Files
MaxScale/server/modules/monitor/mariadbmon/cluster_discovery.cc

1008 lines
38 KiB
C++

/*
* Copyright (c) 2018 MariaDB Corporation Ab
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file and at www.mariadb.com/bsl11.
*
* Change Date: 2022-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2 or later of the General
* Public License.
*/
#include "mariadbmon.hh"
#include <inttypes.h>
#include <string>
#include <sstream>
#include <maxscale/modutil.h>
#include <maxscale/mysql_utils.h>
#include <algorithm>
using std::string;
using maxscale::string_printf;
static bool check_replicate_ignore_table(MXS_MONITORED_SERVER* database);
static bool check_replicate_do_table(MXS_MONITORED_SERVER* database);
static bool check_replicate_wild_do_table(MXS_MONITORED_SERVER* database);
static bool check_replicate_wild_ignore_table(MXS_MONITORED_SERVER* database);
static const char HB_TABLE_NAME[] = "maxscale_schema.replication_heartbeat";
static const int64_t MASTER_BITS = SERVER_MASTER | SERVER_WAS_MASTER;
static const int64_t SLAVE_BITS = SERVER_SLAVE | SERVER_WAS_SLAVE;
/**
* Generic depth-first search. Iterates through child nodes (slaves) and runs the 'visit_func' on the nodes.
* Isn't flexible enough for all uses.
*
* @param node Starting server. The server and all its slaves are visited.
* @param data Caller-specific data, which is given to the 'visit_func'.
* @param visit_func Function to run on a node when visiting it
*/
template <typename T>
void topology_DFS(MariaDBServer* node, T* data, void (*visit_func)(MariaDBServer* node, T* data))
{
node->m_node.index = NodeData::INDEX_FIRST;
if (visit_func)
{
visit_func(node, data);
}
for (auto iter = node->m_node.children.begin(); iter != node->m_node.children.end(); iter++)
{
MariaDBServer* slave = *iter;
if (slave->m_node.index == NodeData::INDEX_NOT_VISITED)
{
topology_DFS<T>(slave, data, visit_func);
}
}
}
static bool server_config_compare(const MariaDBServer* lhs, const MariaDBServer* rhs)
{
return lhs->m_config_index < rhs->m_config_index;
}
/**
* @brief Visit a node in the graph
*
* This function is the main function used to determine whether the node is a part of a cycle. It is
* an implementation of the Tarjan's strongly connected component algorithm. All one node cycles are
* ignored since normal master-slave monitoring handles that.
*
* Tarjan's strongly connected component algorithm:
* https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
*
* @param node Target server/node
* @param stack The stack used by the algorithm, contains nodes which have not yet been assigned a cycle
* @param next_ind Visitation index of next node
* @param next_cycle Index of next found cycle
*/
void MariaDBMonitor::tarjan_scc_visit_node(MariaDBServer *node, ServerArray* stack,
int *next_ind, int *next_cycle)
{
/** Assign an index to this node */
NodeData& node_info = node->m_node;
auto ind = *next_ind;
node_info.index = ind;
node_info.lowest_index = ind;
*next_ind = ind + 1;
if (node_info.parents.empty())
{
/* This node/server does not replicate from any node, it can't be a part of a cycle. Don't even
* bother pushing it to the stack. */
}
else
{
// Has master servers, need to investigate.
stack->push_back(node);
node_info.in_stack = true;
for (auto iter = node_info.parents.begin(); iter != node_info.parents.end(); iter++)
{
NodeData& parent_node = (*iter)->m_node;
if (parent_node.index == NodeData::INDEX_NOT_VISITED)
{
/** Node has not been visited, so recurse. */
tarjan_scc_visit_node((*iter), stack, next_ind, next_cycle);
node_info.lowest_index = MXS_MIN(node_info.lowest_index, parent_node.lowest_index);
}
else if (parent_node.in_stack)
{
/* The parent node has been visited and is still on the stack. We have a cycle. */
node_info.lowest_index = MXS_MIN(node_info.lowest_index, parent_node.index);
}
/* If parent_node.active==false, the parent has been visited, but is not in the current stack.
* This means that while there is a route from this node to the parent, there is no route
* from the parent to this node. No cycle. */
}
/* At the end of a visit to node, leave this node on the stack if it has a path to a node earlier
* on the stack (index > lowest_index). Otherwise, start popping elements. */
if (node_info.index == node_info.lowest_index)
{
int cycle_size = 0; // Keep track of cycle size since we don't mark one-node cycles.
auto cycle_ind = *next_cycle;
while (true)
{
ss_dassert(!stack->empty());
MariaDBServer* cycle_server = stack->back();
NodeData& cycle_node = cycle_server->m_node;
stack->pop_back();
cycle_node.in_stack = false;
cycle_size++;
if (cycle_node.index == node_info.index) // Last node in cycle
{
if (cycle_size > 1)
{
cycle_node.cycle = cycle_ind;
ServerArray& members = m_cycles[cycle_ind]; // Creates array if didn't exist
members.push_back(cycle_server);
// Sort the cycle members according to monitor config order.
std::sort(members.begin(), members.end(), server_config_compare);
// All cycle elements popped. Next cycle...
*next_cycle = cycle_ind + 1;
}
break;
}
else
{
cycle_node.cycle = cycle_ind; // Has more nodes, mark cycle.
ServerArray& members = m_cycles[cycle_ind];
members.push_back(cycle_server);
}
}
}
}
}
void MariaDBMonitor::build_replication_graph()
{
// First, reset all node data.
for (auto iter = m_servers.begin(); iter != m_servers.end(); iter++)
{
(*iter)->m_node.reset_indexes();
(*iter)->m_node.reset_results();
}
/* Here, all slave connections are added to the graph, even if the IO thread cannot connect. Strictly
* speaking, building the parents-array is not required as the data already exists. This construction
* is more for convenience and faster access later on. */
for (auto iter = m_servers.begin(); iter != m_servers.end(); iter++)
{
/* All servers are accepted in this loop, even if the server is [Down] or [Maintenance]. For these
* servers, we just use the latest available information. Not adding such servers could suddenly
* change the topology quite a bit and all it would take is a momentarily network failure. */
MariaDBServer* slave = *iter;
for (auto iter_ss = slave->m_slave_status.begin(); iter_ss != slave->m_slave_status.end();
iter_ss++)
{
SlaveStatus& slave_conn = *iter_ss;
/* We always trust the "Master_Server_Id"-field of the SHOW SLAVE STATUS output, as long as
* the id is > 0 (server uses 0 for default). This means that the graph constructed is faulty if
* an old "Master_Server_Id"- value is read from a slave which is still trying to connect to
* a new master. However, a server is only designated [Slave] if both IO- and SQL-threads are
* running fine, so the faulty graph does not cause wrong status settings. */
/* IF THIS PART IS CHANGED, CHANGE THE COMPARISON IN 'sstatus_arrays_topology_equal'
* (in MariaDBServer) accordingly so that any possible topology changes are detected. */
auto master_id = slave_conn.master_server_id;
if (slave_conn.slave_io_running != SlaveStatus::SLAVE_IO_NO && master_id > 0)
{
// Valid slave connection, find the MariaDBServer with this id.
auto master = get_server(master_id);
if (master != NULL)
{
slave->m_node.parents.push_back(master);
master->m_node.children.push_back(slave);
}
else
{
// This is an external master connection. Save just the master id for now.
slave->m_node.external_masters.push_back(master_id);
}
}
}
}
}
/**
* @brief Find the strongly connected components in the replication tree graph
*
* Each replication cluster is a directed graph made out of replication
* trees. If this graph has strongly connected components (more generally
* cycles), it is considered a multi-master cluster due to the fact that there
* are multiple nodes where the data can originate.
*
* Detecting the cycles in the graph allows this monitor to better understand
* the relationships between the nodes. All nodes that are a part of a cycle can
* be labeled as master nodes. This information will later be used to choose the
* right master where the writes should go.
*
* This function also populates the MYSQL_SERVER_INFO structures group
* member. Nodes in a group get a positive group ID where the nodes not in a
* group get a group ID of 0.
*/
void MariaDBMonitor::find_graph_cycles()
{
m_cycles.clear();
// The next items need to be passed around in the recursive calls to keep track of algorithm state.
ServerArray stack;
int index = NodeData::INDEX_FIRST; /* Node visit index */
int cycle = NodeData::CYCLE_FIRST; /* If cycles are found, the nodes in the cycle are given an identical
* cycle index. */
for (auto iter = m_servers.begin(); iter != m_servers.end(); iter++)
{
/** Index is 0, this node has not yet been visited. */
if ((*iter)->m_node.index == NodeData::INDEX_NOT_VISITED)
{
tarjan_scc_visit_node(*iter, &stack, &index, &cycle);
}
}
}
/**
* Check if the maxscale_schema.replication_heartbeat table is replicated on all
* servers and log a warning if problems were found.
*
* @param monitor Monitor structure
*/
void MariaDBMonitor::check_maxscale_schema_replication()
{
MXS_MONITORED_SERVER* database = m_monitor->monitored_servers;
bool err = false;
while (database)
{
mxs_connect_result_t rval = mon_ping_or_connect_to_db(m_monitor, database);
if (mon_connection_is_ok(rval))
{
if (!check_replicate_ignore_table(database) ||
!check_replicate_do_table(database) ||
!check_replicate_wild_do_table(database) ||
!check_replicate_wild_ignore_table(database))
{
err = true;
}
}
else
{
mon_log_connect_error(database, rval);
}
database = database->next;
}
if (err)
{
MXS_WARNING("Problems were encountered when checking if '%s' is replicated. Make sure that "
"the table is replicated to all slaves.", HB_TABLE_NAME);
}
}
/**
* Check if replicate_ignore_table is defined and if maxscale_schema.replication_hearbeat
* table is in the list.
* @param database Server to check
* @return False if the table is not replicated or an error occurred when querying
* the server
*/
static bool check_replicate_ignore_table(MXS_MONITORED_SERVER* database)
{
MYSQL_RES *result;
bool rval = true;
if (mxs_mysql_query(database->con,
"show variables like 'replicate_ignore_table'") == 0 &&
(result = mysql_store_result(database->con)) &&
mysql_num_fields(result) > 1)
{
MYSQL_ROW row;
while ((row = mysql_fetch_row(result)))
{
if (strlen(row[1]) > 0 &&
strcasestr(row[1], HB_TABLE_NAME))
{
MXS_WARNING("'replicate_ignore_table' is "
"defined on server '%s' and '%s' was found in it. ",
database->server->name, HB_TABLE_NAME);
rval = false;
}
}
mysql_free_result(result);
}
else
{
MXS_ERROR("Failed to query server %s for "
"'replicate_ignore_table': %s",
database->server->name,
mysql_error(database->con));
rval = false;
}
return rval;
}
/**
* Check if replicate_do_table is defined and if maxscale_schema.replication_hearbeat
* table is not in the list.
* @param database Server to check
* @return False if the table is not replicated or an error occurred when querying
* the server
*/
static bool check_replicate_do_table(MXS_MONITORED_SERVER* database)
{
MYSQL_RES *result;
bool rval = true;
if (mxs_mysql_query(database->con,
"show variables like 'replicate_do_table'") == 0 &&
(result = mysql_store_result(database->con)) &&
mysql_num_fields(result) > 1)
{
MYSQL_ROW row;
while ((row = mysql_fetch_row(result)))
{
if (strlen(row[1]) > 0 &&
strcasestr(row[1], HB_TABLE_NAME) == NULL)
{
MXS_WARNING("'replicate_do_table' is "
"defined on server '%s' and '%s' was not found in it. ",
database->server->name, HB_TABLE_NAME);
rval = false;
}
}
mysql_free_result(result);
}
else
{
MXS_ERROR("Failed to query server %s for "
"'replicate_do_table': %s",
database->server->name,
mysql_error(database->con));
rval = false;
}
return rval;
}
/**
* Check if replicate_wild_do_table is defined and if it doesn't match
* maxscale_schema.replication_heartbeat.
* @param database Database server
* @return False if the table is not replicated or an error occurred when trying to
* query the server.
*/
static bool check_replicate_wild_do_table(MXS_MONITORED_SERVER* database)
{
MYSQL_RES *result;
bool rval = true;
if (mxs_mysql_query(database->con,
"show variables like 'replicate_wild_do_table'") == 0 &&
(result = mysql_store_result(database->con)) &&
mysql_num_fields(result) > 1)
{
MYSQL_ROW row;
while ((row = mysql_fetch_row(result)))
{
if (strlen(row[1]) > 0)
{
mxs_pcre2_result_t rc = modutil_mysql_wildcard_match(row[1], HB_TABLE_NAME);
if (rc == MXS_PCRE2_NOMATCH)
{
MXS_WARNING("'replicate_wild_do_table' is "
"defined on server '%s' and '%s' does not match it. ",
database->server->name,
HB_TABLE_NAME);
rval = false;
}
}
}
mysql_free_result(result);
}
else
{
MXS_ERROR("Failed to query server %s for "
"'replicate_wild_do_table': %s",
database->server->name,
mysql_error(database->con));
rval = false;
}
return rval;
}
/**
* Check if replicate_wild_ignore_table is defined and if it matches
* maxscale_schema.replication_heartbeat.
* @param database Database server
* @return False if the table is not replicated or an error occurred when trying to
* query the server.
*/
static bool check_replicate_wild_ignore_table(MXS_MONITORED_SERVER* database)
{
MYSQL_RES *result;
bool rval = true;
if (mxs_mysql_query(database->con,
"show variables like 'replicate_wild_ignore_table'") == 0 &&
(result = mysql_store_result(database->con)) &&
mysql_num_fields(result) > 1)
{
MYSQL_ROW row;
while ((row = mysql_fetch_row(result)))
{
if (strlen(row[1]) > 0)
{
mxs_pcre2_result_t rc = modutil_mysql_wildcard_match(row[1], HB_TABLE_NAME);
if (rc == MXS_PCRE2_MATCH)
{
MXS_WARNING("'replicate_wild_ignore_table' is "
"defined on server '%s' and '%s' matches it. ",
database->server->name,
HB_TABLE_NAME);
rval = false;
}
}
}
mysql_free_result(result);
}
else
{
MXS_ERROR("Failed to query server %s for "
"'replicate_wild_do_table': %s",
database->server->name,
mysql_error(database->con));
rval = false;
}
return rval;
}
/**
* Find the server with the best reach in the candidates-array. Running state or 'read_only' is ignored by
* this method.
*
* @param candidates Which servers to check. All servers in the array will have their 'reach' calculated
* @return The best server out of the candidates
*/
MariaDBServer* MariaDBMonitor::find_best_reach_server(const ServerArray& candidates)
{
ss_dassert(!candidates.empty());
MariaDBServer* best_reach = NULL;
/* Search for the server with the best reach. */
for (auto iter = candidates.begin(); iter != candidates.end(); iter++)
{
MariaDBServer* candidate = *iter;
calculate_node_reach(candidate);
// This is the first valid node or this node has better reach than the so far best found ...
if (best_reach == NULL || (candidate->m_node.reach > best_reach->m_node.reach))
{
best_reach = candidate;
}
}
return best_reach;
}
static string disqualify_reasons_to_string(MariaDBServer* disqualified)
{
string reasons;
string separator;
const string word_and = " and ";
if (disqualified->is_in_maintenance())
{
reasons += separator + "in maintenance";
separator = word_and;
}
if (disqualified->is_down())
{
reasons += separator + "down";
separator = word_and;
}
if (disqualified->is_read_only())
{
reasons += separator + "in read_only mode";
}
return reasons;
}
/**
* Find the best master server in the cluster. This method should only be called when the monitor
* is starting, a cluster operation (e.g. failover) has occurred or the user has changed something on
* the current master making it unsuitable. Because of this, the method can be quite vocal and not
* consider the previous master.
*
* @param msg_out Message output. Includes explanations on why potential candidates were not selected.
* @return The master with most slaves
*/
MariaDBServer* MariaDBMonitor::find_topology_master_server(string* msg_out)
{
/* Finding the best master server may get somewhat tricky if the graph is complicated. The general
* criteria for the best master is that it reaches the most slaves (possibly in multiple layers and
* cycles). To avoid having to calculate this reachability (doable by a recursive search) to all nodes,
* let's use the knowledge that the best master is either a server with no masters (external ones don't
* count) or is part of a cycle with no out-cycle masters. The server must be running and writable
* to be eligible. */
string messages;
string separator;
const char disq[] = "is not a valid master candidate because it is ";
ServerArray master_candidates;
for (auto iter = m_servers.begin(); iter != m_servers.end(); iter++)
{
MariaDBServer* server = *iter;
if (server->m_node.parents.empty())
{
if (server->is_running() && !server->is_read_only())
{
master_candidates.push_back(server);
}
else
{
string reasons = disqualify_reasons_to_string(server);
messages += separator + "'" + server->name() + "' " + disq + reasons + ".";
separator = "\n";
}
}
}
// For each cycle, it's enough to take one sample server, as all members of a cycle have the same reach.
for (auto iter = m_cycles.begin(); iter != m_cycles.end(); iter++)
{
int cycle_id = iter->first;
ServerArray& cycle_members = m_cycles[cycle_id];
// Check that no server in the cycle is replicating from outside the cycle. This requirement is
// analogous with the same requirement for non-cycle servers.
if (!cycle_has_master_server(cycle_members))
{
MariaDBServer* sample_server = find_master_inside_cycle(cycle_members);
if (sample_server)
{
master_candidates.push_back(sample_server);
}
else
{
// No single server in the cycle was viable.
const char no_valid_servers[] = "No valid master server could be found in the cycle with "
"servers";
string server_names = monitored_servers_to_string(cycle_members);
messages += separator + no_valid_servers + " '" + server_names + "'.";
separator = "\n";
for (auto iter2 = cycle_members.begin(); iter2 != cycle_members.end(); iter2++)
{
MariaDBServer* disqualified_server = *iter2;
string reasons = disqualify_reasons_to_string(disqualified_server);
messages += separator + "'" + disqualified_server->name() + "' " + disq + reasons + ".";
separator = "\n";
}
}
}
}
*msg_out = messages;
return master_candidates.empty() ? NULL : find_best_reach_server(master_candidates);
}
static void node_reach_visit(MariaDBServer* node, int* reach)
{
*reach = *reach + 1;
}
/**
* Calculate the total number of reachable child nodes for the given node. A node can always reach itself.
* The result is saved into the node data.
*/
void MariaDBMonitor::calculate_node_reach(MariaDBServer* node)
{
ss_dassert(node && node->m_node.reach == NodeData::REACH_UNKNOWN);
// Reset indexes since they will be reused.
reset_node_index_info();
int reach = 0;
topology_DFS<int>(node, &reach, node_reach_visit);
node->m_node.reach = reach;
}
/**
* Check which node in a cycle should be the master. The node must be running without read_only.
*
* @param cycle The cycle index
* @return The selected node
*/
MariaDBServer* MariaDBMonitor::find_master_inside_cycle(ServerArray& cycle_members)
{
/* For a cycle, all servers are equally good in a sense. The question is just if the server is up
* and writable. */
for (auto iter = cycle_members.begin(); iter != cycle_members.end(); iter++)
{
MariaDBServer* server = *iter;
ss_dassert(server->m_node.cycle != NodeData::CYCLE_NONE);
if (server->is_running() && !server->is_read_only())
{
return server;
}
}
return NULL;
}
/**
* Assign replication role status bits to the servers in the cluster. Starts from the cluster master server.
*/
void MariaDBMonitor::assign_master_and_slave()
{
// Remove any existing [Master], [Slave] etc flags.
const uint64_t remove_bits = SERVER_MASTER | SERVER_SLAVE | SERVER_RELAY_MASTER |
SERVER_SLAVE_OF_EXT_MASTER;
for (auto iter = m_servers.begin(); iter != m_servers.end(); iter++)
{
(*iter)->clear_status(remove_bits);
}
// Check the the master node, label it as the [Master] if...
if (m_master)
{
// the node has slaves, even if their slave sql threads are stopped ...
if (!m_master->m_node.children.empty() ||
// or detect standalone master is on ...
m_detect_standalone_master ||
// or "detect_stale_master" is on and the server was a master before.
(m_detect_stale_master && (m_master->m_server_base->pending_status & SERVER_WAS_MASTER)))
{
m_master->clear_status(SLAVE_BITS | SERVER_RELAY_MASTER);
if (m_master->has_status(SERVER_RUNNING))
{
m_master->set_status(MASTER_BITS);
}
}
// Run another DFS, this time assigning slaves.
reset_node_index_info();
assign_slave_and_relay_master(m_master);
}
else
{
for (MariaDBServer* s: m_servers)
{
if (s->has_status(SERVER_WAS_SLAVE))
{
s->set_status(SERVER_SLAVE);
}
}
}
}
/**
* Check if the servers replicating from the given node qualify for [Slave] and mark them. Continue the
* search to any found slaves.
*
* @param node The node to process. The node itself is not marked [Slave].
*/
void MariaDBMonitor::assign_slave_and_relay_master(MariaDBServer* node)
{
ss_dassert(node->m_node.index == NodeData::INDEX_NOT_VISITED);
node->m_node.index = NodeData::INDEX_FIRST;
bool require_was_slave = false;
if (node->is_down())
{
// If 'detect_stale_slave' is off, this node can only have slaves if the node is running.
if (m_detect_stale_slave)
{
require_was_slave = true;
}
else
{
return;
}
}
int slaves = 0;
for (auto iter = node->m_node.children.begin(); iter != node->m_node.children.end(); iter++)
{
MariaDBServer* slave = *iter;
// If the node has an index, it has already been labeled master/slave and visited. Even when this
// is the case, the node has to be checked to get correct [Relay Master] labels.
if (slave->m_node.index == NodeData::INDEX_NOT_VISITED)
{
slave->clear_status(MASTER_BITS);
}
// The slave node may have several slave connections, need to find the right one.
bool found_slave_conn = false;
for (auto iter2 = slave->m_slave_status.begin(); iter2 != slave->m_slave_status.end(); iter2++)
{
SlaveStatus& ss = *iter2;
auto master_id = ss.master_server_id;
auto io_running = ss.slave_io_running;
// Should this check 'Master_Host' and 'Master_Port' instead of server id:s?
if (master_id > 0 && master_id == node->m_server_id && ss.slave_sql_running &&
(io_running == SlaveStatus::SLAVE_IO_YES ||
io_running == SlaveStatus::SLAVE_IO_CONNECTING) &&
// Can in theory cause a 'SERVER_WAS_SLAVE' bit from another master to affect the result.
(!require_was_slave || (slave->m_server_base->pending_status & SERVER_WAS_SLAVE)))
{
/** Note: The following fixes mxs1961_standalone_rejoin
*
* The fact that the relay master status is assigned based on
* the last good observed state of the slave (i.e. before it went
* down), it is theoretically correct to label the server as a relay
* master. In practice this is not quite correct.
*
* One example of this is the following chain of failover events
* with M(master), S(slave) and X(down) and arrows for last known
* slave connection:
*
* S → M ← S
* X → M ← S
* X → X M
* X → S → M // This is where S gets the Relay Master status
*
* The last state does indeed form a relay master topology but it
* has never been observed to happen and as such is wrong.
*/
if (slave->is_running())
{
found_slave_conn = true;
break;
}
}
}
// If the slave had a valid connection, label it as a slave and recurse.
if (found_slave_conn)
{
slaves++;
if (slave->m_node.index == NodeData::INDEX_NOT_VISITED)
{
slave->clear_status(MASTER_BITS);
if (slave->has_status(SERVER_RUNNING))
{
slave->set_status(SLAVE_BITS);
}
assign_slave_and_relay_master(slave);
}
}
}
// Finally, if the node itself is a slave and has slaves of its own, label it as relay slave.
if (node->has_status(SERVER_SLAVE) && slaves > 0)
{
node->set_status(SERVER_RELAY_MASTER);
}
// If the node is a binlog relay, remove any slave bits that may have been set. Relay master bit can stay.
if (node->m_version == MariaDBServer::version::BINLOG_ROUTER)
{
node->clear_status(SERVER_SLAVE);
}
}
/**
* Is the current master server still valid or should a new one be selected?
*
* @param reason_out If master is not valid, the reason is printed here.
* @return True, if master is ok. False if the current master has changed in a way that
* a new master should be selected.
*/
bool MariaDBMonitor::master_is_valid(std::string* reason_out)
{
// The master server of the cluster needs to be re-calculated in the following four cases:
bool rval = true;
// 1) There is no master. This typically only applies when MaxScale is first ran.
if (m_master == NULL)
{
rval = false;
}
// 2) read_only has been activated on the master.
else if (m_master->is_read_only())
{
rval = false;
*reason_out = "it is in read-only mode";
}
// 3) The master has been down for failcount iterations and auto_failover is not on.
else if (m_master->is_down() && !m_auto_failover && m_master->m_server_base->mon_err_count >= m_failcount)
{
rval = false;
*reason_out = string_printf("it has been down over %d (failcount) monitor updates and failover "
"is not on", m_failcount);
}
// 4) The master was a non-replicating master (not in a cycle) but now has a slave connection.
else if (m_master_cycle_status.cycle_id == NodeData::CYCLE_NONE)
{
// The master should not have a master of its own.
if (!m_master->m_node.parents.empty())
{
rval = false;
*reason_out = "it has started replicating from another server in the cluster";
}
}
// 5) The master was part of a cycle but is no longer, or one of the servers in the cycle is
// replicating from a server outside the cycle.
else
{
/* The master was previously in a cycle. Compare the current cycle to the previous data and see
* if the cycle is still the best multimaster group. */
int current_cycle_id = m_master->m_node.cycle;
// 5a) The master is no longer in a cycle.
if (current_cycle_id == NodeData::CYCLE_NONE)
{
rval = false;
ServerArray& old_members = m_master_cycle_status.cycle_members;
string server_names_old = monitored_servers_to_string(old_members);
*reason_out = "it is no longer in the multimaster group (" + server_names_old + ")";
}
// 5b) The master is still in a cycle but the cycle has gained a master outside of the cycle.
else
{
ServerArray& current_members = m_cycles[current_cycle_id];
if (cycle_has_master_server(current_members))
{
rval = false;
string server_names_current = monitored_servers_to_string(current_members);
*reason_out = "a server in the master's multimaster group (" + server_names_current +
") is replicating from a server not in the group";
}
}
}
return rval;
}
/**
* Check if any of the servers in the cycle is replicating from a server not in the cycle. External masters
* do not count.
*
* @param cycle The cycle to check
* @return True if a server is replicating from a master not in the same cycle
*/
bool MariaDBMonitor::cycle_has_master_server(ServerArray& cycle_servers)
{
bool outside_replication = false;
int cycle_id = cycle_servers.front()->m_node.cycle;
// Looks good, check that no cycle server is replicating from elsewhere.
for (auto iter = cycle_servers.begin(); iter != cycle_servers.end() && !outside_replication; iter++)
{
MariaDBServer* server = *iter;
for (auto iter_master = server->m_node.parents.begin();
iter_master != server->m_node.parents.end();
iter_master++)
{
if ((*iter_master)->m_node.cycle != cycle_id)
{
// Cycle member is replicating from a server that is not in the current cycle. The
// cycle is not a valid "master" cycle.
outside_replication = true;
break;
}
}
}
return outside_replication;
}
void MariaDBMonitor::update_topology()
{
m_servers_by_id.clear();
for (auto server : m_servers)
{
m_servers_by_id[server->m_server_id] = server;
}
build_replication_graph();
find_graph_cycles();
/* Check if a failover/switchover was performed last loop and the master should change.
* In this case, update the master and its cycle info here. */
if (m_next_master)
{
assign_new_master(m_next_master);
m_next_master = NULL;
}
// Find the server that looks like it would be the best master. It does not yet overwrite the
// current master.
string topology_messages;
MariaDBServer* master_candidate = find_topology_master_server(&topology_messages);
// If the 'master_candidate' is a valid server but different from the current master,
// a change may be necessary. It will only happen if the current master is no longer usable.
bool have_better = (master_candidate && master_candidate != m_master);
bool current_still_best = (master_candidate && master_candidate == m_master);
// Check if current master is still valid.
string reason_not_valid;
bool current_is_ok = master_is_valid(&reason_not_valid);
if (current_is_ok)
{
m_warn_current_master_invalid = true;
// Update master cycle info in case it has changed.
update_master_cycle_info();
if (have_better)
{
// Master is still valid but it is no longer the best master. Print a warning. This
// may be a continuous situation so only print once.
if (m_warn_have_better_master)
{
MXS_WARNING("'%s' is a better master candidate than the current master '%s'. "
"Master will change when '%s' is no longer a valid master.",
master_candidate->name(), m_master->name(), m_master->name());
m_warn_have_better_master = false;
}
}
}
else
{
// Current master is faulty or does not exist
m_warn_have_better_master = true;
if (have_better)
{
// We have an alternative. Swap master. The messages give the impression
// that new master selection has not yet happened, but this is just for clarity.
const char sel_new_master[] = "Selecting new master server.";
if (m_master)
{
ss_dassert(!reason_not_valid.empty());
MXS_WARNING("The current master server '%s' is no longer valid because %s. %s",
m_master->name(), reason_not_valid.c_str(), sel_new_master);
}
else
{
// This typically happens only when starting from scratch.
MXS_NOTICE("%s", sel_new_master);
}
// At this point, print messages explaining why any/other possible master servers weren't picked.
if (!topology_messages.empty())
{
MXS_WARNING("%s", topology_messages.c_str());
}
MXS_NOTICE("Setting '%s' as master.", master_candidate->name());
// Change the master, even though this may break replication.
assign_new_master(master_candidate);
}
else if (current_still_best)
{
// Tried to find another master but the current one is still the best.
MXS_WARNING("Attempted to find a replacement for the current master server '%s' because %s, "
"but '%s' is still the best master server.",
m_master->name(), reason_not_valid.c_str(), m_master->name());
if (!topology_messages.empty())
{
MXS_WARNING("%s", topology_messages.c_str());
}
// The following updates some data on the master.
assign_new_master(master_candidate);
}
else
{
// No alternative master. Keep current status and print warnings.
// This situation may stick so only print the messages once.
if (m_warn_current_master_invalid)
{
if (m_master)
{
ss_dassert(!reason_not_valid.empty());
MXS_WARNING("The current master server '%s' is no longer valid because %s, "
"but there is no valid alternative to swap to.",
m_master->name(), reason_not_valid.c_str());
}
else
{
MXS_WARNING("No valid master server found.");
}
if (!topology_messages.empty())
{
MXS_WARNING("%s", topology_messages.c_str());
}
m_warn_current_master_invalid = false;
}
}
}
}