | |
|       }
 | |
|       sqlite3_free(zSql);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     *ppVtab = (sqlite3_vtab *)pRtree;
 | |
|   }else{
 | |
|     assert( *ppVtab==0 );
 | |
|     assert( pRtree->nBusy==1 );
 | |
|     rtreeRelease(pRtree);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of a scalar function that decodes r-tree nodes to
 | |
| ** human readable strings. This can be used for debugging and analysis.
 | |
| **
 | |
| ** The scalar function takes two arguments: (1) the number of dimensions
 | |
| ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
 | |
| ** an r-tree node.  For a two-dimensional r-tree structure called "rt", to
 | |
| ** deserialize all nodes, a statement like:
 | |
| **
 | |
| **   SELECT rtreenode(2, data) FROM rt_node;
 | |
| **
 | |
| ** The human readable string takes the form of a Tcl list with one
 | |
| ** entry for each cell in the r-tree node. Each entry is itself a
 | |
| ** list, containing the 8-byte rowid/pageno followed by the 
 | |
| ** <num-dimension>*2 coordinates.
 | |
| */
 | |
| static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
 | |
|   char *zText = 0;
 | |
|   RtreeNode node;
 | |
|   Rtree tree;
 | |
|   int ii;
 | |
| 
 | |
|   UNUSED_PARAMETER(nArg);
 | |
|   memset(&node, 0, sizeof(RtreeNode));
 | |
|   memset(&tree, 0, sizeof(Rtree));
 | |
|   tree.nDim = sqlite3_value_int(apArg[0]);
 | |
|   tree.nBytesPerCell = 8 + 8 * tree.nDim;
 | |
|   node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
 | |
| 
 | |
|   for(ii=0; ii<NCELL(&node); ii++){
 | |
|     char zCell[512];
 | |
|     int nCell = 0;
 | |
|     RtreeCell cell;
 | |
|     int jj;
 | |
| 
 | |
|     nodeGetCell(&tree, &node, ii, &cell);
 | |
|     sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
 | |
|     nCell = (int)strlen(zCell);
 | |
|     for(jj=0; jj<tree.nDim*2; jj++){
 | |
| #ifndef SQLITE_RTREE_INT_ONLY
 | |
|       sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
 | |
|                        (double)cell.aCoord[jj].f);
 | |
| #else
 | |
|       sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
 | |
|                        cell.aCoord[jj].i);
 | |
| #endif
 | |
|       nCell = (int)strlen(zCell);
 | |
|     }
 | |
| 
 | |
|     if( zText ){
 | |
|       char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
 | |
|       sqlite3_free(zText);
 | |
|       zText = zTextNew;
 | |
|     }else{
 | |
|       zText = sqlite3_mprintf("{%s}", zCell);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   sqlite3_result_text(ctx, zText, -1, sqlite3_free);
 | |
| }
 | |
| 
 | |
| /* This routine implements an SQL function that returns the "depth" parameter
 | |
| ** from the front of a blob that is an r-tree node.  For example:
 | |
| **
 | |
| **     SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
 | |
| **
 | |
| ** The depth value is 0 for all nodes other than the root node, and the root
 | |
| ** node always has nodeno=1, so the example above is the primary use for this
 | |
| ** routine.  This routine is intended for testing and analysis only.
 | |
| */
 | |
| static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
 | |
|   UNUSED_PARAMETER(nArg);
 | |
|   if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 
 | |
|    || sqlite3_value_bytes(apArg[0])<2
 | |
|   ){
 | |
|     sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 
 | |
|   }else{
 | |
|     u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
 | |
|     sqlite3_result_int(ctx, readInt16(zBlob));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register the r-tree module with database handle db. This creates the
 | |
| ** virtual table module "rtree" and the debugging/analysis scalar 
 | |
| ** function "rtreenode".
 | |
| */
 | |
| int sqlite3RtreeInit(sqlite3 *db){
 | |
|   const int utf8 = SQLITE_UTF8;
 | |
|   int rc;
 | |
| 
 | |
|   rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
| #ifdef SQLITE_RTREE_INT_ONLY
 | |
|     void *c = (void *)RTREE_COORD_INT32;
 | |
| #else
 | |
|     void *c = (void *)RTREE_COORD_REAL32;
 | |
| #endif
 | |
|     rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     void *c = (void *)RTREE_COORD_INT32;
 | |
|     rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine deletes the RtreeGeomCallback object that was attached
 | |
| ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
 | |
| ** or sqlite3_rtree_query_callback().  In other words, this routine is the
 | |
| ** destructor for an RtreeGeomCallback objecct.  This routine is called when
 | |
| ** the corresponding SQL function is deleted.
 | |
| */
 | |
| static void rtreeFreeCallback(void *p){
 | |
|   RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
 | |
|   if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine frees the BLOB that is returned by geomCallback().
 | |
| */
 | |
| static void rtreeMatchArgFree(void *pArg){
 | |
|   int i;
 | |
|   RtreeMatchArg *p = (RtreeMatchArg*)pArg;
 | |
|   for(i=0; i<p->nParam; i++){
 | |
|     sqlite3_value_free(p->apSqlParam[i]);
 | |
|   }
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Each call to sqlite3_rtree_geometry_callback() or
 | |
| ** sqlite3_rtree_query_callback() creates an ordinary SQLite
 | |
| ** scalar function that is implemented by this routine.
 | |
| **
 | |
| ** All this function does is construct an RtreeMatchArg object that
 | |
| ** contains the geometry-checking callback routines and a list of
 | |
| ** parameters to this function, then return that RtreeMatchArg object
 | |
| ** as a BLOB.
 | |
| **
 | |
| ** The R-Tree MATCH operator will read the returned BLOB, deserialize
 | |
| ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
 | |
| ** out which elements of the R-Tree should be returned by the query.
 | |
| */
 | |
| static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
 | |
|   RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
 | |
|   RtreeMatchArg *pBlob;
 | |
|   int nBlob;
 | |
|   int memErr = 0;
 | |
| 
 | |
|   nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
 | |
|            + nArg*sizeof(sqlite3_value*);
 | |
|   pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
 | |
|   if( !pBlob ){
 | |
|     sqlite3_result_error_nomem(ctx);
 | |
|   }else{
 | |
|     int i;
 | |
|     pBlob->magic = RTREE_GEOMETRY_MAGIC;
 | |
|     pBlob->cb = pGeomCtx[0];
 | |
|     pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
 | |
|     pBlob->nParam = nArg;
 | |
|     for(i=0; i<nArg; i++){
 | |
|       pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
 | |
|       if( pBlob->apSqlParam[i]==0 ) memErr = 1;
 | |
| #ifdef SQLITE_RTREE_INT_ONLY
 | |
|       pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
 | |
| #else
 | |
|       pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
 | |
| #endif
 | |
|     }
 | |
|     if( memErr ){
 | |
|       sqlite3_result_error_nomem(ctx);
 | |
|       rtreeMatchArgFree(pBlob);
 | |
|     }else{
 | |
|       sqlite3_result_blob(ctx, pBlob, nBlob, rtreeMatchArgFree);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a new geometry function for use with the r-tree MATCH operator.
 | |
| */
 | |
| int sqlite3_rtree_geometry_callback(
 | |
|   sqlite3 *db,                  /* Register SQL function on this connection */
 | |
|   const char *zGeom,            /* Name of the new SQL function */
 | |
|   int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
 | |
|   void *pContext                /* Extra data associated with the callback */
 | |
| ){
 | |
|   RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
 | |
| 
 | |
|   /* Allocate and populate the context object. */
 | |
|   pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
 | |
|   if( !pGeomCtx ) return SQLITE_NOMEM;
 | |
|   pGeomCtx->xGeom = xGeom;
 | |
|   pGeomCtx->xQueryFunc = 0;
 | |
|   pGeomCtx->xDestructor = 0;
 | |
|   pGeomCtx->pContext = pContext;
 | |
|   return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 
 | |
|       (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
 | |
|   );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a new 2nd-generation geometry function for use with the
 | |
| ** r-tree MATCH operator.
 | |
| */
 | |
| int sqlite3_rtree_query_callback(
 | |
|   sqlite3 *db,                 /* Register SQL function on this connection */
 | |
|   const char *zQueryFunc,      /* Name of new SQL function */
 | |
|   int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
 | |
|   void *pContext,              /* Extra data passed into the callback */
 | |
|   void (*xDestructor)(void*)   /* Destructor for the extra data */
 | |
| ){
 | |
|   RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
 | |
| 
 | |
|   /* Allocate and populate the context object. */
 | |
|   pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
 | |
|   if( !pGeomCtx ) return SQLITE_NOMEM;
 | |
|   pGeomCtx->xGeom = 0;
 | |
|   pGeomCtx->xQueryFunc = xQueryFunc;
 | |
|   pGeomCtx->xDestructor = xDestructor;
 | |
|   pGeomCtx->pContext = pContext;
 | |
|   return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, 
 | |
|       (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
 | |
|   );
 | |
| }
 | |
| 
 | |
| #if !SQLITE_CORE
 | |
| #ifdef _WIN32
 | |
| __declspec(dllexport)
 | |
| #endif
 | |
| int sqlite3_rtree_init(
 | |
|   sqlite3 *db,
 | |
|   char **pzErrMsg,
 | |
|   const sqlite3_api_routines *pApi
 | |
| ){
 | |
|   SQLITE_EXTENSION_INIT2(pApi)
 | |
|   return sqlite3RtreeInit(db);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif
 | 
