5180 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5180 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** This file contains all sources (including headers) to the LEMON
 | |
| ** LALR(1) parser generator.  The sources have been combined into a
 | |
| ** single file to make it easy to include LEMON in the source tree
 | |
| ** and Makefile of another program.
 | |
| **
 | |
| ** The author of this program disclaims copyright.
 | |
| */
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #define ISSPACE(X) isspace((unsigned char)(X))
 | |
| #define ISDIGIT(X) isdigit((unsigned char)(X))
 | |
| #define ISALNUM(X) isalnum((unsigned char)(X))
 | |
| #define ISALPHA(X) isalpha((unsigned char)(X))
 | |
| #define ISUPPER(X) isupper((unsigned char)(X))
 | |
| #define ISLOWER(X) islower((unsigned char)(X))
 | |
| 
 | |
| 
 | |
| #ifndef __WIN32__
 | |
| #   if defined(_WIN32) || defined(WIN32)
 | |
| #       define __WIN32__
 | |
| #   endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __WIN32__
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| extern int access(const char *path, int mode);
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| /* #define PRIVATE static */
 | |
| #define PRIVATE
 | |
| 
 | |
| #ifdef TEST
 | |
| #define MAXRHS 5       /* Set low to exercise exception code */
 | |
| #else
 | |
| #define MAXRHS 1000
 | |
| #endif
 | |
| 
 | |
| static int showPrecedenceConflict = 0;
 | |
| static char *msort(char*,char**,int(*)(const char*,const char*));
 | |
| 
 | |
| /*
 | |
| ** Compilers are getting increasingly pedantic about type conversions
 | |
| ** as C evolves ever closer to Ada....  To work around the latest problems
 | |
| ** we have to define the following variant of strlen().
 | |
| */
 | |
| #define lemonStrlen(X)   ((int)strlen(X))
 | |
| 
 | |
| /*
 | |
| ** Compilers are starting to complain about the use of sprintf() and strcpy(),
 | |
| ** saying they are unsafe.  So we define our own versions of those routines too.
 | |
| **
 | |
| ** There are three routines here:  lemon_sprintf(), lemon_vsprintf(), and
 | |
| ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
 | |
| ** The third is a helper routine for vsnprintf() that adds texts to the end of a
 | |
| ** buffer, making sure the buffer is always zero-terminated.
 | |
| **
 | |
| ** The string formatter is a minimal subset of stdlib sprintf() supporting only
 | |
| ** a few simply conversions:
 | |
| **
 | |
| **   %d
 | |
| **   %s
 | |
| **   %.*s
 | |
| **
 | |
| */
 | |
| static void lemon_addtext(
 | |
|   char *zBuf,           /* The buffer to which text is added */
 | |
|   int *pnUsed,          /* Slots of the buffer used so far */
 | |
|   const char *zIn,      /* Text to add */
 | |
|   int nIn,              /* Bytes of text to add.  -1 to use strlen() */
 | |
|   int iWidth            /* Field width.  Negative to left justify */
 | |
| ){
 | |
|   if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
 | |
|   while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
 | |
|   if( nIn==0 ) return;
 | |
|   memcpy(&zBuf[*pnUsed], zIn, nIn);
 | |
|   *pnUsed += nIn;
 | |
|   while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
 | |
|   zBuf[*pnUsed] = 0;
 | |
| }
 | |
| static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
 | |
|   int i, j, k, c;
 | |
|   int nUsed = 0;
 | |
|   const char *z;
 | |
|   char zTemp[50];
 | |
|   str[0] = 0;
 | |
|   for(i=j=0; (c = zFormat[i])!=0; i++){
 | |
|     if( c=='%' ){
 | |
|       int iWidth = 0;
 | |
|       lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
 | |
|       c = zFormat[++i];
 | |
|       if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
 | |
|         if( c=='-' ) i++;
 | |
|         while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
 | |
|         if( c=='-' ) iWidth = -iWidth;
 | |
|         c = zFormat[i];
 | |
|       }
 | |
|       if( c=='d' ){
 | |
|         int v = va_arg(ap, int);
 | |
|         if( v<0 ){
 | |
|           lemon_addtext(str, &nUsed, "-", 1, iWidth);
 | |
|           v = -v;
 | |
|         }else if( v==0 ){
 | |
|           lemon_addtext(str, &nUsed, "0", 1, iWidth);
 | |
|         }
 | |
|         k = 0;
 | |
|         while( v>0 ){
 | |
|           k++;
 | |
|           zTemp[sizeof(zTemp)-k] = (v%10) + '0';
 | |
|           v /= 10;
 | |
|         }
 | |
|         lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
 | |
|       }else if( c=='s' ){
 | |
|         z = va_arg(ap, const char*);
 | |
|         lemon_addtext(str, &nUsed, z, -1, iWidth);
 | |
|       }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
 | |
|         i += 2;
 | |
|         k = va_arg(ap, int);
 | |
|         z = va_arg(ap, const char*);
 | |
|         lemon_addtext(str, &nUsed, z, k, iWidth);
 | |
|       }else if( c=='%' ){
 | |
|         lemon_addtext(str, &nUsed, "%", 1, 0);
 | |
|       }else{
 | |
|         fprintf(stderr, "illegal format\n");
 | |
|         exit(1);
 | |
|       }
 | |
|       j = i+1;
 | |
|     }
 | |
|   }
 | |
|   lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
 | |
|   return nUsed;
 | |
| }
 | |
| static int lemon_sprintf(char *str, const char *format, ...){
 | |
|   va_list ap;
 | |
|   int rc;
 | |
|   va_start(ap, format);
 | |
|   rc = lemon_vsprintf(str, format, ap);
 | |
|   va_end(ap);
 | |
|   return rc;
 | |
| }
 | |
| static void lemon_strcpy(char *dest, const char *src){
 | |
|   while( (*(dest++) = *(src++))!=0 ){}
 | |
| }
 | |
| static void lemon_strcat(char *dest, const char *src){
 | |
|   while( *dest ) dest++;
 | |
|   lemon_strcpy(dest, src);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* a few forward declarations... */
 | |
| struct rule;
 | |
| struct lemon;
 | |
| struct action;
 | |
| 
 | |
| static struct action *Action_new(void);
 | |
| static struct action *Action_sort(struct action *);
 | |
| 
 | |
| /********** From the file "build.h" ************************************/
 | |
| void FindRulePrecedences();
 | |
| void FindFirstSets();
 | |
| void FindStates();
 | |
| void FindLinks();
 | |
| void FindFollowSets();
 | |
| void FindActions();
 | |
| 
 | |
| /********* From the file "configlist.h" *********************************/
 | |
| void Configlist_init(void);
 | |
| struct config *Configlist_add(struct rule *, int);
 | |
| struct config *Configlist_addbasis(struct rule *, int);
 | |
| void Configlist_closure(struct lemon *);
 | |
| void Configlist_sort(void);
 | |
| void Configlist_sortbasis(void);
 | |
| struct config *Configlist_return(void);
 | |
| struct config *Configlist_basis(void);
 | |
| void Configlist_eat(struct config *);
 | |
| void Configlist_reset(void);
 | |
| 
 | |
| /********* From the file "error.h" ***************************************/
 | |
| void ErrorMsg(const char *, int,const char *, ...);
 | |
| 
 | |
| /****** From the file "option.h" ******************************************/
 | |
| enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
 | |
|          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
 | |
| struct s_options {
 | |
|   enum option_type type;
 | |
|   const char *label;
 | |
|   char *arg;
 | |
|   const char *message;
 | |
| };
 | |
| int    OptInit(char**,struct s_options*,FILE*);
 | |
| int    OptNArgs(void);
 | |
| char  *OptArg(int);
 | |
| void   OptErr(int);
 | |
| void   OptPrint(void);
 | |
| 
 | |
| /******** From the file "parse.h" *****************************************/
 | |
| void Parse(struct lemon *lemp);
 | |
| 
 | |
| /********* From the file "plink.h" ***************************************/
 | |
| struct plink *Plink_new(void);
 | |
| void Plink_add(struct plink **, struct config *);
 | |
| void Plink_copy(struct plink **, struct plink *);
 | |
| void Plink_delete(struct plink *);
 | |
| 
 | |
| /********** From the file "report.h" *************************************/
 | |
| void Reprint(struct lemon *);
 | |
| void ReportOutput(struct lemon *);
 | |
| void ReportTable(struct lemon *, int);
 | |
| void ReportHeader(struct lemon *);
 | |
| void CompressTables(struct lemon *);
 | |
| void ResortStates(struct lemon *);
 | |
| 
 | |
| /********** From the file "set.h" ****************************************/
 | |
| void  SetSize(int);             /* All sets will be of size N */
 | |
| char *SetNew(void);               /* A new set for element 0..N */
 | |
| void  SetFree(char*);             /* Deallocate a set */
 | |
| int SetAdd(char*,int);            /* Add element to a set */
 | |
| int SetUnion(char *,char *);    /* A <- A U B, thru element N */
 | |
| #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
 | |
| 
 | |
| /********** From the file "struct.h" *************************************/
 | |
| /*
 | |
| ** Principal data structures for the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
 | |
| 
 | |
| /* Symbols (terminals and nonterminals) of the grammar are stored
 | |
| ** in the following: */
 | |
| enum symbol_type {
 | |
|   TERMINAL,
 | |
|   NONTERMINAL,
 | |
|   MULTITERMINAL
 | |
| };
 | |
| enum e_assoc {
 | |
|     LEFT,
 | |
|     RIGHT,
 | |
|     NONE,
 | |
|     UNK
 | |
| };
 | |
| struct symbol {
 | |
|   const char *name;        /* Name of the symbol */
 | |
|   int index;               /* Index number for this symbol */
 | |
|   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
 | |
|   struct rule *rule;       /* Linked list of rules of this (if an NT) */
 | |
|   struct symbol *fallback; /* fallback token in case this token doesn't parse */
 | |
|   int prec;                /* Precedence if defined (-1 otherwise) */
 | |
|   enum e_assoc assoc;      /* Associativity if precedence is defined */
 | |
|   char *firstset;          /* First-set for all rules of this symbol */
 | |
|   Boolean lambda;          /* True if NT and can generate an empty string */
 | |
|   int useCnt;              /* Number of times used */
 | |
|   char *destructor;        /* Code which executes whenever this symbol is
 | |
|                            ** popped from the stack during error processing */
 | |
|   int destLineno;          /* Line number for start of destructor */
 | |
|   char *datatype;          /* The data type of information held by this
 | |
|                            ** object. Only used if type==NONTERMINAL */
 | |
|   int dtnum;               /* The data type number.  In the parser, the value
 | |
|                            ** stack is a union.  The .yy%d element of this
 | |
|                            ** union is the correct data type for this object */
 | |
|   /* The following fields are used by MULTITERMINALs only */
 | |
|   int nsubsym;             /* Number of constituent symbols in the MULTI */
 | |
|   struct symbol **subsym;  /* Array of constituent symbols */
 | |
| };
 | |
| 
 | |
| /* Each production rule in the grammar is stored in the following
 | |
| ** structure.  */
 | |
| struct rule {
 | |
|   struct symbol *lhs;      /* Left-hand side of the rule */
 | |
|   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
 | |
|   int lhsStart;            /* True if left-hand side is the start symbol */
 | |
|   int ruleline;            /* Line number for the rule */
 | |
|   int nrhs;                /* Number of RHS symbols */
 | |
|   struct symbol **rhs;     /* The RHS symbols */
 | |
|   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
 | |
|   int line;                /* Line number at which code begins */
 | |
|   const char *code;        /* The code executed when this rule is reduced */
 | |
|   struct symbol *precsym;  /* Precedence symbol for this rule */
 | |
|   int index;               /* An index number for this rule */
 | |
|   Boolean canReduce;       /* True if this rule is ever reduced */
 | |
|   struct rule *nextlhs;    /* Next rule with the same LHS */
 | |
|   struct rule *next;       /* Next rule in the global list */
 | |
| };
 | |
| 
 | |
| /* A configuration is a production rule of the grammar together with
 | |
| ** a mark (dot) showing how much of that rule has been processed so far.
 | |
| ** Configurations also contain a follow-set which is a list of terminal
 | |
| ** symbols which are allowed to immediately follow the end of the rule.
 | |
| ** Every configuration is recorded as an instance of the following: */
 | |
| enum cfgstatus {
 | |
|   COMPLETE,
 | |
|   INCOMPLETE
 | |
| };
 | |
| struct config {
 | |
|   struct rule *rp;         /* The rule upon which the configuration is based */
 | |
|   int dot;                 /* The parse point */
 | |
|   char *fws;               /* Follow-set for this configuration only */
 | |
|   struct plink *fplp;      /* Follow-set forward propagation links */
 | |
|   struct plink *bplp;      /* Follow-set backwards propagation links */
 | |
|   struct state *stp;       /* Pointer to state which contains this */
 | |
|   enum cfgstatus status;   /* used during followset and shift computations */
 | |
|   struct config *next;     /* Next configuration in the state */
 | |
|   struct config *bp;       /* The next basis configuration */
 | |
| };
 | |
| 
 | |
| enum e_action {
 | |
|   SHIFT,
 | |
|   ACCEPT,
 | |
|   REDUCE,
 | |
|   ERROR,
 | |
|   SSCONFLICT,              /* A shift/shift conflict */
 | |
|   SRCONFLICT,              /* Was a reduce, but part of a conflict */
 | |
|   RRCONFLICT,              /* Was a reduce, but part of a conflict */
 | |
|   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
 | |
|   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
 | |
|   NOT_USED,                /* Deleted by compression */
 | |
|   SHIFTREDUCE              /* Shift first, then reduce */
 | |
| };
 | |
| 
 | |
| /* Every shift or reduce operation is stored as one of the following */
 | |
| struct action {
 | |
|   struct symbol *sp;       /* The look-ahead symbol */
 | |
|   enum e_action type;
 | |
|   union {
 | |
|     struct state *stp;     /* The new state, if a shift */
 | |
|     struct rule *rp;       /* The rule, if a reduce */
 | |
|   } x;
 | |
|   struct action *next;     /* Next action for this state */
 | |
|   struct action *collide;  /* Next action with the same hash */
 | |
| };
 | |
| 
 | |
| /* Each state of the generated parser's finite state machine
 | |
| ** is encoded as an instance of the following structure. */
 | |
| struct state {
 | |
|   struct config *bp;       /* The basis configurations for this state */
 | |
|   struct config *cfp;      /* All configurations in this set */
 | |
|   int statenum;            /* Sequential number for this state */
 | |
|   struct action *ap;       /* Array of actions for this state */
 | |
|   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
 | |
|   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
 | |
|   int iDfltReduce;         /* Default action is to REDUCE by this rule */
 | |
|   struct rule *pDfltReduce;/* The default REDUCE rule. */
 | |
|   int autoReduce;          /* True if this is an auto-reduce state */
 | |
| };
 | |
| #define NO_OFFSET (-2147483647)
 | |
| 
 | |
| /* A followset propagation link indicates that the contents of one
 | |
| ** configuration followset should be propagated to another whenever
 | |
| ** the first changes. */
 | |
| struct plink {
 | |
|   struct config *cfp;      /* The configuration to which linked */
 | |
|   struct plink *next;      /* The next propagate link */
 | |
| };
 | |
| 
 | |
| /* The state vector for the entire parser generator is recorded as
 | |
| ** follows.  (LEMON uses no global variables and makes little use of
 | |
| ** static variables.  Fields in the following structure can be thought
 | |
| ** of as begin global variables in the program.) */
 | |
| struct lemon {
 | |
|   struct state **sorted;   /* Table of states sorted by state number */
 | |
|   struct rule *rule;       /* List of all rules */
 | |
|   int nstate;              /* Number of states */
 | |
|   int nxstate;             /* nstate with tail degenerate states removed */
 | |
|   int nrule;               /* Number of rules */
 | |
|   int nsymbol;             /* Number of terminal and nonterminal symbols */
 | |
|   int nterminal;           /* Number of terminal symbols */
 | |
|   struct symbol **symbols; /* Sorted array of pointers to symbols */
 | |
|   int errorcnt;            /* Number of errors */
 | |
|   struct symbol *errsym;   /* The error symbol */
 | |
|   struct symbol *wildcard; /* Token that matches anything */
 | |
|   char *name;              /* Name of the generated parser */
 | |
|   char *arg;               /* Declaration of the 3th argument to parser */
 | |
|   char *tokentype;         /* Type of terminal symbols in the parser stack */
 | |
|   char *vartype;           /* The default type of non-terminal symbols */
 | |
|   char *start;             /* Name of the start symbol for the grammar */
 | |
|   char *stacksize;         /* Size of the parser stack */
 | |
|   char *include;           /* Code to put at the start of the C file */
 | |
|   char *error;             /* Code to execute when an error is seen */
 | |
|   char *overflow;          /* Code to execute on a stack overflow */
 | |
|   char *failure;           /* Code to execute on parser failure */
 | |
|   char *accept;            /* Code to execute when the parser excepts */
 | |
|   char *extracode;         /* Code appended to the generated file */
 | |
|   char *tokendest;         /* Code to execute to destroy token data */
 | |
|   char *vardest;           /* Code for the default non-terminal destructor */
 | |
|   char *filename;          /* Name of the input file */
 | |
|   char *outname;           /* Name of the current output file */
 | |
|   char *tokenprefix;       /* A prefix added to token names in the .h file */
 | |
|   int nconflict;           /* Number of parsing conflicts */
 | |
|   int nactiontab;          /* Number of entries in the yy_action[] table */
 | |
|   int tablesize;           /* Total table size of all tables in bytes */
 | |
|   int basisflag;           /* Print only basis configurations */
 | |
|   int has_fallback;        /* True if any %fallback is seen in the grammar */
 | |
|   int nolinenosflag;       /* True if #line statements should not be printed */
 | |
|   char *argv0;             /* Name of the program */
 | |
| };
 | |
| 
 | |
| #define MemoryCheck(X) if((X)==0){ \
 | |
|   extern void memory_error(); \
 | |
|   memory_error(); \
 | |
| }
 | |
| 
 | |
| /**************** From the file "table.h" *********************************/
 | |
| /*
 | |
| ** All code in this file has been automatically generated
 | |
| ** from a specification in the file
 | |
| **              "table.q"
 | |
| ** by the associative array code building program "aagen".
 | |
| ** Do not edit this file!  Instead, edit the specification
 | |
| ** file, then rerun aagen.
 | |
| */
 | |
| /*
 | |
| ** Code for processing tables in the LEMON parser generator.
 | |
| */
 | |
| /* Routines for handling a strings */
 | |
| 
 | |
| const char *Strsafe(const char *);
 | |
| 
 | |
| void Strsafe_init(void);
 | |
| int Strsafe_insert(const char *);
 | |
| const char *Strsafe_find(const char *);
 | |
| 
 | |
| /* Routines for handling symbols of the grammar */
 | |
| 
 | |
| struct symbol *Symbol_new(const char *);
 | |
| int Symbolcmpp(const void *, const void *);
 | |
| void Symbol_init(void);
 | |
| int Symbol_insert(struct symbol *, const char *);
 | |
| struct symbol *Symbol_find(const char *);
 | |
| struct symbol *Symbol_Nth(int);
 | |
| int Symbol_count(void);
 | |
| struct symbol **Symbol_arrayof(void);
 | |
| 
 | |
| /* Routines to manage the state table */
 | |
| 
 | |
| int Configcmp(const char *, const char *);
 | |
| struct state *State_new(void);
 | |
| void State_init(void);
 | |
| int State_insert(struct state *, struct config *);
 | |
| struct state *State_find(struct config *);
 | |
| struct state **State_arrayof(/*  */);
 | |
| 
 | |
| /* Routines used for efficiency in Configlist_add */
 | |
| 
 | |
| void Configtable_init(void);
 | |
| int Configtable_insert(struct config *);
 | |
| struct config *Configtable_find(struct config *);
 | |
| void Configtable_clear(int(*)(struct config *));
 | |
| 
 | |
| /****************** From the file "action.c" *******************************/
 | |
| /*
 | |
| ** Routines processing parser actions in the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| /* Allocate a new parser action */
 | |
| static struct action *Action_new(void){
 | |
|   static struct action *freelist = 0;
 | |
|   struct action *newaction;
 | |
| 
 | |
|   if( freelist==0 ){
 | |
|     int i;
 | |
|     int amt = 100;
 | |
|     freelist = (struct action *)calloc(amt, sizeof(struct action));
 | |
|     if( freelist==0 ){
 | |
|       fprintf(stderr,"Unable to allocate memory for a new parser action.");
 | |
|       exit(1);
 | |
|     }
 | |
|     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
 | |
|     freelist[amt-1].next = 0;
 | |
|   }
 | |
|   newaction = freelist;
 | |
|   freelist = freelist->next;
 | |
|   return newaction;
 | |
| }
 | |
| 
 | |
| /* Compare two actions for sorting purposes.  Return negative, zero, or
 | |
| ** positive if the first action is less than, equal to, or greater than
 | |
| ** the first
 | |
| */
 | |
| static int actioncmp(
 | |
|   struct action *ap1,
 | |
|   struct action *ap2
 | |
| ){
 | |
|   int rc;
 | |
|   rc = ap1->sp->index - ap2->sp->index;
 | |
|   if( rc==0 ){
 | |
|     rc = (int)ap1->type - (int)ap2->type;
 | |
|   }
 | |
|   if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
 | |
|     rc = ap1->x.rp->index - ap2->x.rp->index;
 | |
|   }
 | |
|   if( rc==0 ){
 | |
|     rc = (int) (ap2 - ap1);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Sort parser actions */
 | |
| static struct action *Action_sort(
 | |
|   struct action *ap
 | |
| ){
 | |
|   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
 | |
|                               (int(*)(const char*,const char*))actioncmp);
 | |
|   return ap;
 | |
| }
 | |
| 
 | |
| void Action_add(
 | |
|   struct action **app,
 | |
|   enum e_action type,
 | |
|   struct symbol *sp,
 | |
|   char *arg
 | |
| ){
 | |
|   struct action *newaction;
 | |
|   newaction = Action_new();
 | |
|   newaction->next = *app;
 | |
|   *app = newaction;
 | |
|   newaction->type = type;
 | |
|   newaction->sp = sp;
 | |
|   if( type==SHIFT ){
 | |
|     newaction->x.stp = (struct state *)arg;
 | |
|   }else{
 | |
|     newaction->x.rp = (struct rule *)arg;
 | |
|   }
 | |
| }
 | |
| /********************** New code to implement the "acttab" module ***********/
 | |
| /*
 | |
| ** This module implements routines use to construct the yy_action[] table.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The state of the yy_action table under construction is an instance of
 | |
| ** the following structure.
 | |
| **
 | |
| ** The yy_action table maps the pair (state_number, lookahead) into an
 | |
| ** action_number.  The table is an array of integers pairs.  The state_number
 | |
| ** determines an initial offset into the yy_action array.  The lookahead
 | |
| ** value is then added to this initial offset to get an index X into the
 | |
| ** yy_action array. If the aAction[X].lookahead equals the value of the
 | |
| ** of the lookahead input, then the value of the action_number output is
 | |
| ** aAction[X].action.  If the lookaheads do not match then the
 | |
| ** default action for the state_number is returned.
 | |
| **
 | |
| ** All actions associated with a single state_number are first entered
 | |
| ** into aLookahead[] using multiple calls to acttab_action().  Then the 
 | |
| ** actions for that single state_number are placed into the aAction[] 
 | |
| ** array with a single call to acttab_insert().  The acttab_insert() call
 | |
| ** also resets the aLookahead[] array in preparation for the next
 | |
| ** state number.
 | |
| */
 | |
| struct lookahead_action {
 | |
|   int lookahead;             /* Value of the lookahead token */
 | |
|   int action;                /* Action to take on the given lookahead */
 | |
| };
 | |
| typedef struct acttab acttab;
 | |
| struct acttab {
 | |
|   int nAction;                 /* Number of used slots in aAction[] */
 | |
|   int nActionAlloc;            /* Slots allocated for aAction[] */
 | |
|   struct lookahead_action
 | |
|     *aAction,                  /* The yy_action[] table under construction */
 | |
|     *aLookahead;               /* A single new transaction set */
 | |
|   int mnLookahead;             /* Minimum aLookahead[].lookahead */
 | |
|   int mnAction;                /* Action associated with mnLookahead */
 | |
|   int mxLookahead;             /* Maximum aLookahead[].lookahead */
 | |
|   int nLookahead;              /* Used slots in aLookahead[] */
 | |
|   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
 | |
| };
 | |
| 
 | |
| /* Return the number of entries in the yy_action table */
 | |
| #define acttab_size(X) ((X)->nAction)
 | |
| 
 | |
| /* The value for the N-th entry in yy_action */
 | |
| #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
 | |
| 
 | |
| /* The value for the N-th entry in yy_lookahead */
 | |
| #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
 | |
| 
 | |
| /* Free all memory associated with the given acttab */
 | |
| void acttab_free(acttab *p){
 | |
|   free( p->aAction );
 | |
|   free( p->aLookahead );
 | |
|   free( p );
 | |
| }
 | |
| 
 | |
| /* Allocate a new acttab structure */
 | |
| acttab *acttab_alloc(void){
 | |
|   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
 | |
|   if( p==0 ){
 | |
|     fprintf(stderr,"Unable to allocate memory for a new acttab.");
 | |
|     exit(1);
 | |
|   }
 | |
|   memset(p, 0, sizeof(*p));
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /* Add a new action to the current transaction set.  
 | |
| **
 | |
| ** This routine is called once for each lookahead for a particular
 | |
| ** state.
 | |
| */
 | |
| void acttab_action(acttab *p, int lookahead, int action){
 | |
|   if( p->nLookahead>=p->nLookaheadAlloc ){
 | |
|     p->nLookaheadAlloc += 25;
 | |
|     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
 | |
|                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
 | |
|     if( p->aLookahead==0 ){
 | |
|       fprintf(stderr,"malloc failed\n");
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
|   if( p->nLookahead==0 ){
 | |
|     p->mxLookahead = lookahead;
 | |
|     p->mnLookahead = lookahead;
 | |
|     p->mnAction = action;
 | |
|   }else{
 | |
|     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
 | |
|     if( p->mnLookahead>lookahead ){
 | |
|       p->mnLookahead = lookahead;
 | |
|       p->mnAction = action;
 | |
|     }
 | |
|   }
 | |
|   p->aLookahead[p->nLookahead].lookahead = lookahead;
 | |
|   p->aLookahead[p->nLookahead].action = action;
 | |
|   p->nLookahead++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add the transaction set built up with prior calls to acttab_action()
 | |
| ** into the current action table.  Then reset the transaction set back
 | |
| ** to an empty set in preparation for a new round of acttab_action() calls.
 | |
| **
 | |
| ** Return the offset into the action table of the new transaction.
 | |
| */
 | |
| int acttab_insert(acttab *p){
 | |
|   int i, j, k, n;
 | |
|   assert( p->nLookahead>0 );
 | |
| 
 | |
|   /* Make sure we have enough space to hold the expanded action table
 | |
|   ** in the worst case.  The worst case occurs if the transaction set
 | |
|   ** must be appended to the current action table
 | |
|   */
 | |
|   n = p->mxLookahead + 1;
 | |
|   if( p->nAction + n >= p->nActionAlloc ){
 | |
|     int oldAlloc = p->nActionAlloc;
 | |
|     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
 | |
|     p->aAction = (struct lookahead_action *) realloc( p->aAction,
 | |
|                           sizeof(p->aAction[0])*p->nActionAlloc);
 | |
|     if( p->aAction==0 ){
 | |
|       fprintf(stderr,"malloc failed\n");
 | |
|       exit(1);
 | |
|     }
 | |
|     for(i=oldAlloc; i<p->nActionAlloc; i++){
 | |
|       p->aAction[i].lookahead = -1;
 | |
|       p->aAction[i].action = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Scan the existing action table looking for an offset that is a 
 | |
|   ** duplicate of the current transaction set.  Fall out of the loop
 | |
|   ** if and when the duplicate is found.
 | |
|   **
 | |
|   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
 | |
|   */
 | |
|   for(i=p->nAction-1; i>=0; i--){
 | |
|     if( p->aAction[i].lookahead==p->mnLookahead ){
 | |
|       /* All lookaheads and actions in the aLookahead[] transaction
 | |
|       ** must match against the candidate aAction[i] entry. */
 | |
|       if( p->aAction[i].action!=p->mnAction ) continue;
 | |
|       for(j=0; j<p->nLookahead; j++){
 | |
|         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
 | |
|         if( k<0 || k>=p->nAction ) break;
 | |
|         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
 | |
|         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
 | |
|       }
 | |
|       if( j<p->nLookahead ) continue;
 | |
| 
 | |
|       /* No possible lookahead value that is not in the aLookahead[]
 | |
|       ** transaction is allowed to match aAction[i] */
 | |
|       n = 0;
 | |
|       for(j=0; j<p->nAction; j++){
 | |
|         if( p->aAction[j].lookahead<0 ) continue;
 | |
|         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
 | |
|       }
 | |
|       if( n==p->nLookahead ){
 | |
|         break;  /* An exact match is found at offset i */
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If no existing offsets exactly match the current transaction, find an
 | |
|   ** an empty offset in the aAction[] table in which we can add the
 | |
|   ** aLookahead[] transaction.
 | |
|   */
 | |
|   if( i<0 ){
 | |
|     /* Look for holes in the aAction[] table that fit the current
 | |
|     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
 | |
|     ** If no holes are found, i is left at p->nAction, which means the
 | |
|     ** transaction will be appended. */
 | |
|     for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
 | |
|       if( p->aAction[i].lookahead<0 ){
 | |
|         for(j=0; j<p->nLookahead; j++){
 | |
|           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
 | |
|           if( k<0 ) break;
 | |
|           if( p->aAction[k].lookahead>=0 ) break;
 | |
|         }
 | |
|         if( j<p->nLookahead ) continue;
 | |
|         for(j=0; j<p->nAction; j++){
 | |
|           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
 | |
|         }
 | |
|         if( j==p->nAction ){
 | |
|           break;  /* Fits in empty slots */
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /* Insert transaction set at index i. */
 | |
|   for(j=0; j<p->nLookahead; j++){
 | |
|     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
 | |
|     p->aAction[k] = p->aLookahead[j];
 | |
|     if( k>=p->nAction ) p->nAction = k+1;
 | |
|   }
 | |
|   p->nLookahead = 0;
 | |
| 
 | |
|   /* Return the offset that is added to the lookahead in order to get the
 | |
|   ** index into yy_action of the action */
 | |
|   return i - p->mnLookahead;
 | |
| }
 | |
| 
 | |
| /********************** From the file "build.c" *****************************/
 | |
| /*
 | |
| ** Routines to construction the finite state machine for the LEMON
 | |
| ** parser generator.
 | |
| */
 | |
| 
 | |
| /* Find a precedence symbol of every rule in the grammar.
 | |
| ** 
 | |
| ** Those rules which have a precedence symbol coded in the input
 | |
| ** grammar using the "[symbol]" construct will already have the
 | |
| ** rp->precsym field filled.  Other rules take as their precedence
 | |
| ** symbol the first RHS symbol with a defined precedence.  If there
 | |
| ** are not RHS symbols with a defined precedence, the precedence
 | |
| ** symbol field is left blank.
 | |
| */
 | |
| void FindRulePrecedences(struct lemon *xp)
 | |
| {
 | |
|   struct rule *rp;
 | |
|   for(rp=xp->rule; rp; rp=rp->next){
 | |
|     if( rp->precsym==0 ){
 | |
|       int i, j;
 | |
|       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
 | |
|         struct symbol *sp = rp->rhs[i];
 | |
|         if( sp->type==MULTITERMINAL ){
 | |
|           for(j=0; j<sp->nsubsym; j++){
 | |
|             if( sp->subsym[j]->prec>=0 ){
 | |
|               rp->precsym = sp->subsym[j];
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }else if( sp->prec>=0 ){
 | |
|           rp->precsym = rp->rhs[i];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Find all nonterminals which will generate the empty string.
 | |
| ** Then go back and compute the first sets of every nonterminal.
 | |
| ** The first set is the set of all terminal symbols which can begin
 | |
| ** a string generated by that nonterminal.
 | |
| */
 | |
| void FindFirstSets(struct lemon *lemp)
 | |
| {
 | |
|   int i, j;
 | |
|   struct rule *rp;
 | |
|   int progress;
 | |
| 
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     lemp->symbols[i]->lambda = LEMON_FALSE;
 | |
|   }
 | |
|   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
 | |
|     lemp->symbols[i]->firstset = SetNew();
 | |
|   }
 | |
| 
 | |
|   /* First compute all lambdas */
 | |
|   do{
 | |
|     progress = 0;
 | |
|     for(rp=lemp->rule; rp; rp=rp->next){
 | |
|       if( rp->lhs->lambda ) continue;
 | |
|       for(i=0; i<rp->nrhs; i++){
 | |
|         struct symbol *sp = rp->rhs[i];
 | |
|         assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
 | |
|         if( sp->lambda==LEMON_FALSE ) break;
 | |
|       }
 | |
|       if( i==rp->nrhs ){
 | |
|         rp->lhs->lambda = LEMON_TRUE;
 | |
|         progress = 1;
 | |
|       }
 | |
|     }
 | |
|   }while( progress );
 | |
| 
 | |
|   /* Now compute all first sets */
 | |
|   do{
 | |
|     struct symbol *s1, *s2;
 | |
|     progress = 0;
 | |
|     for(rp=lemp->rule; rp; rp=rp->next){
 | |
|       s1 = rp->lhs;
 | |
|       for(i=0; i<rp->nrhs; i++){
 | |
|         s2 = rp->rhs[i];
 | |
|         if( s2->type==TERMINAL ){
 | |
|           progress += SetAdd(s1->firstset,s2->index);
 | |
|           break;
 | |
|         }else if( s2->type==MULTITERMINAL ){
 | |
|           for(j=0; j<s2->nsubsym; j++){
 | |
|             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
 | |
|           }
 | |
|           break;
 | |
|         }else if( s1==s2 ){
 | |
|           if( s1->lambda==LEMON_FALSE ) break;
 | |
|         }else{
 | |
|           progress += SetUnion(s1->firstset,s2->firstset);
 | |
|           if( s2->lambda==LEMON_FALSE ) break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }while( progress );
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Compute all LR(0) states for the grammar.  Links
 | |
| ** are added to between some states so that the LR(1) follow sets
 | |
| ** can be computed later.
 | |
| */
 | |
| PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
 | |
| void FindStates(struct lemon *lemp)
 | |
| {
 | |
|   struct symbol *sp;
 | |
|   struct rule *rp;
 | |
| 
 | |
|   Configlist_init();
 | |
| 
 | |
|   /* Find the start symbol */
 | |
|   if( lemp->start ){
 | |
|     sp = Symbol_find(lemp->start);
 | |
|     if( sp==0 ){
 | |
|       ErrorMsg(lemp->filename,0,
 | |
| "The specified start symbol \"%s\" is not \
 | |
| in a nonterminal of the grammar.  \"%s\" will be used as the start \
 | |
| symbol instead.",lemp->start,lemp->rule->lhs->name);
 | |
|       lemp->errorcnt++;
 | |
|       sp = lemp->rule->lhs;
 | |
|     }
 | |
|   }else{
 | |
|     sp = lemp->rule->lhs;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the start symbol doesn't occur on the right-hand side of
 | |
|   ** any rule.  Report an error if it does.  (YACC would generate a new
 | |
|   ** start symbol in this case.) */
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     int i;
 | |
|     for(i=0; i<rp->nrhs; i++){
 | |
|       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
 | |
|         ErrorMsg(lemp->filename,0,
 | |
| "The start symbol \"%s\" occurs on the \
 | |
| right-hand side of a rule. This will result in a parser which \
 | |
| does not work properly.",sp->name);
 | |
|         lemp->errorcnt++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The basis configuration set for the first state
 | |
|   ** is all rules which have the start symbol as their
 | |
|   ** left-hand side */
 | |
|   for(rp=sp->rule; rp; rp=rp->nextlhs){
 | |
|     struct config *newcfp;
 | |
|     rp->lhsStart = 1;
 | |
|     newcfp = Configlist_addbasis(rp,0);
 | |
|     SetAdd(newcfp->fws,0);
 | |
|   }
 | |
| 
 | |
|   /* Compute the first state.  All other states will be
 | |
|   ** computed automatically during the computation of the first one.
 | |
|   ** The returned pointer to the first state is not used. */
 | |
|   (void)getstate(lemp);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to a state which is described by the configuration
 | |
| ** list which has been built from calls to Configlist_add.
 | |
| */
 | |
| PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
 | |
| PRIVATE struct state *getstate(struct lemon *lemp)
 | |
| {
 | |
|   struct config *cfp, *bp;
 | |
|   struct state *stp;
 | |
| 
 | |
|   /* Extract the sorted basis of the new state.  The basis was constructed
 | |
|   ** by prior calls to "Configlist_addbasis()". */
 | |
|   Configlist_sortbasis();
 | |
|   bp = Configlist_basis();
 | |
| 
 | |
|   /* Get a state with the same basis */
 | |
|   stp = State_find(bp);
 | |
|   if( stp ){
 | |
|     /* A state with the same basis already exists!  Copy all the follow-set
 | |
|     ** propagation links from the state under construction into the
 | |
|     ** preexisting state, then return a pointer to the preexisting state */
 | |
|     struct config *x, *y;
 | |
|     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
 | |
|       Plink_copy(&y->bplp,x->bplp);
 | |
|       Plink_delete(x->fplp);
 | |
|       x->fplp = x->bplp = 0;
 | |
|     }
 | |
|     cfp = Configlist_return();
 | |
|     Configlist_eat(cfp);
 | |
|   }else{
 | |
|     /* This really is a new state.  Construct all the details */
 | |
|     Configlist_closure(lemp);    /* Compute the configuration closure */
 | |
|     Configlist_sort();           /* Sort the configuration closure */
 | |
|     cfp = Configlist_return();   /* Get a pointer to the config list */
 | |
|     stp = State_new();           /* A new state structure */
 | |
|     MemoryCheck(stp);
 | |
|     stp->bp = bp;                /* Remember the configuration basis */
 | |
|     stp->cfp = cfp;              /* Remember the configuration closure */
 | |
|     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
 | |
|     stp->ap = 0;                 /* No actions, yet. */
 | |
|     State_insert(stp,stp->bp);   /* Add to the state table */
 | |
|     buildshifts(lemp,stp);       /* Recursively compute successor states */
 | |
|   }
 | |
|   return stp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if two symbols are the same.
 | |
| */
 | |
| int same_symbol(struct symbol *a, struct symbol *b)
 | |
| {
 | |
|   int i;
 | |
|   if( a==b ) return 1;
 | |
|   if( a->type!=MULTITERMINAL ) return 0;
 | |
|   if( b->type!=MULTITERMINAL ) return 0;
 | |
|   if( a->nsubsym!=b->nsubsym ) return 0;
 | |
|   for(i=0; i<a->nsubsym; i++){
 | |
|     if( a->subsym[i]!=b->subsym[i] ) return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Construct all successor states to the given state.  A "successor"
 | |
| ** state is any state which can be reached by a shift action.
 | |
| */
 | |
| PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
 | |
| {
 | |
|   struct config *cfp;  /* For looping thru the config closure of "stp" */
 | |
|   struct config *bcfp; /* For the inner loop on config closure of "stp" */
 | |
|   struct config *newcfg;  /* */
 | |
|   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
 | |
|   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
 | |
|   struct state *newstp; /* A pointer to a successor state */
 | |
| 
 | |
|   /* Each configuration becomes complete after it contibutes to a successor
 | |
|   ** state.  Initially, all configurations are incomplete */
 | |
|   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
 | |
| 
 | |
|   /* Loop through all configurations of the state "stp" */
 | |
|   for(cfp=stp->cfp; cfp; cfp=cfp->next){
 | |
|     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
 | |
|     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
 | |
|     Configlist_reset();                      /* Reset the new config set */
 | |
|     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
 | |
| 
 | |
|     /* For every configuration in the state "stp" which has the symbol "sp"
 | |
|     ** following its dot, add the same configuration to the basis set under
 | |
|     ** construction but with the dot shifted one symbol to the right. */
 | |
|     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
 | |
|       if( bcfp->status==COMPLETE ) continue;    /* Already used */
 | |
|       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
 | |
|       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
 | |
|       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
 | |
|       bcfp->status = COMPLETE;                  /* Mark this config as used */
 | |
|       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
 | |
|       Plink_add(&newcfg->bplp,bcfp);
 | |
|     }
 | |
| 
 | |
|     /* Get a pointer to the state described by the basis configuration set
 | |
|     ** constructed in the preceding loop */
 | |
|     newstp = getstate(lemp);
 | |
| 
 | |
|     /* The state "newstp" is reached from the state "stp" by a shift action
 | |
|     ** on the symbol "sp" */
 | |
|     if( sp->type==MULTITERMINAL ){
 | |
|       int i;
 | |
|       for(i=0; i<sp->nsubsym; i++){
 | |
|         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
 | |
|       }
 | |
|     }else{
 | |
|       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct the propagation links
 | |
| */
 | |
| void FindLinks(struct lemon *lemp)
 | |
| {
 | |
|   int i;
 | |
|   struct config *cfp, *other;
 | |
|   struct state *stp;
 | |
|   struct plink *plp;
 | |
| 
 | |
|   /* Housekeeping detail:
 | |
|   ** Add to every propagate link a pointer back to the state to
 | |
|   ** which the link is attached. */
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     for(cfp=stp->cfp; cfp; cfp=cfp->next){
 | |
|       cfp->stp = stp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Convert all backlinks into forward links.  Only the forward
 | |
|   ** links are used in the follow-set computation. */
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     for(cfp=stp->cfp; cfp; cfp=cfp->next){
 | |
|       for(plp=cfp->bplp; plp; plp=plp->next){
 | |
|         other = plp->cfp;
 | |
|         Plink_add(&other->fplp,cfp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Compute all followsets.
 | |
| **
 | |
| ** A followset is the set of all symbols which can come immediately
 | |
| ** after a configuration.
 | |
| */
 | |
| void FindFollowSets(struct lemon *lemp)
 | |
| {
 | |
|   int i;
 | |
|   struct config *cfp;
 | |
|   struct plink *plp;
 | |
|   int progress;
 | |
|   int change;
 | |
| 
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
 | |
|       cfp->status = INCOMPLETE;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   do{
 | |
|     progress = 0;
 | |
|     for(i=0; i<lemp->nstate; i++){
 | |
|       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
 | |
|         if( cfp->status==COMPLETE ) continue;
 | |
|         for(plp=cfp->fplp; plp; plp=plp->next){
 | |
|           change = SetUnion(plp->cfp->fws,cfp->fws);
 | |
|           if( change ){
 | |
|             plp->cfp->status = INCOMPLETE;
 | |
|             progress = 1;
 | |
|           }
 | |
|         }
 | |
|         cfp->status = COMPLETE;
 | |
|       }
 | |
|     }
 | |
|   }while( progress );
 | |
| }
 | |
| 
 | |
| static int resolve_conflict(struct action *,struct action *);
 | |
| 
 | |
| /* Compute the reduce actions, and resolve conflicts.
 | |
| */
 | |
| void FindActions(struct lemon *lemp)
 | |
| {
 | |
|   int i,j;
 | |
|   struct config *cfp;
 | |
|   struct state *stp;
 | |
|   struct symbol *sp;
 | |
|   struct rule *rp;
 | |
| 
 | |
|   /* Add all of the reduce actions 
 | |
|   ** A reduce action is added for each element of the followset of
 | |
|   ** a configuration which has its dot at the extreme right.
 | |
|   */
 | |
|   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
 | |
|     stp = lemp->sorted[i];
 | |
|     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
 | |
|       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
 | |
|         for(j=0; j<lemp->nterminal; j++){
 | |
|           if( SetFind(cfp->fws,j) ){
 | |
|             /* Add a reduce action to the state "stp" which will reduce by the
 | |
|             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
 | |
|             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Add the accepting token */
 | |
|   if( lemp->start ){
 | |
|     sp = Symbol_find(lemp->start);
 | |
|     if( sp==0 ) sp = lemp->rule->lhs;
 | |
|   }else{
 | |
|     sp = lemp->rule->lhs;
 | |
|   }
 | |
|   /* Add to the first state (which is always the starting state of the
 | |
|   ** finite state machine) an action to ACCEPT if the lookahead is the
 | |
|   ** start nonterminal.  */
 | |
|   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
 | |
| 
 | |
|   /* Resolve conflicts */
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     struct action *ap, *nap;
 | |
|     stp = lemp->sorted[i];
 | |
|     /* assert( stp->ap ); */
 | |
|     stp->ap = Action_sort(stp->ap);
 | |
|     for(ap=stp->ap; ap && ap->next; ap=ap->next){
 | |
|       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
 | |
|          /* The two actions "ap" and "nap" have the same lookahead.
 | |
|          ** Figure out which one should be used */
 | |
|          lemp->nconflict += resolve_conflict(ap,nap);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Report an error for each rule that can never be reduced. */
 | |
|   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     struct action *ap;
 | |
|     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
 | |
|       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
 | |
|     }
 | |
|   }
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     if( rp->canReduce ) continue;
 | |
|     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
 | |
|     lemp->errorcnt++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Resolve a conflict between the two given actions.  If the
 | |
| ** conflict can't be resolved, return non-zero.
 | |
| **
 | |
| ** NO LONGER TRUE:
 | |
| **   To resolve a conflict, first look to see if either action
 | |
| **   is on an error rule.  In that case, take the action which
 | |
| **   is not associated with the error rule.  If neither or both
 | |
| **   actions are associated with an error rule, then try to
 | |
| **   use precedence to resolve the conflict.
 | |
| **
 | |
| ** If either action is a SHIFT, then it must be apx.  This
 | |
| ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
 | |
| */
 | |
| static int resolve_conflict(
 | |
|   struct action *apx,
 | |
|   struct action *apy
 | |
| ){
 | |
|   struct symbol *spx, *spy;
 | |
|   int errcnt = 0;
 | |
|   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
 | |
|   if( apx->type==SHIFT && apy->type==SHIFT ){
 | |
|     apy->type = SSCONFLICT;
 | |
|     errcnt++;
 | |
|   }
 | |
|   if( apx->type==SHIFT && apy->type==REDUCE ){
 | |
|     spx = apx->sp;
 | |
|     spy = apy->x.rp->precsym;
 | |
|     if( spy==0 || spx->prec<0 || spy->prec<0 ){
 | |
|       /* Not enough precedence information. */
 | |
|       apy->type = SRCONFLICT;
 | |
|       errcnt++;
 | |
|     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
 | |
|       apy->type = RD_RESOLVED;
 | |
|     }else if( spx->prec<spy->prec ){
 | |
|       apx->type = SH_RESOLVED;
 | |
|     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
 | |
|       apy->type = RD_RESOLVED;                             /* associativity */
 | |
|     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
 | |
|       apx->type = SH_RESOLVED;
 | |
|     }else{
 | |
|       assert( spx->prec==spy->prec && spx->assoc==NONE );
 | |
|       apx->type = ERROR;
 | |
|     }
 | |
|   }else if( apx->type==REDUCE && apy->type==REDUCE ){
 | |
|     spx = apx->x.rp->precsym;
 | |
|     spy = apy->x.rp->precsym;
 | |
|     if( spx==0 || spy==0 || spx->prec<0 ||
 | |
|     spy->prec<0 || spx->prec==spy->prec ){
 | |
|       apy->type = RRCONFLICT;
 | |
|       errcnt++;
 | |
|     }else if( spx->prec>spy->prec ){
 | |
|       apy->type = RD_RESOLVED;
 | |
|     }else if( spx->prec<spy->prec ){
 | |
|       apx->type = RD_RESOLVED;
 | |
|     }
 | |
|   }else{
 | |
|     assert( 
 | |
|       apx->type==SH_RESOLVED ||
 | |
|       apx->type==RD_RESOLVED ||
 | |
|       apx->type==SSCONFLICT ||
 | |
|       apx->type==SRCONFLICT ||
 | |
|       apx->type==RRCONFLICT ||
 | |
|       apy->type==SH_RESOLVED ||
 | |
|       apy->type==RD_RESOLVED ||
 | |
|       apy->type==SSCONFLICT ||
 | |
|       apy->type==SRCONFLICT ||
 | |
|       apy->type==RRCONFLICT
 | |
|     );
 | |
|     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
 | |
|     ** REDUCEs on the list.  If we reach this point it must be because
 | |
|     ** the parser conflict had already been resolved. */
 | |
|   }
 | |
|   return errcnt;
 | |
| }
 | |
| /********************* From the file "configlist.c" *************************/
 | |
| /*
 | |
| ** Routines to processing a configuration list and building a state
 | |
| ** in the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| static struct config *freelist = 0;      /* List of free configurations */
 | |
| static struct config *current = 0;       /* Top of list of configurations */
 | |
| static struct config **currentend = 0;   /* Last on list of configs */
 | |
| static struct config *basis = 0;         /* Top of list of basis configs */
 | |
| static struct config **basisend = 0;     /* End of list of basis configs */
 | |
| 
 | |
| /* Return a pointer to a new configuration */
 | |
| PRIVATE struct config *newconfig(){
 | |
|   struct config *newcfg;
 | |
|   if( freelist==0 ){
 | |
|     int i;
 | |
|     int amt = 3;
 | |
|     freelist = (struct config *)calloc( amt, sizeof(struct config) );
 | |
|     if( freelist==0 ){
 | |
|       fprintf(stderr,"Unable to allocate memory for a new configuration.");
 | |
|       exit(1);
 | |
|     }
 | |
|     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
 | |
|     freelist[amt-1].next = 0;
 | |
|   }
 | |
|   newcfg = freelist;
 | |
|   freelist = freelist->next;
 | |
|   return newcfg;
 | |
| }
 | |
| 
 | |
| /* The configuration "old" is no longer used */
 | |
| PRIVATE void deleteconfig(struct config *old)
 | |
| {
 | |
|   old->next = freelist;
 | |
|   freelist = old;
 | |
| }
 | |
| 
 | |
| /* Initialized the configuration list builder */
 | |
| void Configlist_init(){
 | |
|   current = 0;
 | |
|   currentend = ¤t;
 | |
|   basis = 0;
 | |
|   basisend = &basis;
 | |
|   Configtable_init();
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Initialized the configuration list builder */
 | |
| void Configlist_reset(){
 | |
|   current = 0;
 | |
|   currentend = ¤t;
 | |
|   basis = 0;
 | |
|   basisend = &basis;
 | |
|   Configtable_clear(0);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Add another configuration to the configuration list */
 | |
| struct config *Configlist_add(
 | |
|   struct rule *rp,    /* The rule */
 | |
|   int dot             /* Index into the RHS of the rule where the dot goes */
 | |
| ){
 | |
|   struct config *cfp, model;
 | |
| 
 | |
|   assert( currentend!=0 );
 | |
|   model.rp = rp;
 | |
|   model.dot = dot;
 | |
|   cfp = Configtable_find(&model);
 | |
|   if( cfp==0 ){
 | |
|     cfp = newconfig();
 | |
|     cfp->rp = rp;
 | |
|     cfp->dot = dot;
 | |
|     cfp->fws = SetNew();
 | |
|     cfp->stp = 0;
 | |
|     cfp->fplp = cfp->bplp = 0;
 | |
|     cfp->next = 0;
 | |
|     cfp->bp = 0;
 | |
|     *currentend = cfp;
 | |
|     currentend = &cfp->next;
 | |
|     Configtable_insert(cfp);
 | |
|   }
 | |
|   return cfp;
 | |
| }
 | |
| 
 | |
| /* Add a basis configuration to the configuration list */
 | |
| struct config *Configlist_addbasis(struct rule *rp, int dot)
 | |
| {
 | |
|   struct config *cfp, model;
 | |
| 
 | |
|   assert( basisend!=0 );
 | |
|   assert( currentend!=0 );
 | |
|   model.rp = rp;
 | |
|   model.dot = dot;
 | |
|   cfp = Configtable_find(&model);
 | |
|   if( cfp==0 ){
 | |
|     cfp = newconfig();
 | |
|     cfp->rp = rp;
 | |
|     cfp->dot = dot;
 | |
|     cfp->fws = SetNew();
 | |
|     cfp->stp = 0;
 | |
|     cfp->fplp = cfp->bplp = 0;
 | |
|     cfp->next = 0;
 | |
|     cfp->bp = 0;
 | |
|     *currentend = cfp;
 | |
|     currentend = &cfp->next;
 | |
|     *basisend = cfp;
 | |
|     basisend = &cfp->bp;
 | |
|     Configtable_insert(cfp);
 | |
|   }
 | |
|   return cfp;
 | |
| }
 | |
| 
 | |
| /* Compute the closure of the configuration list */
 | |
| void Configlist_closure(struct lemon *lemp)
 | |
| {
 | |
|   struct config *cfp, *newcfp;
 | |
|   struct rule *rp, *newrp;
 | |
|   struct symbol *sp, *xsp;
 | |
|   int i, dot;
 | |
| 
 | |
|   assert( currentend!=0 );
 | |
|   for(cfp=current; cfp; cfp=cfp->next){
 | |
|     rp = cfp->rp;
 | |
|     dot = cfp->dot;
 | |
|     if( dot>=rp->nrhs ) continue;
 | |
|     sp = rp->rhs[dot];
 | |
|     if( sp->type==NONTERMINAL ){
 | |
|       if( sp->rule==0 && sp!=lemp->errsym ){
 | |
|         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
 | |
|           sp->name);
 | |
|         lemp->errorcnt++;
 | |
|       }
 | |
|       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
 | |
|         newcfp = Configlist_add(newrp,0);
 | |
|         for(i=dot+1; i<rp->nrhs; i++){
 | |
|           xsp = rp->rhs[i];
 | |
|           if( xsp->type==TERMINAL ){
 | |
|             SetAdd(newcfp->fws,xsp->index);
 | |
|             break;
 | |
|           }else if( xsp->type==MULTITERMINAL ){
 | |
|             int k;
 | |
|             for(k=0; k<xsp->nsubsym; k++){
 | |
|               SetAdd(newcfp->fws, xsp->subsym[k]->index);
 | |
|             }
 | |
|             break;
 | |
|           }else{
 | |
|             SetUnion(newcfp->fws,xsp->firstset);
 | |
|             if( xsp->lambda==LEMON_FALSE ) break;
 | |
|           }
 | |
|         }
 | |
|         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Sort the configuration list */
 | |
| void Configlist_sort(){
 | |
|   current = (struct config*)msort((char*)current,(char**)&(current->next),
 | |
|                                   Configcmp);
 | |
|   currentend = 0;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Sort the basis configuration list */
 | |
| void Configlist_sortbasis(){
 | |
|   basis = (struct config*)msort((char*)current,(char**)&(current->bp),
 | |
|                                 Configcmp);
 | |
|   basisend = 0;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to the head of the configuration list and
 | |
| ** reset the list */
 | |
| struct config *Configlist_return(){
 | |
|   struct config *old;
 | |
|   old = current;
 | |
|   current = 0;
 | |
|   currentend = 0;
 | |
|   return old;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to the head of the configuration list and
 | |
| ** reset the list */
 | |
| struct config *Configlist_basis(){
 | |
|   struct config *old;
 | |
|   old = basis;
 | |
|   basis = 0;
 | |
|   basisend = 0;
 | |
|   return old;
 | |
| }
 | |
| 
 | |
| /* Free all elements of the given configuration list */
 | |
| void Configlist_eat(struct config *cfp)
 | |
| {
 | |
|   struct config *nextcfp;
 | |
|   for(; cfp; cfp=nextcfp){
 | |
|     nextcfp = cfp->next;
 | |
|     assert( cfp->fplp==0 );
 | |
|     assert( cfp->bplp==0 );
 | |
|     if( cfp->fws ) SetFree(cfp->fws);
 | |
|     deleteconfig(cfp);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| /***************** From the file "error.c" *********************************/
 | |
| /*
 | |
| ** Code for printing error message.
 | |
| */
 | |
| 
 | |
| void ErrorMsg(const char *filename, int lineno, const char *format, ...){
 | |
|   va_list ap;
 | |
|   fprintf(stderr, "%s:%d: ", filename, lineno);
 | |
|   va_start(ap, format);
 | |
|   vfprintf(stderr,format,ap);
 | |
|   va_end(ap);
 | |
|   fprintf(stderr, "\n");
 | |
| }
 | |
| /**************** From the file "main.c" ************************************/
 | |
| /*
 | |
| ** Main program file for the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| /* Report an out-of-memory condition and abort.  This function
 | |
| ** is used mostly by the "MemoryCheck" macro in struct.h
 | |
| */
 | |
| void memory_error(){
 | |
|   fprintf(stderr,"Out of memory.  Aborting...\n");
 | |
|   exit(1);
 | |
| }
 | |
| 
 | |
| static int nDefine = 0;      /* Number of -D options on the command line */
 | |
| static char **azDefine = 0;  /* Name of the -D macros */
 | |
| 
 | |
| /* This routine is called with the argument to each -D command-line option.
 | |
| ** Add the macro defined to the azDefine array.
 | |
| */
 | |
| static void handle_D_option(char *z){
 | |
|   char **paz;
 | |
|   nDefine++;
 | |
|   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
 | |
|   if( azDefine==0 ){
 | |
|     fprintf(stderr,"out of memory\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   paz = &azDefine[nDefine-1];
 | |
|   *paz = (char *) malloc( lemonStrlen(z)+1 );
 | |
|   if( *paz==0 ){
 | |
|     fprintf(stderr,"out of memory\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   lemon_strcpy(*paz, z);
 | |
|   for(z=*paz; *z && *z!='='; z++){}
 | |
|   *z = 0;
 | |
| }
 | |
| 
 | |
| static char *user_templatename = NULL;
 | |
| static void handle_T_option(char *z){
 | |
|   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
 | |
|   if( user_templatename==0 ){
 | |
|     memory_error();
 | |
|   }
 | |
|   lemon_strcpy(user_templatename, z);
 | |
| }
 | |
| 
 | |
| /* forward reference */
 | |
| static const char *minimum_size_type(int lwr, int upr, int *pnByte);
 | |
| 
 | |
| /* Print a single line of the "Parser Stats" output
 | |
| */
 | |
| static void stats_line(const char *zLabel, int iValue){
 | |
|   int nLabel = lemonStrlen(zLabel);
 | |
|   printf("  %s%.*s %5d\n", zLabel,
 | |
|          35-nLabel, "................................",
 | |
|          iValue);
 | |
| }
 | |
| 
 | |
| /* The main program.  Parse the command line and do it... */
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|   static int version = 0;
 | |
|   static int rpflag = 0;
 | |
|   static int basisflag = 0;
 | |
|   static int compress = 0;
 | |
|   static int quiet = 0;
 | |
|   static int statistics = 0;
 | |
|   static int mhflag = 0;
 | |
|   static int nolinenosflag = 0;
 | |
|   static int noResort = 0;
 | |
|   static struct s_options options[] = {
 | |
|     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
 | |
|     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
 | |
|     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
 | |
|     {OPT_FSTR, "f", 0, "Ignored.  (Placeholder for -f compiler options.)"},
 | |
|     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
 | |
|     {OPT_FSTR, "I", 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
 | |
|     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
 | |
|     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
 | |
|     {OPT_FSTR, "O", 0, "Ignored.  (Placeholder for '-O' compiler options.)"},
 | |
|     {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
 | |
|                     "Show conflicts resolved by precedence rules"},
 | |
|     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
 | |
|     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
 | |
|     {OPT_FLAG, "s", (char*)&statistics,
 | |
|                                    "Print parser stats to standard output."},
 | |
|     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
 | |
|     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
 | |
|     {OPT_FSTR, "W", 0, "Ignored.  (Placeholder for '-W' compiler options.)"},
 | |
|     {OPT_FLAG,0,0,0}
 | |
|   };
 | |
|   int i;
 | |
|   int exitcode;
 | |
|   struct lemon lem;
 | |
| 
 | |
|   OptInit(argv,options,stderr);
 | |
|   if( version ){
 | |
|      printf("Lemon version 1.0\n");
 | |
|      exit(0); 
 | |
|   }
 | |
|   if( OptNArgs()!=1 ){
 | |
|     fprintf(stderr,"Exactly one filename argument is required.\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   memset(&lem, 0, sizeof(lem));
 | |
|   lem.errorcnt = 0;
 | |
| 
 | |
|   /* Initialize the machine */
 | |
|   Strsafe_init();
 | |
|   Symbol_init();
 | |
|   State_init();
 | |
|   lem.argv0 = argv[0];
 | |
|   lem.filename = OptArg(0);
 | |
|   lem.basisflag = basisflag;
 | |
|   lem.nolinenosflag = nolinenosflag;
 | |
|   Symbol_new("$");
 | |
|   lem.errsym = Symbol_new("error");
 | |
|   lem.errsym->useCnt = 0;
 | |
| 
 | |
|   /* Parse the input file */
 | |
|   Parse(&lem);
 | |
|   if( lem.errorcnt ) exit(lem.errorcnt);
 | |
|   if( lem.nrule==0 ){
 | |
|     fprintf(stderr,"Empty grammar.\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   /* Count and index the symbols of the grammar */
 | |
|   Symbol_new("{default}");
 | |
|   lem.nsymbol = Symbol_count();
 | |
|   lem.symbols = Symbol_arrayof();
 | |
|   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
 | |
|   qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
 | |
|   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
 | |
|   while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
 | |
|   assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
 | |
|   lem.nsymbol = i - 1;
 | |
|   for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
 | |
|   lem.nterminal = i;
 | |
| 
 | |
|   /* Generate a reprint of the grammar, if requested on the command line */
 | |
|   if( rpflag ){
 | |
|     Reprint(&lem);
 | |
|   }else{
 | |
|     /* Initialize the size for all follow and first sets */
 | |
|     SetSize(lem.nterminal+1);
 | |
| 
 | |
|     /* Find the precedence for every production rule (that has one) */
 | |
|     FindRulePrecedences(&lem);
 | |
| 
 | |
|     /* Compute the lambda-nonterminals and the first-sets for every
 | |
|     ** nonterminal */
 | |
|     FindFirstSets(&lem);
 | |
| 
 | |
|     /* Compute all LR(0) states.  Also record follow-set propagation
 | |
|     ** links so that the follow-set can be computed later */
 | |
|     lem.nstate = 0;
 | |
|     FindStates(&lem);
 | |
|     lem.sorted = State_arrayof();
 | |
| 
 | |
|     /* Tie up loose ends on the propagation links */
 | |
|     FindLinks(&lem);
 | |
| 
 | |
|     /* Compute the follow set of every reducible configuration */
 | |
|     FindFollowSets(&lem);
 | |
| 
 | |
|     /* Compute the action tables */
 | |
|     FindActions(&lem);
 | |
| 
 | |
|     /* Compress the action tables */
 | |
|     if( compress==0 ) CompressTables(&lem);
 | |
| 
 | |
|     /* Reorder and renumber the states so that states with fewer choices
 | |
|     ** occur at the end.  This is an optimization that helps make the
 | |
|     ** generated parser tables smaller. */
 | |
|     if( noResort==0 ) ResortStates(&lem);
 | |
| 
 | |
|     /* Generate a report of the parser generated.  (the "y.output" file) */
 | |
|     if( !quiet ) ReportOutput(&lem);
 | |
| 
 | |
|     /* Generate the source code for the parser */
 | |
|     ReportTable(&lem, mhflag);
 | |
| 
 | |
|     /* Produce a header file for use by the scanner.  (This step is
 | |
|     ** omitted if the "-m" option is used because makeheaders will
 | |
|     ** generate the file for us.) */
 | |
|     if( !mhflag ) ReportHeader(&lem);
 | |
|   }
 | |
|   if( statistics ){
 | |
|     printf("Parser statistics:\n");
 | |
|     stats_line("terminal symbols", lem.nterminal);
 | |
|     stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
 | |
|     stats_line("total symbols", lem.nsymbol);
 | |
|     stats_line("rules", lem.nrule);
 | |
|     stats_line("states", lem.nxstate);
 | |
|     stats_line("conflicts", lem.nconflict);
 | |
|     stats_line("action table entries", lem.nactiontab);
 | |
|     stats_line("total table size (bytes)", lem.tablesize);
 | |
|   }
 | |
|   if( lem.nconflict > 0 ){
 | |
|     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
 | |
|   }
 | |
| 
 | |
|   /* return 0 on success, 1 on failure. */
 | |
|   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
 | |
|   exit(exitcode);
 | |
|   return (exitcode);
 | |
| }
 | |
| /******************** From the file "msort.c" *******************************/
 | |
| /*
 | |
| ** A generic merge-sort program.
 | |
| **
 | |
| ** USAGE:
 | |
| ** Let "ptr" be a pointer to some structure which is at the head of
 | |
| ** a null-terminated list.  Then to sort the list call:
 | |
| **
 | |
| **     ptr = msort(ptr,&(ptr->next),cmpfnc);
 | |
| **
 | |
| ** In the above, "cmpfnc" is a pointer to a function which compares
 | |
| ** two instances of the structure and returns an integer, as in
 | |
| ** strcmp.  The second argument is a pointer to the pointer to the
 | |
| ** second element of the linked list.  This address is used to compute
 | |
| ** the offset to the "next" field within the structure.  The offset to
 | |
| ** the "next" field must be constant for all structures in the list.
 | |
| **
 | |
| ** The function returns a new pointer which is the head of the list
 | |
| ** after sorting.
 | |
| **
 | |
| ** ALGORITHM:
 | |
| ** Merge-sort.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the next structure in the linked list.
 | |
| */
 | |
| #define NEXT(A) (*(char**)(((char*)A)+offset))
 | |
| 
 | |
| /*
 | |
| ** Inputs:
 | |
| **   a:       A sorted, null-terminated linked list.  (May be null).
 | |
| **   b:       A sorted, null-terminated linked list.  (May be null).
 | |
| **   cmp:     A pointer to the comparison function.
 | |
| **   offset:  Offset in the structure to the "next" field.
 | |
| **
 | |
| ** Return Value:
 | |
| **   A pointer to the head of a sorted list containing the elements
 | |
| **   of both a and b.
 | |
| **
 | |
| ** Side effects:
 | |
| **   The "next" pointers for elements in the lists a and b are
 | |
| **   changed.
 | |
| */
 | |
| static char *merge(
 | |
|   char *a,
 | |
|   char *b,
 | |
|   int (*cmp)(const char*,const char*),
 | |
|   int offset
 | |
| ){
 | |
|   char *ptr, *head;
 | |
| 
 | |
|   if( a==0 ){
 | |
|     head = b;
 | |
|   }else if( b==0 ){
 | |
|     head = a;
 | |
|   }else{
 | |
|     if( (*cmp)(a,b)<=0 ){
 | |
|       ptr = a;
 | |
|       a = NEXT(a);
 | |
|     }else{
 | |
|       ptr = b;
 | |
|       b = NEXT(b);
 | |
|     }
 | |
|     head = ptr;
 | |
|     while( a && b ){
 | |
|       if( (*cmp)(a,b)<=0 ){
 | |
|         NEXT(ptr) = a;
 | |
|         ptr = a;
 | |
|         a = NEXT(a);
 | |
|       }else{
 | |
|         NEXT(ptr) = b;
 | |
|         ptr = b;
 | |
|         b = NEXT(b);
 | |
|       }
 | |
|     }
 | |
|     if( a ) NEXT(ptr) = a;
 | |
|     else    NEXT(ptr) = b;
 | |
|   }
 | |
|   return head;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Inputs:
 | |
| **   list:      Pointer to a singly-linked list of structures.
 | |
| **   next:      Pointer to pointer to the second element of the list.
 | |
| **   cmp:       A comparison function.
 | |
| **
 | |
| ** Return Value:
 | |
| **   A pointer to the head of a sorted list containing the elements
 | |
| **   orginally in list.
 | |
| **
 | |
| ** Side effects:
 | |
| **   The "next" pointers for elements in list are changed.
 | |
| */
 | |
| #define LISTSIZE 30
 | |
| static char *msort(
 | |
|   char *list,
 | |
|   char **next,
 | |
|   int (*cmp)(const char*,const char*)
 | |
| ){
 | |
|   unsigned long offset;
 | |
|   char *ep;
 | |
|   char *set[LISTSIZE];
 | |
|   int i;
 | |
|   offset = (unsigned long)((char*)next - (char*)list);
 | |
|   for(i=0; i<LISTSIZE; i++) set[i] = 0;
 | |
|   while( list ){
 | |
|     ep = list;
 | |
|     list = NEXT(list);
 | |
|     NEXT(ep) = 0;
 | |
|     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
 | |
|       ep = merge(ep,set[i],cmp,offset);
 | |
|       set[i] = 0;
 | |
|     }
 | |
|     set[i] = ep;
 | |
|   }
 | |
|   ep = 0;
 | |
|   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
 | |
|   return ep;
 | |
| }
 | |
| /************************ From the file "option.c" **************************/
 | |
| static char **argv;
 | |
| static struct s_options *op;
 | |
| static FILE *errstream;
 | |
| 
 | |
| #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
 | |
| 
 | |
| /*
 | |
| ** Print the command line with a carrot pointing to the k-th character
 | |
| ** of the n-th field.
 | |
| */
 | |
| static void errline(int n, int k, FILE *err)
 | |
| {
 | |
|   int spcnt, i;
 | |
|   if( argv[0] ) fprintf(err,"%s",argv[0]);
 | |
|   spcnt = lemonStrlen(argv[0]) + 1;
 | |
|   for(i=1; i<n && argv[i]; i++){
 | |
|     fprintf(err," %s",argv[i]);
 | |
|     spcnt += lemonStrlen(argv[i])+1;
 | |
|   }
 | |
|   spcnt += k;
 | |
|   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
 | |
|   if( spcnt<20 ){
 | |
|     fprintf(err,"\n%*s^-- here\n",spcnt,"");
 | |
|   }else{
 | |
|     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index of the N-th non-switch argument.  Return -1
 | |
| ** if N is out of range.
 | |
| */
 | |
| static int argindex(int n)
 | |
| {
 | |
|   int i;
 | |
|   int dashdash = 0;
 | |
|   if( argv!=0 && *argv!=0 ){
 | |
|     for(i=1; argv[i]; i++){
 | |
|       if( dashdash || !ISOPT(argv[i]) ){
 | |
|         if( n==0 ) return i;
 | |
|         n--;
 | |
|       }
 | |
|       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| static char emsg[] = "Command line syntax error: ";
 | |
| 
 | |
| /*
 | |
| ** Process a flag command line argument.
 | |
| */
 | |
| static int handleflags(int i, FILE *err)
 | |
| {
 | |
|   int v;
 | |
|   int errcnt = 0;
 | |
|   int j;
 | |
|   for(j=0; op[j].label; j++){
 | |
|     if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
 | |
|   }
 | |
|   v = argv[i][0]=='-' ? 1 : 0;
 | |
|   if( op[j].label==0 ){
 | |
|     if( err ){
 | |
|       fprintf(err,"%sundefined option.\n",emsg);
 | |
|       errline(i,1,err);
 | |
|     }
 | |
|     errcnt++;
 | |
|   }else if( op[j].arg==0 ){
 | |
|     /* Ignore this option */
 | |
|   }else if( op[j].type==OPT_FLAG ){
 | |
|     *((int*)op[j].arg) = v;
 | |
|   }else if( op[j].type==OPT_FFLAG ){
 | |
|     (*(void(*)(int))(op[j].arg))(v);
 | |
|   }else if( op[j].type==OPT_FSTR ){
 | |
|     (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
 | |
|   }else{
 | |
|     if( err ){
 | |
|       fprintf(err,"%smissing argument on switch.\n",emsg);
 | |
|       errline(i,1,err);
 | |
|     }
 | |
|     errcnt++;
 | |
|   }
 | |
|   return errcnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process a command line switch which has an argument.
 | |
| */
 | |
| static int handleswitch(int i, FILE *err)
 | |
| {
 | |
|   int lv = 0;
 | |
|   double dv = 0.0;
 | |
|   char *sv = 0, *end;
 | |
|   char *cp;
 | |
|   int j;
 | |
|   int errcnt = 0;
 | |
|   cp = strchr(argv[i],'=');
 | |
|   assert( cp!=0 );
 | |
|   *cp = 0;
 | |
|   for(j=0; op[j].label; j++){
 | |
|     if( strcmp(argv[i],op[j].label)==0 ) break;
 | |
|   }
 | |
|   *cp = '=';
 | |
|   if( op[j].label==0 ){
 | |
|     if( err ){
 | |
|       fprintf(err,"%sundefined option.\n",emsg);
 | |
|       errline(i,0,err);
 | |
|     }
 | |
|     errcnt++;
 | |
|   }else{
 | |
|     cp++;
 | |
|     switch( op[j].type ){
 | |
|       case OPT_FLAG:
 | |
|       case OPT_FFLAG:
 | |
|         if( err ){
 | |
|           fprintf(err,"%soption requires an argument.\n",emsg);
 | |
|           errline(i,0,err);
 | |
|         }
 | |
|         errcnt++;
 | |
|         break;
 | |
|       case OPT_DBL:
 | |
|       case OPT_FDBL:
 | |
|         dv = strtod(cp,&end);
 | |
|         if( *end ){
 | |
|           if( err ){
 | |
|             fprintf(err,
 | |
|                "%sillegal character in floating-point argument.\n",emsg);
 | |
|             errline(i,(int)((char*)end-(char*)argv[i]),err);
 | |
|           }
 | |
|           errcnt++;
 | |
|         }
 | |
|         break;
 | |
|       case OPT_INT:
 | |
|       case OPT_FINT:
 | |
|         lv = strtol(cp,&end,0);
 | |
|         if( *end ){
 | |
|           if( err ){
 | |
|             fprintf(err,"%sillegal character in integer argument.\n",emsg);
 | |
|             errline(i,(int)((char*)end-(char*)argv[i]),err);
 | |
|           }
 | |
|           errcnt++;
 | |
|         }
 | |
|         break;
 | |
|       case OPT_STR:
 | |
|       case OPT_FSTR:
 | |
|         sv = cp;
 | |
|         break;
 | |
|     }
 | |
|     switch( op[j].type ){
 | |
|       case OPT_FLAG:
 | |
|       case OPT_FFLAG:
 | |
|         break;
 | |
|       case OPT_DBL:
 | |
|         *(double*)(op[j].arg) = dv;
 | |
|         break;
 | |
|       case OPT_FDBL:
 | |
|         (*(void(*)(double))(op[j].arg))(dv);
 | |
|         break;
 | |
|       case OPT_INT:
 | |
|         *(int*)(op[j].arg) = lv;
 | |
|         break;
 | |
|       case OPT_FINT:
 | |
|         (*(void(*)(int))(op[j].arg))((int)lv);
 | |
|         break;
 | |
|       case OPT_STR:
 | |
|         *(char**)(op[j].arg) = sv;
 | |
|         break;
 | |
|       case OPT_FSTR:
 | |
|         (*(void(*)(char *))(op[j].arg))(sv);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   return errcnt;
 | |
| }
 | |
| 
 | |
| int OptInit(char **a, struct s_options *o, FILE *err)
 | |
| {
 | |
|   int errcnt = 0;
 | |
|   argv = a;
 | |
|   op = o;
 | |
|   errstream = err;
 | |
|   if( argv && *argv && op ){
 | |
|     int i;
 | |
|     for(i=1; argv[i]; i++){
 | |
|       if( argv[i][0]=='+' || argv[i][0]=='-' ){
 | |
|         errcnt += handleflags(i,err);
 | |
|       }else if( strchr(argv[i],'=') ){
 | |
|         errcnt += handleswitch(i,err);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( errcnt>0 ){
 | |
|     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
 | |
|     OptPrint();
 | |
|     exit(1);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int OptNArgs(){
 | |
|   int cnt = 0;
 | |
|   int dashdash = 0;
 | |
|   int i;
 | |
|   if( argv!=0 && argv[0]!=0 ){
 | |
|     for(i=1; argv[i]; i++){
 | |
|       if( dashdash || !ISOPT(argv[i]) ) cnt++;
 | |
|       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
 | |
|     }
 | |
|   }
 | |
|   return cnt;
 | |
| }
 | |
| 
 | |
| char *OptArg(int n)
 | |
| {
 | |
|   int i;
 | |
|   i = argindex(n);
 | |
|   return i>=0 ? argv[i] : 0;
 | |
| }
 | |
| 
 | |
| void OptErr(int n)
 | |
| {
 | |
|   int i;
 | |
|   i = argindex(n);
 | |
|   if( i>=0 ) errline(i,0,errstream);
 | |
| }
 | |
| 
 | |
| void OptPrint(){
 | |
|   int i;
 | |
|   int max, len;
 | |
|   max = 0;
 | |
|   for(i=0; op[i].label; i++){
 | |
|     len = lemonStrlen(op[i].label) + 1;
 | |
|     switch( op[i].type ){
 | |
|       case OPT_FLAG:
 | |
|       case OPT_FFLAG:
 | |
|         break;
 | |
|       case OPT_INT:
 | |
|       case OPT_FINT:
 | |
|         len += 9;       /* length of "<integer>" */
 | |
|         break;
 | |
|       case OPT_DBL:
 | |
|       case OPT_FDBL:
 | |
|         len += 6;       /* length of "<real>" */
 | |
|         break;
 | |
|       case OPT_STR:
 | |
|       case OPT_FSTR:
 | |
|         len += 8;       /* length of "<string>" */
 | |
|         break;
 | |
|     }
 | |
|     if( len>max ) max = len;
 | |
|   }
 | |
|   for(i=0; op[i].label; i++){
 | |
|     switch( op[i].type ){
 | |
|       case OPT_FLAG:
 | |
|       case OPT_FFLAG:
 | |
|         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
 | |
|         break;
 | |
|       case OPT_INT:
 | |
|       case OPT_FINT:
 | |
|         fprintf(errstream,"  -%s<integer>%*s  %s\n",op[i].label,
 | |
|           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
 | |
|         break;
 | |
|       case OPT_DBL:
 | |
|       case OPT_FDBL:
 | |
|         fprintf(errstream,"  -%s<real>%*s  %s\n",op[i].label,
 | |
|           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
 | |
|         break;
 | |
|       case OPT_STR:
 | |
|       case OPT_FSTR:
 | |
|         fprintf(errstream,"  -%s<string>%*s  %s\n",op[i].label,
 | |
|           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /*********************** From the file "parse.c" ****************************/
 | |
| /*
 | |
| ** Input file parser for the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| /* The state of the parser */
 | |
| enum e_state {
 | |
|   INITIALIZE,
 | |
|   WAITING_FOR_DECL_OR_RULE,
 | |
|   WAITING_FOR_DECL_KEYWORD,
 | |
|   WAITING_FOR_DECL_ARG,
 | |
|   WAITING_FOR_PRECEDENCE_SYMBOL,
 | |
|   WAITING_FOR_ARROW,
 | |
|   IN_RHS,
 | |
|   LHS_ALIAS_1,
 | |
|   LHS_ALIAS_2,
 | |
|   LHS_ALIAS_3,
 | |
|   RHS_ALIAS_1,
 | |
|   RHS_ALIAS_2,
 | |
|   PRECEDENCE_MARK_1,
 | |
|   PRECEDENCE_MARK_2,
 | |
|   RESYNC_AFTER_RULE_ERROR,
 | |
|   RESYNC_AFTER_DECL_ERROR,
 | |
|   WAITING_FOR_DESTRUCTOR_SYMBOL,
 | |
|   WAITING_FOR_DATATYPE_SYMBOL,
 | |
|   WAITING_FOR_FALLBACK_ID,
 | |
|   WAITING_FOR_WILDCARD_ID,
 | |
|   WAITING_FOR_CLASS_ID,
 | |
|   WAITING_FOR_CLASS_TOKEN
 | |
| };
 | |
| struct pstate {
 | |
|   char *filename;       /* Name of the input file */
 | |
|   int tokenlineno;      /* Linenumber at which current token starts */
 | |
|   int errorcnt;         /* Number of errors so far */
 | |
|   char *tokenstart;     /* Text of current token */
 | |
|   struct lemon *gp;     /* Global state vector */
 | |
|   enum e_state state;        /* The state of the parser */
 | |
|   struct symbol *fallback;   /* The fallback token */
 | |
|   struct symbol *tkclass;    /* Token class symbol */
 | |
|   struct symbol *lhs;        /* Left-hand side of current rule */
 | |
|   const char *lhsalias;      /* Alias for the LHS */
 | |
|   int nrhs;                  /* Number of right-hand side symbols seen */
 | |
|   struct symbol *rhs[MAXRHS];  /* RHS symbols */
 | |
|   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
 | |
|   struct rule *prevrule;     /* Previous rule parsed */
 | |
|   const char *declkeyword;   /* Keyword of a declaration */
 | |
|   char **declargslot;        /* Where the declaration argument should be put */
 | |
|   int insertLineMacro;       /* Add #line before declaration insert */
 | |
|   int *decllinenoslot;       /* Where to write declaration line number */
 | |
|   enum e_assoc declassoc;    /* Assign this association to decl arguments */
 | |
|   int preccounter;           /* Assign this precedence to decl arguments */
 | |
|   struct rule *firstrule;    /* Pointer to first rule in the grammar */
 | |
|   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
 | |
| };
 | |
| 
 | |
| /* Parse a single token */
 | |
| static void parseonetoken(struct pstate *psp)
 | |
| {
 | |
|   const char *x;
 | |
|   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
 | |
| #if 0
 | |
|   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
 | |
|     x,psp->state);
 | |
| #endif
 | |
|   switch( psp->state ){
 | |
|     case INITIALIZE:
 | |
|       psp->prevrule = 0;
 | |
|       psp->preccounter = 0;
 | |
|       psp->firstrule = psp->lastrule = 0;
 | |
|       psp->gp->nrule = 0;
 | |
|       /* Fall thru to next case */
 | |
|     case WAITING_FOR_DECL_OR_RULE:
 | |
|       if( x[0]=='%' ){
 | |
|         psp->state = WAITING_FOR_DECL_KEYWORD;
 | |
|       }else if( ISLOWER(x[0]) ){
 | |
|         psp->lhs = Symbol_new(x);
 | |
|         psp->nrhs = 0;
 | |
|         psp->lhsalias = 0;
 | |
|         psp->state = WAITING_FOR_ARROW;
 | |
|       }else if( x[0]=='{' ){
 | |
|         if( psp->prevrule==0 ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
| "There is no prior rule upon which to attach the code \
 | |
| fragment which begins on this line.");
 | |
|           psp->errorcnt++;
 | |
|         }else if( psp->prevrule->code!=0 ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
| "Code fragment beginning on this line is not the first \
 | |
| to follow the previous rule.");
 | |
|           psp->errorcnt++;
 | |
|         }else{
 | |
|           psp->prevrule->line = psp->tokenlineno;
 | |
|           psp->prevrule->code = &x[1];
 | |
|         }
 | |
|       }else if( x[0]=='[' ){
 | |
|         psp->state = PRECEDENCE_MARK_1;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
 | |
|           x);
 | |
|         psp->errorcnt++;
 | |
|       }
 | |
|       break;
 | |
|     case PRECEDENCE_MARK_1:
 | |
|       if( !ISUPPER(x[0]) ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "The precedence symbol must be a terminal.");
 | |
|         psp->errorcnt++;
 | |
|       }else if( psp->prevrule==0 ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "There is no prior rule to assign precedence \"[%s]\".",x);
 | |
|         psp->errorcnt++;
 | |
|       }else if( psp->prevrule->precsym!=0 ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
| "Precedence mark on this line is not the first \
 | |
| to follow the previous rule.");
 | |
|         psp->errorcnt++;
 | |
|       }else{
 | |
|         psp->prevrule->precsym = Symbol_new(x);
 | |
|       }
 | |
|       psp->state = PRECEDENCE_MARK_2;
 | |
|       break;
 | |
|     case PRECEDENCE_MARK_2:
 | |
|       if( x[0]!=']' ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Missing \"]\" on precedence mark.");
 | |
|         psp->errorcnt++;
 | |
|       }
 | |
|       psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       break;
 | |
|     case WAITING_FOR_ARROW:
 | |
|       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 | |
|         psp->state = IN_RHS;
 | |
|       }else if( x[0]=='(' ){
 | |
|         psp->state = LHS_ALIAS_1;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Expected to see a \":\" following the LHS symbol \"%s\".",
 | |
|           psp->lhs->name);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case LHS_ALIAS_1:
 | |
|       if( ISALPHA(x[0]) ){
 | |
|         psp->lhsalias = x;
 | |
|         psp->state = LHS_ALIAS_2;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
 | |
|           x,psp->lhs->name);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case LHS_ALIAS_2:
 | |
|       if( x[0]==')' ){
 | |
|         psp->state = LHS_ALIAS_3;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case LHS_ALIAS_3:
 | |
|       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
 | |
|         psp->state = IN_RHS;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Missing \"->\" following: \"%s(%s)\".",
 | |
|            psp->lhs->name,psp->lhsalias);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case IN_RHS:
 | |
|       if( x[0]=='.' ){
 | |
|         struct rule *rp;
 | |
|         rp = (struct rule *)calloc( sizeof(struct rule) + 
 | |
|              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
 | |
|         if( rp==0 ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Can't allocate enough memory for this rule.");
 | |
|           psp->errorcnt++;
 | |
|           psp->prevrule = 0;
 | |
|         }else{
 | |
|           int i;
 | |
|           rp->ruleline = psp->tokenlineno;
 | |
|           rp->rhs = (struct symbol**)&rp[1];
 | |
|           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
 | |
|           for(i=0; i<psp->nrhs; i++){
 | |
|             rp->rhs[i] = psp->rhs[i];
 | |
|             rp->rhsalias[i] = psp->alias[i];
 | |
|           }
 | |
|           rp->lhs = psp->lhs;
 | |
|           rp->lhsalias = psp->lhsalias;
 | |
|           rp->nrhs = psp->nrhs;
 | |
|           rp->code = 0;
 | |
|           rp->precsym = 0;
 | |
|           rp->index = psp->gp->nrule++;
 | |
|           rp->nextlhs = rp->lhs->rule;
 | |
|           rp->lhs->rule = rp;
 | |
|           rp->next = 0;
 | |
|           if( psp->firstrule==0 ){
 | |
|             psp->firstrule = psp->lastrule = rp;
 | |
|           }else{
 | |
|             psp->lastrule->next = rp;
 | |
|             psp->lastrule = rp;
 | |
|           }
 | |
|           psp->prevrule = rp;
 | |
|         }
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else if( ISALPHA(x[0]) ){
 | |
|         if( psp->nrhs>=MAXRHS ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Too many symbols on RHS of rule beginning at \"%s\".",
 | |
|             x);
 | |
|           psp->errorcnt++;
 | |
|           psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|         }else{
 | |
|           psp->rhs[psp->nrhs] = Symbol_new(x);
 | |
|           psp->alias[psp->nrhs] = 0;
 | |
|           psp->nrhs++;
 | |
|         }
 | |
|       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
 | |
|         struct symbol *msp = psp->rhs[psp->nrhs-1];
 | |
|         if( msp->type!=MULTITERMINAL ){
 | |
|           struct symbol *origsp = msp;
 | |
|           msp = (struct symbol *) calloc(1,sizeof(*msp));
 | |
|           memset(msp, 0, sizeof(*msp));
 | |
|           msp->type = MULTITERMINAL;
 | |
|           msp->nsubsym = 1;
 | |
|           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
 | |
|           msp->subsym[0] = origsp;
 | |
|           msp->name = origsp->name;
 | |
|           psp->rhs[psp->nrhs-1] = msp;
 | |
|         }
 | |
|         msp->nsubsym++;
 | |
|         msp->subsym = (struct symbol **) realloc(msp->subsym,
 | |
|           sizeof(struct symbol*)*msp->nsubsym);
 | |
|         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
 | |
|         if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Cannot form a compound containing a non-terminal");
 | |
|           psp->errorcnt++;
 | |
|         }
 | |
|       }else if( x[0]=='(' && psp->nrhs>0 ){
 | |
|         psp->state = RHS_ALIAS_1;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Illegal character on RHS of rule: \"%s\".",x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case RHS_ALIAS_1:
 | |
|       if( ISALPHA(x[0]) ){
 | |
|         psp->alias[psp->nrhs-1] = x;
 | |
|         psp->state = RHS_ALIAS_2;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
 | |
|           x,psp->rhs[psp->nrhs-1]->name);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case RHS_ALIAS_2:
 | |
|       if( x[0]==')' ){
 | |
|         psp->state = IN_RHS;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_RULE_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_DECL_KEYWORD:
 | |
|       if( ISALPHA(x[0]) ){
 | |
|         psp->declkeyword = x;
 | |
|         psp->declargslot = 0;
 | |
|         psp->decllinenoslot = 0;
 | |
|         psp->insertLineMacro = 1;
 | |
|         psp->state = WAITING_FOR_DECL_ARG;
 | |
|         if( strcmp(x,"name")==0 ){
 | |
|           psp->declargslot = &(psp->gp->name);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"include")==0 ){
 | |
|           psp->declargslot = &(psp->gp->include);
 | |
|         }else if( strcmp(x,"code")==0 ){
 | |
|           psp->declargslot = &(psp->gp->extracode);
 | |
|         }else if( strcmp(x,"token_destructor")==0 ){
 | |
|           psp->declargslot = &psp->gp->tokendest;
 | |
|         }else if( strcmp(x,"default_destructor")==0 ){
 | |
|           psp->declargslot = &psp->gp->vardest;
 | |
|         }else if( strcmp(x,"token_prefix")==0 ){
 | |
|           psp->declargslot = &psp->gp->tokenprefix;
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"syntax_error")==0 ){
 | |
|           psp->declargslot = &(psp->gp->error);
 | |
|         }else if( strcmp(x,"parse_accept")==0 ){
 | |
|           psp->declargslot = &(psp->gp->accept);
 | |
|         }else if( strcmp(x,"parse_failure")==0 ){
 | |
|           psp->declargslot = &(psp->gp->failure);
 | |
|         }else if( strcmp(x,"stack_overflow")==0 ){
 | |
|           psp->declargslot = &(psp->gp->overflow);
 | |
|         }else if( strcmp(x,"extra_argument")==0 ){
 | |
|           psp->declargslot = &(psp->gp->arg);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"token_type")==0 ){
 | |
|           psp->declargslot = &(psp->gp->tokentype);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"default_type")==0 ){
 | |
|           psp->declargslot = &(psp->gp->vartype);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"stack_size")==0 ){
 | |
|           psp->declargslot = &(psp->gp->stacksize);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"start_symbol")==0 ){
 | |
|           psp->declargslot = &(psp->gp->start);
 | |
|           psp->insertLineMacro = 0;
 | |
|         }else if( strcmp(x,"left")==0 ){
 | |
|           psp->preccounter++;
 | |
|           psp->declassoc = LEFT;
 | |
|           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 | |
|         }else if( strcmp(x,"right")==0 ){
 | |
|           psp->preccounter++;
 | |
|           psp->declassoc = RIGHT;
 | |
|           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 | |
|         }else if( strcmp(x,"nonassoc")==0 ){
 | |
|           psp->preccounter++;
 | |
|           psp->declassoc = NONE;
 | |
|           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
 | |
|         }else if( strcmp(x,"destructor")==0 ){
 | |
|           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
 | |
|         }else if( strcmp(x,"type")==0 ){
 | |
|           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
 | |
|         }else if( strcmp(x,"fallback")==0 ){
 | |
|           psp->fallback = 0;
 | |
|           psp->state = WAITING_FOR_FALLBACK_ID;
 | |
|         }else if( strcmp(x,"wildcard")==0 ){
 | |
|           psp->state = WAITING_FOR_WILDCARD_ID;
 | |
|         }else if( strcmp(x,"token_class")==0 ){
 | |
|           psp->state = WAITING_FOR_CLASS_ID;
 | |
|         }else{
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Unknown declaration keyword: \"%%%s\".",x);
 | |
|           psp->errorcnt++;
 | |
|           psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|         }
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Illegal declaration keyword: \"%s\".",x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_DESTRUCTOR_SYMBOL:
 | |
|       if( !ISALPHA(x[0]) ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Symbol name missing after %%destructor keyword");
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }else{
 | |
|         struct symbol *sp = Symbol_new(x);
 | |
|         psp->declargslot = &sp->destructor;
 | |
|         psp->decllinenoslot = &sp->destLineno;
 | |
|         psp->insertLineMacro = 1;
 | |
|         psp->state = WAITING_FOR_DECL_ARG;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_DATATYPE_SYMBOL:
 | |
|       if( !ISALPHA(x[0]) ){
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Symbol name missing after %%type keyword");
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }else{
 | |
|         struct symbol *sp = Symbol_find(x);
 | |
|         if((sp) && (sp->datatype)){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Symbol %%type \"%s\" already defined", x);
 | |
|           psp->errorcnt++;
 | |
|           psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|         }else{
 | |
|           if (!sp){
 | |
|             sp = Symbol_new(x);
 | |
|           }
 | |
|           psp->declargslot = &sp->datatype;
 | |
|           psp->insertLineMacro = 0;
 | |
|           psp->state = WAITING_FOR_DECL_ARG;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_PRECEDENCE_SYMBOL:
 | |
|       if( x[0]=='.' ){
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else if( ISUPPER(x[0]) ){
 | |
|         struct symbol *sp;
 | |
|         sp = Symbol_new(x);
 | |
|         if( sp->prec>=0 ){
 | |
|           ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|             "Symbol \"%s\" has already be given a precedence.",x);
 | |
|           psp->errorcnt++;
 | |
|         }else{
 | |
|           sp->prec = psp->preccounter;
 | |
|           sp->assoc = psp->declassoc;
 | |
|         }
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Can't assign a precedence to \"%s\".",x);
 | |
|         psp->errorcnt++;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_DECL_ARG:
 | |
|       if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
 | |
|         const char *zOld, *zNew;
 | |
|         char *zBuf, *z;
 | |
|         int nOld, n, nLine = 0, nNew, nBack;
 | |
|         int addLineMacro;
 | |
|         char zLine[50];
 | |
|         zNew = x;
 | |
|         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
 | |
|         nNew = lemonStrlen(zNew);
 | |
|         if( *psp->declargslot ){
 | |
|           zOld = *psp->declargslot;
 | |
|         }else{
 | |
|           zOld = "";
 | |
|         }
 | |
|         nOld = lemonStrlen(zOld);
 | |
|         n = nOld + nNew + 20;
 | |
|         addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
 | |
|                         (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
 | |
|         if( addLineMacro ){
 | |
|           for(z=psp->filename, nBack=0; *z; z++){
 | |
|             if( *z=='\\' ) nBack++;
 | |
|           }
 | |
|           lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
 | |
|           nLine = lemonStrlen(zLine);
 | |
|           n += nLine + lemonStrlen(psp->filename) + nBack;
 | |
|         }
 | |
|         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
 | |
|         zBuf = *psp->declargslot + nOld;
 | |
|         if( addLineMacro ){
 | |
|           if( nOld && zBuf[-1]!='\n' ){
 | |
|             *(zBuf++) = '\n';
 | |
|           }
 | |
|           memcpy(zBuf, zLine, nLine);
 | |
|           zBuf += nLine;
 | |
|           *(zBuf++) = '"';
 | |
|           for(z=psp->filename; *z; z++){
 | |
|             if( *z=='\\' ){
 | |
|               *(zBuf++) = '\\';
 | |
|             }
 | |
|             *(zBuf++) = *z;
 | |
|           }
 | |
|           *(zBuf++) = '"';
 | |
|           *(zBuf++) = '\n';
 | |
|         }
 | |
|         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
 | |
|           psp->decllinenoslot[0] = psp->tokenlineno;
 | |
|         }
 | |
|         memcpy(zBuf, zNew, nNew);
 | |
|         zBuf += nNew;
 | |
|         *zBuf = 0;
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename,psp->tokenlineno,
 | |
|           "Illegal argument to %%%s: %s",psp->declkeyword,x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_FALLBACK_ID:
 | |
|       if( x[0]=='.' ){
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else if( !ISUPPER(x[0]) ){
 | |
|         ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|           "%%fallback argument \"%s\" should be a token", x);
 | |
|         psp->errorcnt++;
 | |
|       }else{
 | |
|         struct symbol *sp = Symbol_new(x);
 | |
|         if( psp->fallback==0 ){
 | |
|           psp->fallback = sp;
 | |
|         }else if( sp->fallback ){
 | |
|           ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|             "More than one fallback assigned to token %s", x);
 | |
|           psp->errorcnt++;
 | |
|         }else{
 | |
|           sp->fallback = psp->fallback;
 | |
|           psp->gp->has_fallback = 1;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_WILDCARD_ID:
 | |
|       if( x[0]=='.' ){
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else if( !ISUPPER(x[0]) ){
 | |
|         ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|           "%%wildcard argument \"%s\" should be a token", x);
 | |
|         psp->errorcnt++;
 | |
|       }else{
 | |
|         struct symbol *sp = Symbol_new(x);
 | |
|         if( psp->gp->wildcard==0 ){
 | |
|           psp->gp->wildcard = sp;
 | |
|         }else{
 | |
|           ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|             "Extra wildcard to token: %s", x);
 | |
|           psp->errorcnt++;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_CLASS_ID:
 | |
|       if( !ISLOWER(x[0]) ){
 | |
|         ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|           "%%token_class must be followed by an identifier: ", x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|      }else if( Symbol_find(x) ){
 | |
|         ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|           "Symbol \"%s\" already used", x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }else{
 | |
|         psp->tkclass = Symbol_new(x);
 | |
|         psp->tkclass->type = MULTITERMINAL;
 | |
|         psp->state = WAITING_FOR_CLASS_TOKEN;
 | |
|       }
 | |
|       break;
 | |
|     case WAITING_FOR_CLASS_TOKEN:
 | |
|       if( x[0]=='.' ){
 | |
|         psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
 | |
|         struct symbol *msp = psp->tkclass;
 | |
|         msp->nsubsym++;
 | |
|         msp->subsym = (struct symbol **) realloc(msp->subsym,
 | |
|           sizeof(struct symbol*)*msp->nsubsym);
 | |
|         if( !ISUPPER(x[0]) ) x++;
 | |
|         msp->subsym[msp->nsubsym-1] = Symbol_new(x);
 | |
|       }else{
 | |
|         ErrorMsg(psp->filename, psp->tokenlineno,
 | |
|           "%%token_class argument \"%s\" should be a token", x);
 | |
|         psp->errorcnt++;
 | |
|         psp->state = RESYNC_AFTER_DECL_ERROR;
 | |
|       }
 | |
|       break;
 | |
|     case RESYNC_AFTER_RULE_ERROR:
 | |
| /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
| **      break; */
 | |
|     case RESYNC_AFTER_DECL_ERROR:
 | |
|       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
 | |
|       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Run the preprocessor over the input file text.  The global variables
 | |
| ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
 | |
| ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
 | |
| ** comments them out.  Text in between is also commented out as appropriate.
 | |
| */
 | |
| static void preprocess_input(char *z){
 | |
|   int i, j, k, n;
 | |
|   int exclude = 0;
 | |
|   int start = 0;
 | |
|   int lineno = 1;
 | |
|   int start_lineno = 1;
 | |
|   for(i=0; z[i]; i++){
 | |
|     if( z[i]=='\n' ) lineno++;
 | |
|     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
 | |
|     if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
 | |
|       if( exclude ){
 | |
|         exclude--;
 | |
|         if( exclude==0 ){
 | |
|           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
 | |
|         }
 | |
|       }
 | |
|       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
 | |
|     }else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6]))
 | |
|           || (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){
 | |
|       if( exclude ){
 | |
|         exclude++;
 | |
|       }else{
 | |
|         for(j=i+7; ISSPACE(z[j]); j++){}
 | |
|         for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){}
 | |
|         exclude = 1;
 | |
|         for(k=0; k<nDefine; k++){
 | |
|           if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
 | |
|             exclude = 0;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( z[i+3]=='n' ) exclude = !exclude;
 | |
|         if( exclude ){
 | |
|           start = i;
 | |
|           start_lineno = lineno;
 | |
|         }
 | |
|       }
 | |
|       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
 | |
|     }
 | |
|   }
 | |
|   if( exclude ){
 | |
|     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* In spite of its name, this function is really a scanner.  It read
 | |
| ** in the entire input file (all at once) then tokenizes it.  Each
 | |
| ** token is passed to the function "parseonetoken" which builds all
 | |
| ** the appropriate data structures in the global state vector "gp".
 | |
| */
 | |
| void Parse(struct lemon *gp)
 | |
| {
 | |
|   struct pstate ps;
 | |
|   FILE *fp;
 | |
|   char *filebuf;
 | |
|   unsigned int filesize;
 | |
|   int lineno;
 | |
|   int c;
 | |
|   char *cp, *nextcp;
 | |
|   int startline = 0;
 | |
| 
 | |
|   memset(&ps, '\0', sizeof(ps));
 | |
|   ps.gp = gp;
 | |
|   ps.filename = gp->filename;
 | |
|   ps.errorcnt = 0;
 | |
|   ps.state = INITIALIZE;
 | |
| 
 | |
|   /* Begin by reading the input file */
 | |
|   fp = fopen(ps.filename,"rb");
 | |
|   if( fp==0 ){
 | |
|     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
 | |
|     gp->errorcnt++;
 | |
|     return;
 | |
|   }
 | |
|   fseek(fp,0,2);
 | |
|   filesize = ftell(fp);
 | |
|   rewind(fp);
 | |
|   filebuf = (char *)malloc( filesize+1 );
 | |
|   if( filesize>100000000 || filebuf==0 ){
 | |
|     ErrorMsg(ps.filename,0,"Input file too large.");
 | |
|     gp->errorcnt++;
 | |
|     fclose(fp);
 | |
|     return;
 | |
|   }
 | |
|   if( fread(filebuf,1,filesize,fp)!=filesize ){
 | |
|     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
 | |
|       filesize);
 | |
|     free(filebuf);
 | |
|     gp->errorcnt++;
 | |
|     fclose(fp);
 | |
|     return;
 | |
|   }
 | |
|   fclose(fp);
 | |
|   filebuf[filesize] = 0;
 | |
| 
 | |
|   /* Make an initial pass through the file to handle %ifdef and %ifndef */
 | |
|   preprocess_input(filebuf);
 | |
| 
 | |
|   /* Now scan the text of the input file */
 | |
|   lineno = 1;
 | |
|   for(cp=filebuf; (c= *cp)!=0; ){
 | |
|     if( c=='\n' ) lineno++;              /* Keep track of the line number */
 | |
|     if( ISSPACE(c) ){ cp++; continue; }  /* Skip all white space */
 | |
|     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
 | |
|       cp+=2;
 | |
|       while( (c= *cp)!=0 && c!='\n' ) cp++;
 | |
|       continue;
 | |
|     }
 | |
|     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
 | |
|       cp+=2;
 | |
|       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
 | |
|         if( c=='\n' ) lineno++;
 | |
|         cp++;
 | |
|       }
 | |
|       if( c ) cp++;
 | |
|       continue;
 | |
|     }
 | |
|     ps.tokenstart = cp;                /* Mark the beginning of the token */
 | |
|     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
 | |
|     if( c=='\"' ){                     /* String literals */
 | |
|       cp++;
 | |
|       while( (c= *cp)!=0 && c!='\"' ){
 | |
|         if( c=='\n' ) lineno++;
 | |
|         cp++;
 | |
|       }
 | |
|       if( c==0 ){
 | |
|         ErrorMsg(ps.filename,startline,
 | |
| "String starting on this line is not terminated before the end of the file.");
 | |
|         ps.errorcnt++;
 | |
|         nextcp = cp;
 | |
|       }else{
 | |
|         nextcp = cp+1;
 | |
|       }
 | |
|     }else if( c=='{' ){               /* A block of C code */
 | |
|       int level;
 | |
|       cp++;
 | |
|       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
 | |
|         if( c=='\n' ) lineno++;
 | |
|         else if( c=='{' ) level++;
 | |
|         else if( c=='}' ) level--;
 | |
|         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
 | |
|           int prevc;
 | |
|           cp = &cp[2];
 | |
|           prevc = 0;
 | |
|           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
 | |
|             if( c=='\n' ) lineno++;
 | |
|             prevc = c;
 | |
|             cp++;
 | |
|           }
 | |
|         }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
 | |
|           cp = &cp[2];
 | |
|           while( (c= *cp)!=0 && c!='\n' ) cp++;
 | |
|           if( c ) lineno++;
 | |
|         }else if( c=='\'' || c=='\"' ){    /* String a character literals */
 | |
|           int startchar, prevc;
 | |
|           startchar = c;
 | |
|           prevc = 0;
 | |
|           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
 | |
|             if( c=='\n' ) lineno++;
 | |
|             if( prevc=='\\' ) prevc = 0;
 | |
|             else              prevc = c;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if( c==0 ){
 | |
|         ErrorMsg(ps.filename,ps.tokenlineno,
 | |
| "C code starting on this line is not terminated before the end of the file.");
 | |
|         ps.errorcnt++;
 | |
|         nextcp = cp;
 | |
|       }else{
 | |
|         nextcp = cp+1;
 | |
|       }
 | |
|     }else if( ISALNUM(c) ){          /* Identifiers */
 | |
|       while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
 | |
|       nextcp = cp;
 | |
|     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
 | |
|       cp += 3;
 | |
|       nextcp = cp;
 | |
|     }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
 | |
|       cp += 2;
 | |
|       while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
 | |
|       nextcp = cp;
 | |
|     }else{                          /* All other (one character) operators */
 | |
|       cp++;
 | |
|       nextcp = cp;
 | |
|     }
 | |
|     c = *cp;
 | |
|     *cp = 0;                        /* Null terminate the token */
 | |
|     parseonetoken(&ps);             /* Parse the token */
 | |
|     *cp = (char)c;                  /* Restore the buffer */
 | |
|     cp = nextcp;
 | |
|   }
 | |
|   free(filebuf);                    /* Release the buffer after parsing */
 | |
|   gp->rule = ps.firstrule;
 | |
|   gp->errorcnt = ps.errorcnt;
 | |
| }
 | |
| /*************************** From the file "plink.c" *********************/
 | |
| /*
 | |
| ** Routines processing configuration follow-set propagation links
 | |
| ** in the LEMON parser generator.
 | |
| */
 | |
| static struct plink *plink_freelist = 0;
 | |
| 
 | |
| /* Allocate a new plink */
 | |
| struct plink *Plink_new(){
 | |
|   struct plink *newlink;
 | |
| 
 | |
|   if( plink_freelist==0 ){
 | |
|     int i;
 | |
|     int amt = 100;
 | |
|     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
 | |
|     if( plink_freelist==0 ){
 | |
|       fprintf(stderr,
 | |
|       "Unable to allocate memory for a new follow-set propagation link.\n");
 | |
|       exit(1);
 | |
|     }
 | |
|     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
 | |
|     plink_freelist[amt-1].next = 0;
 | |
|   }
 | |
|   newlink = plink_freelist;
 | |
|   plink_freelist = plink_freelist->next;
 | |
|   return newlink;
 | |
| }
 | |
| 
 | |
| /* Add a plink to a plink list */
 | |
| void Plink_add(struct plink **plpp, struct config *cfp)
 | |
| {
 | |
|   struct plink *newlink;
 | |
|   newlink = Plink_new();
 | |
|   newlink->next = *plpp;
 | |
|   *plpp = newlink;
 | |
|   newlink->cfp = cfp;
 | |
| }
 | |
| 
 | |
| /* Transfer every plink on the list "from" to the list "to" */
 | |
| void Plink_copy(struct plink **to, struct plink *from)
 | |
| {
 | |
|   struct plink *nextpl;
 | |
|   while( from ){
 | |
|     nextpl = from->next;
 | |
|     from->next = *to;
 | |
|     *to = from;
 | |
|     from = nextpl;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Delete every plink on the list */
 | |
| void Plink_delete(struct plink *plp)
 | |
| {
 | |
|   struct plink *nextpl;
 | |
| 
 | |
|   while( plp ){
 | |
|     nextpl = plp->next;
 | |
|     plp->next = plink_freelist;
 | |
|     plink_freelist = plp;
 | |
|     plp = nextpl;
 | |
|   }
 | |
| }
 | |
| /*********************** From the file "report.c" **************************/
 | |
| /*
 | |
| ** Procedures for generating reports and tables in the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| /* Generate a filename with the given suffix.  Space to hold the
 | |
| ** name comes from malloc() and must be freed by the calling
 | |
| ** function.
 | |
| */
 | |
| PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
 | |
| {
 | |
|   char *name;
 | |
|   char *cp;
 | |
| 
 | |
|   name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
 | |
|   if( name==0 ){
 | |
|     fprintf(stderr,"Can't allocate space for a filename.\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   lemon_strcpy(name,lemp->filename);
 | |
|   cp = strrchr(name,'.');
 | |
|   if( cp ) *cp = 0;
 | |
|   lemon_strcat(name,suffix);
 | |
|   return name;
 | |
| }
 | |
| 
 | |
| /* Open a file with a name based on the name of the input file,
 | |
| ** but with a different (specified) suffix, and return a pointer
 | |
| ** to the stream */
 | |
| PRIVATE FILE *file_open(
 | |
|   struct lemon *lemp,
 | |
|   const char *suffix,
 | |
|   const char *mode
 | |
| ){
 | |
|   FILE *fp;
 | |
| 
 | |
|   if( lemp->outname ) free(lemp->outname);
 | |
|   lemp->outname = file_makename(lemp, suffix);
 | |
|   fp = fopen(lemp->outname,mode);
 | |
|   if( fp==0 && *mode=='w' ){
 | |
|     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
 | |
|     lemp->errorcnt++;
 | |
|     return 0;
 | |
|   }
 | |
|   return fp;
 | |
| }
 | |
| 
 | |
| /* Duplicate the input file without comments and without actions 
 | |
| ** on rules */
 | |
| void Reprint(struct lemon *lemp)
 | |
| {
 | |
|   struct rule *rp;
 | |
|   struct symbol *sp;
 | |
|   int i, j, maxlen, len, ncolumns, skip;
 | |
|   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
 | |
|   maxlen = 10;
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     sp = lemp->symbols[i];
 | |
|     len = lemonStrlen(sp->name);
 | |
|     if( len>maxlen ) maxlen = len;
 | |
|   }
 | |
|   ncolumns = 76/(maxlen+5);
 | |
|   if( ncolumns<1 ) ncolumns = 1;
 | |
|   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
 | |
|   for(i=0; i<skip; i++){
 | |
|     printf("//");
 | |
|     for(j=i; j<lemp->nsymbol; j+=skip){
 | |
|       sp = lemp->symbols[j];
 | |
|       assert( sp->index==j );
 | |
|       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
 | |
|     }
 | |
|     printf("\n");
 | |
|   }
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     printf("%s",rp->lhs->name);
 | |
|     /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
 | |
|     printf(" ::=");
 | |
|     for(i=0; i<rp->nrhs; i++){
 | |
|       sp = rp->rhs[i];
 | |
|       if( sp->type==MULTITERMINAL ){
 | |
|         printf(" %s", sp->subsym[0]->name);
 | |
|         for(j=1; j<sp->nsubsym; j++){
 | |
|           printf("|%s", sp->subsym[j]->name);
 | |
|         }
 | |
|       }else{
 | |
|         printf(" %s", sp->name);
 | |
|       }
 | |
|       /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
 | |
|     }
 | |
|     printf(".");
 | |
|     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
 | |
|     /* if( rp->code ) printf("\n    %s",rp->code); */
 | |
|     printf("\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Print a single rule.
 | |
| */
 | |
| void RulePrint(FILE *fp, struct rule *rp, int iCursor){
 | |
|   struct symbol *sp;
 | |
|   int i, j;
 | |
|   fprintf(fp,"%s ::=",rp->lhs->name);
 | |
|   for(i=0; i<=rp->nrhs; i++){
 | |
|     if( i==iCursor ) fprintf(fp," *");
 | |
|     if( i==rp->nrhs ) break;
 | |
|     sp = rp->rhs[i];
 | |
|     if( sp->type==MULTITERMINAL ){
 | |
|       fprintf(fp," %s", sp->subsym[0]->name);
 | |
|       for(j=1; j<sp->nsubsym; j++){
 | |
|         fprintf(fp,"|%s",sp->subsym[j]->name);
 | |
|       }
 | |
|     }else{
 | |
|       fprintf(fp," %s", sp->name);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Print the rule for a configuration.
 | |
| */
 | |
| void ConfigPrint(FILE *fp, struct config *cfp){
 | |
|   RulePrint(fp, cfp->rp, cfp->dot);
 | |
| }
 | |
| 
 | |
| /* #define TEST */
 | |
| #if 0
 | |
| /* Print a set */
 | |
| PRIVATE void SetPrint(out,set,lemp)
 | |
| FILE *out;
 | |
| char *set;
 | |
| struct lemon *lemp;
 | |
| {
 | |
|   int i;
 | |
|   char *spacer;
 | |
|   spacer = "";
 | |
|   fprintf(out,"%12s[","");
 | |
|   for(i=0; i<lemp->nterminal; i++){
 | |
|     if( SetFind(set,i) ){
 | |
|       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
 | |
|       spacer = " ";
 | |
|     }
 | |
|   }
 | |
|   fprintf(out,"]\n");
 | |
| }
 | |
| 
 | |
| /* Print a plink chain */
 | |
| PRIVATE void PlinkPrint(out,plp,tag)
 | |
| FILE *out;
 | |
| struct plink *plp;
 | |
| char *tag;
 | |
| {
 | |
|   while( plp ){
 | |
|     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
 | |
|     ConfigPrint(out,plp->cfp);
 | |
|     fprintf(out,"\n");
 | |
|     plp = plp->next;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Print an action to the given file descriptor.  Return FALSE if
 | |
| ** nothing was actually printed.
 | |
| */
 | |
| int PrintAction(
 | |
|   struct action *ap,          /* The action to print */
 | |
|   FILE *fp,                   /* Print the action here */
 | |
|   int indent                  /* Indent by this amount */
 | |
| ){
 | |
|   int result = 1;
 | |
|   switch( ap->type ){
 | |
|     case SHIFT: {
 | |
|       struct state *stp = ap->x.stp;
 | |
|       fprintf(fp,"%*s shift        %-7d",indent,ap->sp->name,stp->statenum);
 | |
|       break;
 | |
|     }
 | |
|     case REDUCE: {
 | |
|       struct rule *rp = ap->x.rp;
 | |
|       fprintf(fp,"%*s reduce       %-7d",indent,ap->sp->name,rp->index);
 | |
|       RulePrint(fp, rp, -1);
 | |
|       break;
 | |
|     }
 | |
|     case SHIFTREDUCE: {
 | |
|       struct rule *rp = ap->x.rp;
 | |
|       fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->index);
 | |
|       RulePrint(fp, rp, -1);
 | |
|       break;
 | |
|     }
 | |
|     case ACCEPT:
 | |
|       fprintf(fp,"%*s accept",indent,ap->sp->name);
 | |
|       break;
 | |
|     case ERROR:
 | |
|       fprintf(fp,"%*s error",indent,ap->sp->name);
 | |
|       break;
 | |
|     case SRCONFLICT:
 | |
|     case RRCONFLICT:
 | |
|       fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
 | |
|         indent,ap->sp->name,ap->x.rp->index);
 | |
|       break;
 | |
|     case SSCONFLICT:
 | |
|       fprintf(fp,"%*s shift        %-7d ** Parsing conflict **", 
 | |
|         indent,ap->sp->name,ap->x.stp->statenum);
 | |
|       break;
 | |
|     case SH_RESOLVED:
 | |
|       if( showPrecedenceConflict ){
 | |
|         fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
 | |
|                 indent,ap->sp->name,ap->x.stp->statenum);
 | |
|       }else{
 | |
|         result = 0;
 | |
|       }
 | |
|       break;
 | |
|     case RD_RESOLVED:
 | |
|       if( showPrecedenceConflict ){
 | |
|         fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
 | |
|                 indent,ap->sp->name,ap->x.rp->index);
 | |
|       }else{
 | |
|         result = 0;
 | |
|       }
 | |
|       break;
 | |
|     case NOT_USED:
 | |
|       result = 0;
 | |
|       break;
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* Generate the "*.out" log file */
 | |
| void ReportOutput(struct lemon *lemp)
 | |
| {
 | |
|   int i;
 | |
|   struct state *stp;
 | |
|   struct config *cfp;
 | |
|   struct action *ap;
 | |
|   FILE *fp;
 | |
| 
 | |
|   fp = file_open(lemp,".out","wb");
 | |
|   if( fp==0 ) return;
 | |
|   for(i=0; i<lemp->nxstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     fprintf(fp,"State %d:\n",stp->statenum);
 | |
|     if( lemp->basisflag ) cfp=stp->bp;
 | |
|     else                  cfp=stp->cfp;
 | |
|     while( cfp ){
 | |
|       char buf[20];
 | |
|       if( cfp->dot==cfp->rp->nrhs ){
 | |
|         lemon_sprintf(buf,"(%d)",cfp->rp->index);
 | |
|         fprintf(fp,"    %5s ",buf);
 | |
|       }else{
 | |
|         fprintf(fp,"          ");
 | |
|       }
 | |
|       ConfigPrint(fp,cfp);
 | |
|       fprintf(fp,"\n");
 | |
| #if 0
 | |
|       SetPrint(fp,cfp->fws,lemp);
 | |
|       PlinkPrint(fp,cfp->fplp,"To  ");
 | |
|       PlinkPrint(fp,cfp->bplp,"From");
 | |
| #endif
 | |
|       if( lemp->basisflag ) cfp=cfp->bp;
 | |
|       else                  cfp=cfp->next;
 | |
|     }
 | |
|     fprintf(fp,"\n");
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
 | |
|     }
 | |
|     fprintf(fp,"\n");
 | |
|   }
 | |
|   fprintf(fp, "----------------------------------------------------\n");
 | |
|   fprintf(fp, "Symbols:\n");
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     int j;
 | |
|     struct symbol *sp;
 | |
| 
 | |
|     sp = lemp->symbols[i];
 | |
|     fprintf(fp, "  %3d: %s", i, sp->name);
 | |
|     if( sp->type==NONTERMINAL ){
 | |
|       fprintf(fp, ":");
 | |
|       if( sp->lambda ){
 | |
|         fprintf(fp, " <lambda>");
 | |
|       }
 | |
|       for(j=0; j<lemp->nterminal; j++){
 | |
|         if( sp->firstset && SetFind(sp->firstset, j) ){
 | |
|           fprintf(fp, " %s", lemp->symbols[j]->name);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     fprintf(fp, "\n");
 | |
|   }
 | |
|   fclose(fp);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Search for the file "name" which is in the same directory as
 | |
| ** the exacutable */
 | |
| PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
 | |
| {
 | |
|   const char *pathlist;
 | |
|   char *pathbufptr;
 | |
|   char *pathbuf;
 | |
|   char *path,*cp;
 | |
|   char c;
 | |
| 
 | |
| #ifdef __WIN32__
 | |
|   cp = strrchr(argv0,'\\');
 | |
| #else
 | |
|   cp = strrchr(argv0,'/');
 | |
| #endif
 | |
|   if( cp ){
 | |
|     c = *cp;
 | |
|     *cp = 0;
 | |
|     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
 | |
|     if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
 | |
|     *cp = c;
 | |
|   }else{
 | |
|     pathlist = getenv("PATH");
 | |
|     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
 | |
|     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
 | |
|     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
 | |
|     if( (pathbuf != 0) && (path!=0) ){
 | |
|       pathbufptr = pathbuf;
 | |
|       lemon_strcpy(pathbuf, pathlist);
 | |
|       while( *pathbuf ){
 | |
|         cp = strchr(pathbuf,':');
 | |
|         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
 | |
|         c = *cp;
 | |
|         *cp = 0;
 | |
|         lemon_sprintf(path,"%s/%s",pathbuf,name);
 | |
|         *cp = c;
 | |
|         if( c==0 ) pathbuf[0] = 0;
 | |
|         else pathbuf = &cp[1];
 | |
|         if( access(path,modemask)==0 ) break;
 | |
|       }
 | |
|       free(pathbufptr);
 | |
|     }
 | |
|   }
 | |
|   return path;
 | |
| }
 | |
| 
 | |
| /* Given an action, compute the integer value for that action
 | |
| ** which is to be put in the action table of the generated machine.
 | |
| ** Return negative if no action should be generated.
 | |
| */
 | |
| PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
 | |
| {
 | |
|   int act;
 | |
|   switch( ap->type ){
 | |
|     case SHIFT:  act = ap->x.stp->statenum;                        break;
 | |
|     case SHIFTREDUCE: act = ap->x.rp->index + lemp->nstate;        break;
 | |
|     case REDUCE: act = ap->x.rp->index + lemp->nstate+lemp->nrule; break;
 | |
|     case ERROR:  act = lemp->nstate + lemp->nrule*2;               break;
 | |
|     case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1;           break;
 | |
|     default:     act = -1; break;
 | |
|   }
 | |
|   return act;
 | |
| }
 | |
| 
 | |
| #define LINESIZE 1000
 | |
| /* The next cluster of routines are for reading the template file
 | |
| ** and writing the results to the generated parser */
 | |
| /* The first function transfers data from "in" to "out" until
 | |
| ** a line is seen which begins with "%%".  The line number is
 | |
| ** tracked.
 | |
| **
 | |
| ** if name!=0, then any word that begin with "Parse" is changed to
 | |
| ** begin with *name instead.
 | |
| */
 | |
| PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
 | |
| {
 | |
|   int i, iStart;
 | |
|   char line[LINESIZE];
 | |
|   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
 | |
|     (*lineno)++;
 | |
|     iStart = 0;
 | |
|     if( name ){
 | |
|       for(i=0; line[i]; i++){
 | |
|         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
 | |
|           && (i==0 || !ISALPHA(line[i-1]))
 | |
|         ){
 | |
|           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
 | |
|           fprintf(out,"%s",name);
 | |
|           i += 4;
 | |
|           iStart = i+1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     fprintf(out,"%s",&line[iStart]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* The next function finds the template file and opens it, returning
 | |
| ** a pointer to the opened file. */
 | |
| PRIVATE FILE *tplt_open(struct lemon *lemp)
 | |
| {
 | |
|   static char templatename[] = "lempar.c";
 | |
|   char buf[1000];
 | |
|   FILE *in;
 | |
|   char *tpltname;
 | |
|   char *cp;
 | |
| 
 | |
|   /* first, see if user specified a template filename on the command line. */
 | |
|   if (user_templatename != 0) {
 | |
|     if( access(user_templatename,004)==-1 ){
 | |
|       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
 | |
|         user_templatename);
 | |
|       lemp->errorcnt++;
 | |
|       return 0;
 | |
|     }
 | |
|     in = fopen(user_templatename,"rb");
 | |
|     if( in==0 ){
 | |
|       fprintf(stderr,"Can't open the template file \"%s\".\n",
 | |
|               user_templatename);
 | |
|       lemp->errorcnt++;
 | |
|       return 0;
 | |
|     }
 | |
|     return in;
 | |
|   }
 | |
| 
 | |
|   cp = strrchr(lemp->filename,'.');
 | |
|   if( cp ){
 | |
|     lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
 | |
|   }else{
 | |
|     lemon_sprintf(buf,"%s.lt",lemp->filename);
 | |
|   }
 | |
|   if( access(buf,004)==0 ){
 | |
|     tpltname = buf;
 | |
|   }else if( access(templatename,004)==0 ){
 | |
|     tpltname = templatename;
 | |
|   }else{
 | |
|     tpltname = pathsearch(lemp->argv0,templatename,0);
 | |
|   }
 | |
|   if( tpltname==0 ){
 | |
|     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
 | |
|     templatename);
 | |
|     lemp->errorcnt++;
 | |
|     return 0;
 | |
|   }
 | |
|   in = fopen(tpltname,"rb");
 | |
|   if( in==0 ){
 | |
|     fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
 | |
|     lemp->errorcnt++;
 | |
|     return 0;
 | |
|   }
 | |
|   return in;
 | |
| }
 | |
| 
 | |
| /* Print a #line directive line to the output file. */
 | |
| PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
 | |
| {
 | |
|   fprintf(out,"#line %d \"",lineno);
 | |
|   while( *filename ){
 | |
|     if( *filename == '\\' ) putc('\\',out);
 | |
|     putc(*filename,out);
 | |
|     filename++;
 | |
|   }
 | |
|   fprintf(out,"\"\n");
 | |
| }
 | |
| 
 | |
| /* Print a string to the file and keep the linenumber up to date */
 | |
| PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
 | |
| {
 | |
|   if( str==0 ) return;
 | |
|   while( *str ){
 | |
|     putc(*str,out);
 | |
|     if( *str=='\n' ) (*lineno)++;
 | |
|     str++;
 | |
|   }
 | |
|   if( str[-1]!='\n' ){
 | |
|     putc('\n',out);
 | |
|     (*lineno)++;
 | |
|   }
 | |
|   if (!lemp->nolinenosflag) {
 | |
|     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following routine emits code for the destructor for the
 | |
| ** symbol sp
 | |
| */
 | |
| void emit_destructor_code(
 | |
|   FILE *out,
 | |
|   struct symbol *sp,
 | |
|   struct lemon *lemp,
 | |
|   int *lineno
 | |
| ){
 | |
|  char *cp = 0;
 | |
| 
 | |
|  if( sp->type==TERMINAL ){
 | |
|    cp = lemp->tokendest;
 | |
|    if( cp==0 ) return;
 | |
|    fprintf(out,"{\n"); (*lineno)++;
 | |
|  }else if( sp->destructor ){
 | |
|    cp = sp->destructor;
 | |
|    fprintf(out,"{\n"); (*lineno)++;
 | |
|    if( !lemp->nolinenosflag ){
 | |
|      (*lineno)++;
 | |
|      tplt_linedir(out,sp->destLineno,lemp->filename);
 | |
|    }
 | |
|  }else if( lemp->vardest ){
 | |
|    cp = lemp->vardest;
 | |
|    if( cp==0 ) return;
 | |
|    fprintf(out,"{\n"); (*lineno)++;
 | |
|  }else{
 | |
|    assert( 0 );  /* Cannot happen */
 | |
|  }
 | |
|  for(; *cp; cp++){
 | |
|    if( *cp=='$' && cp[1]=='$' ){
 | |
|      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
 | |
|      cp++;
 | |
|      continue;
 | |
|    }
 | |
|    if( *cp=='\n' ) (*lineno)++;
 | |
|    fputc(*cp,out);
 | |
|  }
 | |
|  fprintf(out,"\n"); (*lineno)++;
 | |
|  if (!lemp->nolinenosflag) { 
 | |
|    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
 | |
|  }
 | |
|  fprintf(out,"}\n"); (*lineno)++;
 | |
|  return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE (non-zero) if the given symbol has a destructor.
 | |
| */
 | |
| int has_destructor(struct symbol *sp, struct lemon *lemp)
 | |
| {
 | |
|   int ret;
 | |
|   if( sp->type==TERMINAL ){
 | |
|     ret = lemp->tokendest!=0;
 | |
|   }else{
 | |
|     ret = lemp->vardest!=0 || sp->destructor!=0;
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Append text to a dynamically allocated string.  If zText is 0 then
 | |
| ** reset the string to be empty again.  Always return the complete text
 | |
| ** of the string (which is overwritten with each call).
 | |
| **
 | |
| ** n bytes of zText are stored.  If n==0 then all of zText up to the first
 | |
| ** \000 terminator is stored.  zText can contain up to two instances of
 | |
| ** %d.  The values of p1 and p2 are written into the first and second
 | |
| ** %d.
 | |
| **
 | |
| ** If n==-1, then the previous character is overwritten.
 | |
| */
 | |
| PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
 | |
|   static char empty[1] = { 0 };
 | |
|   static char *z = 0;
 | |
|   static int alloced = 0;
 | |
|   static int used = 0;
 | |
|   int c;
 | |
|   char zInt[40];
 | |
|   if( zText==0 ){
 | |
|     used = 0;
 | |
|     return z;
 | |
|   }
 | |
|   if( n<=0 ){
 | |
|     if( n<0 ){
 | |
|       used += n;
 | |
|       assert( used>=0 );
 | |
|     }
 | |
|     n = lemonStrlen(zText);
 | |
|   }
 | |
|   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
 | |
|     alloced = n + sizeof(zInt)*2 + used + 200;
 | |
|     z = (char *) realloc(z,  alloced);
 | |
|   }
 | |
|   if( z==0 ) return empty;
 | |
|   while( n-- > 0 ){
 | |
|     c = *(zText++);
 | |
|     if( c=='%' && n>0 && zText[0]=='d' ){
 | |
|       lemon_sprintf(zInt, "%d", p1);
 | |
|       p1 = p2;
 | |
|       lemon_strcpy(&z[used], zInt);
 | |
|       used += lemonStrlen(&z[used]);
 | |
|       zText++;
 | |
|       n--;
 | |
|     }else{
 | |
|       z[used++] = (char)c;
 | |
|     }
 | |
|   }
 | |
|   z[used] = 0;
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** zCode is a string that is the action associated with a rule.  Expand
 | |
| ** the symbols in this string so that the refer to elements of the parser
 | |
| ** stack.
 | |
| */
 | |
| PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
 | |
|   char *cp, *xp;
 | |
|   int i;
 | |
|   char lhsused = 0;    /* True if the LHS element has been used */
 | |
|   char used[MAXRHS];   /* True for each RHS element which is used */
 | |
| 
 | |
|   for(i=0; i<rp->nrhs; i++) used[i] = 0;
 | |
|   lhsused = 0;
 | |
| 
 | |
|   if( rp->code==0 ){
 | |
|     static char newlinestr[2] = { '\n', '\0' };
 | |
|     rp->code = newlinestr;
 | |
|     rp->line = rp->ruleline;
 | |
|   }
 | |
| 
 | |
|   append_str(0,0,0,0);
 | |
| 
 | |
|   /* This const cast is wrong but harmless, if we're careful. */
 | |
|   for(cp=(char *)rp->code; *cp; cp++){
 | |
|     if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
 | |
|       char saved;
 | |
|       for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
 | |
|       saved = *xp;
 | |
|       *xp = 0;
 | |
|       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
 | |
|         append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
 | |
|         cp = xp;
 | |
|         lhsused = 1;
 | |
|       }else{
 | |
|         for(i=0; i<rp->nrhs; i++){
 | |
|           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
 | |
|             if( cp!=rp->code && cp[-1]=='@' ){
 | |
|               /* If the argument is of the form @X then substituted
 | |
|               ** the token number of X, not the value of X */
 | |
|               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
 | |
|             }else{
 | |
|               struct symbol *sp = rp->rhs[i];
 | |
|               int dtnum;
 | |
|               if( sp->type==MULTITERMINAL ){
 | |
|                 dtnum = sp->subsym[0]->dtnum;
 | |
|               }else{
 | |
|                 dtnum = sp->dtnum;
 | |
|               }
 | |
|               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
 | |
|             }
 | |
|             cp = xp;
 | |
|             used[i] = 1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       *xp = saved;
 | |
|     }
 | |
|     append_str(cp, 1, 0, 0);
 | |
|   } /* End loop */
 | |
| 
 | |
|   /* Check to make sure the LHS has been used */
 | |
|   if( rp->lhsalias && !lhsused ){
 | |
|     ErrorMsg(lemp->filename,rp->ruleline,
 | |
|       "Label \"%s\" for \"%s(%s)\" is never used.",
 | |
|         rp->lhsalias,rp->lhs->name,rp->lhsalias);
 | |
|     lemp->errorcnt++;
 | |
|   }
 | |
| 
 | |
|   /* Generate destructor code for RHS symbols which are not used in the
 | |
|   ** reduce code */
 | |
|   for(i=0; i<rp->nrhs; i++){
 | |
|     if( rp->rhsalias[i] && !used[i] ){
 | |
|       ErrorMsg(lemp->filename,rp->ruleline,
 | |
|         "Label %s for \"%s(%s)\" is never used.",
 | |
|         rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
 | |
|       lemp->errorcnt++;
 | |
|     }else if( rp->rhsalias[i]==0 ){
 | |
|       if( has_destructor(rp->rhs[i],lemp) ){
 | |
|         append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
 | |
|            rp->rhs[i]->index,i-rp->nrhs+1);
 | |
|       }else{
 | |
|         /* No destructor defined for this term */
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( rp->code ){
 | |
|     cp = append_str(0,0,0,0);
 | |
|     rp->code = Strsafe(cp?cp:"");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Generate code which executes when the rule "rp" is reduced.  Write
 | |
| ** the code to "out".  Make sure lineno stays up-to-date.
 | |
| */
 | |
| PRIVATE void emit_code(
 | |
|   FILE *out,
 | |
|   struct rule *rp,
 | |
|   struct lemon *lemp,
 | |
|   int *lineno
 | |
| ){
 | |
|  const char *cp;
 | |
| 
 | |
|  /* Generate code to do the reduce action */
 | |
|  if( rp->code ){
 | |
|    if( !lemp->nolinenosflag ){
 | |
|      (*lineno)++;
 | |
|      tplt_linedir(out,rp->line,lemp->filename);
 | |
|    }
 | |
|    fprintf(out,"{%s",rp->code);
 | |
|    for(cp=rp->code; *cp; cp++){
 | |
|      if( *cp=='\n' ) (*lineno)++;
 | |
|    } /* End loop */
 | |
|    fprintf(out,"}\n"); (*lineno)++;
 | |
|    if( !lemp->nolinenosflag ){
 | |
|      (*lineno)++;
 | |
|      tplt_linedir(out,*lineno,lemp->outname);
 | |
|    }
 | |
|  } /* End if( rp->code ) */
 | |
| 
 | |
|  return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print the definition of the union used for the parser's data stack.
 | |
| ** This union contains fields for every possible data type for tokens
 | |
| ** and nonterminals.  In the process of computing and printing this
 | |
| ** union, also set the ".dtnum" field of every terminal and nonterminal
 | |
| ** symbol.
 | |
| */
 | |
| void print_stack_union(
 | |
|   FILE *out,                  /* The output stream */
 | |
|   struct lemon *lemp,         /* The main info structure for this parser */
 | |
|   int *plineno,               /* Pointer to the line number */
 | |
|   int mhflag                  /* True if generating makeheaders output */
 | |
| ){
 | |
|   int lineno = *plineno;    /* The line number of the output */
 | |
|   char **types;             /* A hash table of datatypes */
 | |
|   int arraysize;            /* Size of the "types" array */
 | |
|   int maxdtlength;          /* Maximum length of any ".datatype" field. */
 | |
|   char *stddt;              /* Standardized name for a datatype */
 | |
|   int i,j;                  /* Loop counters */
 | |
|   unsigned hash;            /* For hashing the name of a type */
 | |
|   const char *name;         /* Name of the parser */
 | |
| 
 | |
|   /* Allocate and initialize types[] and allocate stddt[] */
 | |
|   arraysize = lemp->nsymbol * 2;
 | |
|   types = (char**)calloc( arraysize, sizeof(char*) );
 | |
|   if( types==0 ){
 | |
|     fprintf(stderr,"Out of memory.\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   for(i=0; i<arraysize; i++) types[i] = 0;
 | |
|   maxdtlength = 0;
 | |
|   if( lemp->vartype ){
 | |
|     maxdtlength = lemonStrlen(lemp->vartype);
 | |
|   }
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     int len;
 | |
|     struct symbol *sp = lemp->symbols[i];
 | |
|     if( sp->datatype==0 ) continue;
 | |
|     len = lemonStrlen(sp->datatype);
 | |
|     if( len>maxdtlength ) maxdtlength = len;
 | |
|   }
 | |
|   stddt = (char*)malloc( maxdtlength*2 + 1 );
 | |
|   if( stddt==0 ){
 | |
|     fprintf(stderr,"Out of memory.\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
 | |
|   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
 | |
|   ** used for terminal symbols.  If there is no %default_type defined then
 | |
|   ** 0 is also used as the .dtnum value for nonterminals which do not specify
 | |
|   ** a datatype using the %type directive.
 | |
|   */
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     struct symbol *sp = lemp->symbols[i];
 | |
|     char *cp;
 | |
|     if( sp==lemp->errsym ){
 | |
|       sp->dtnum = arraysize+1;
 | |
|       continue;
 | |
|     }
 | |
|     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
 | |
|       sp->dtnum = 0;
 | |
|       continue;
 | |
|     }
 | |
|     cp = sp->datatype;
 | |
|     if( cp==0 ) cp = lemp->vartype;
 | |
|     j = 0;
 | |
|     while( ISSPACE(*cp) ) cp++;
 | |
|     while( *cp ) stddt[j++] = *cp++;
 | |
|     while( j>0 && ISSPACE(stddt[j-1]) ) j--;
 | |
|     stddt[j] = 0;
 | |
|     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
 | |
|       sp->dtnum = 0;
 | |
|       continue;
 | |
|     }
 | |
|     hash = 0;
 | |
|     for(j=0; stddt[j]; j++){
 | |
|       hash = hash*53 + stddt[j];
 | |
|     }
 | |
|     hash = (hash & 0x7fffffff)%arraysize;
 | |
|     while( types[hash] ){
 | |
|       if( strcmp(types[hash],stddt)==0 ){
 | |
|         sp->dtnum = hash + 1;
 | |
|         break;
 | |
|       }
 | |
|       hash++;
 | |
|       if( hash>=(unsigned)arraysize ) hash = 0;
 | |
|     }
 | |
|     if( types[hash]==0 ){
 | |
|       sp->dtnum = hash + 1;
 | |
|       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
 | |
|       if( types[hash]==0 ){
 | |
|         fprintf(stderr,"Out of memory.\n");
 | |
|         exit(1);
 | |
|       }
 | |
|       lemon_strcpy(types[hash],stddt);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
 | |
|   name = lemp->name ? lemp->name : "Parse";
 | |
|   lineno = *plineno;
 | |
|   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
 | |
|   fprintf(out,"#define %sTOKENTYPE %s\n",name,
 | |
|     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
 | |
|   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
 | |
|   fprintf(out,"typedef union {\n"); lineno++;
 | |
|   fprintf(out,"  int yyinit;\n"); lineno++;
 | |
|   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
 | |
|   for(i=0; i<arraysize; i++){
 | |
|     if( types[i]==0 ) continue;
 | |
|     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
 | |
|     free(types[i]);
 | |
|   }
 | |
|   if( lemp->errsym->useCnt ){
 | |
|     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
 | |
|   }
 | |
|   free(stddt);
 | |
|   free(types);
 | |
|   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
 | |
|   *plineno = lineno;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the name of a C datatype able to represent values between
 | |
| ** lwr and upr, inclusive.  If pnByte!=NULL then also write the sizeof
 | |
| ** for that type (1, 2, or 4) into *pnByte.
 | |
| */
 | |
| static const char *minimum_size_type(int lwr, int upr, int *pnByte){
 | |
|   const char *zType = "int";
 | |
|   int nByte = 4;
 | |
|   if( lwr>=0 ){
 | |
|     if( upr<=255 ){
 | |
|       zType = "unsigned char";
 | |
|       nByte = 1;
 | |
|     }else if( upr<65535 ){
 | |
|       zType = "unsigned short int";
 | |
|       nByte = 2;
 | |
|     }else{
 | |
|       zType = "unsigned int";
 | |
|       nByte = 4;
 | |
|     }
 | |
|   }else if( lwr>=-127 && upr<=127 ){
 | |
|     zType = "signed char";
 | |
|     nByte = 1;
 | |
|   }else if( lwr>=-32767 && upr<32767 ){
 | |
|     zType = "short";
 | |
|     nByte = 2;
 | |
|   }
 | |
|   if( pnByte ) *pnByte = nByte;
 | |
|   return zType;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Each state contains a set of token transaction and a set of
 | |
| ** nonterminal transactions.  Each of these sets makes an instance
 | |
| ** of the following structure.  An array of these structures is used
 | |
| ** to order the creation of entries in the yy_action[] table.
 | |
| */
 | |
| struct axset {
 | |
|   struct state *stp;   /* A pointer to a state */
 | |
|   int isTkn;           /* True to use tokens.  False for non-terminals */
 | |
|   int nAction;         /* Number of actions */
 | |
|   int iOrder;          /* Original order of action sets */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Compare to axset structures for sorting purposes
 | |
| */
 | |
| static int axset_compare(const void *a, const void *b){
 | |
|   struct axset *p1 = (struct axset*)a;
 | |
|   struct axset *p2 = (struct axset*)b;
 | |
|   int c;
 | |
|   c = p2->nAction - p1->nAction;
 | |
|   if( c==0 ){
 | |
|     c = p1->iOrder - p2->iOrder;
 | |
|   }
 | |
|   assert( c!=0 || p1==p2 );
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write text on "out" that describes the rule "rp".
 | |
| */
 | |
| static void writeRuleText(FILE *out, struct rule *rp){
 | |
|   int j;
 | |
|   fprintf(out,"%s ::=", rp->lhs->name);
 | |
|   for(j=0; j<rp->nrhs; j++){
 | |
|     struct symbol *sp = rp->rhs[j];
 | |
|     if( sp->type!=MULTITERMINAL ){
 | |
|       fprintf(out," %s", sp->name);
 | |
|     }else{
 | |
|       int k;
 | |
|       fprintf(out," %s", sp->subsym[0]->name);
 | |
|       for(k=1; k<sp->nsubsym; k++){
 | |
|         fprintf(out,"|%s",sp->subsym[k]->name);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Generate C source code for the parser */
 | |
| void ReportTable(
 | |
|   struct lemon *lemp,
 | |
|   int mhflag     /* Output in makeheaders format if true */
 | |
| ){
 | |
|   FILE *out, *in;
 | |
|   char line[LINESIZE];
 | |
|   int  lineno;
 | |
|   struct state *stp;
 | |
|   struct action *ap;
 | |
|   struct rule *rp;
 | |
|   struct acttab *pActtab;
 | |
|   int i, j, n, sz;
 | |
|   int szActionType;     /* sizeof(YYACTIONTYPE) */
 | |
|   int szCodeType;       /* sizeof(YYCODETYPE)   */
 | |
|   const char *name;
 | |
|   int mnTknOfst, mxTknOfst;
 | |
|   int mnNtOfst, mxNtOfst;
 | |
|   struct axset *ax;
 | |
| 
 | |
|   in = tplt_open(lemp);
 | |
|   if( in==0 ) return;
 | |
|   out = file_open(lemp,".c","wb");
 | |
|   if( out==0 ){
 | |
|     fclose(in);
 | |
|     return;
 | |
|   }
 | |
|   lineno = 1;
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate the include code, if any */
 | |
|   tplt_print(out,lemp,lemp->include,&lineno);
 | |
|   if( mhflag ){
 | |
|     char *incName = file_makename(lemp, ".h");
 | |
|     fprintf(out,"#include \"%s\"\n", incName); lineno++;
 | |
|     free(incName);
 | |
|   }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate #defines for all tokens */
 | |
|   if( mhflag ){
 | |
|     const char *prefix;
 | |
|     fprintf(out,"#if INTERFACE\n"); lineno++;
 | |
|     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 | |
|     else                    prefix = "";
 | |
|     for(i=1; i<lemp->nterminal; i++){
 | |
|       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
 | |
|       lineno++;
 | |
|     }
 | |
|     fprintf(out,"#endif\n"); lineno++;
 | |
|   }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate the defines */
 | |
|   fprintf(out,"#define YYCODETYPE %s\n",
 | |
|     minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
 | |
|   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
 | |
|   fprintf(out,"#define YYACTIONTYPE %s\n",
 | |
|     minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++;
 | |
|   if( lemp->wildcard ){
 | |
|     fprintf(out,"#define YYWILDCARD %d\n",
 | |
|        lemp->wildcard->index); lineno++;
 | |
|   }
 | |
|   print_stack_union(out,lemp,&lineno,mhflag);
 | |
|   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
 | |
|   if( lemp->stacksize ){
 | |
|     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
 | |
|   }else{
 | |
|     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
 | |
|   }
 | |
|   fprintf(out, "#endif\n"); lineno++;
 | |
|   if( mhflag ){
 | |
|     fprintf(out,"#if INTERFACE\n"); lineno++;
 | |
|   }
 | |
|   name = lemp->name ? lemp->name : "Parse";
 | |
|   if( lemp->arg && lemp->arg[0] ){
 | |
|     i = lemonStrlen(lemp->arg);
 | |
|     while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
 | |
|     while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
 | |
|     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
 | |
|     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
 | |
|     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
 | |
|                  name,lemp->arg,&lemp->arg[i]);  lineno++;
 | |
|     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
 | |
|                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
 | |
|   }else{
 | |
|     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
 | |
|     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
 | |
|     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
 | |
|     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
 | |
|   }
 | |
|   if( mhflag ){
 | |
|     fprintf(out,"#endif\n"); lineno++;
 | |
|   }
 | |
|   if( lemp->errsym->useCnt ){
 | |
|     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
 | |
|     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
 | |
|   }
 | |
|   if( lemp->has_fallback ){
 | |
|     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
 | |
|   }
 | |
| 
 | |
|   /* Compute the action table, but do not output it yet.  The action
 | |
|   ** table must be computed before generating the YYNSTATE macro because
 | |
|   ** we need to know how many states can be eliminated.
 | |
|   */
 | |
|   ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
 | |
|   if( ax==0 ){
 | |
|     fprintf(stderr,"malloc failed\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   for(i=0; i<lemp->nxstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     ax[i*2].stp = stp;
 | |
|     ax[i*2].isTkn = 1;
 | |
|     ax[i*2].nAction = stp->nTknAct;
 | |
|     ax[i*2+1].stp = stp;
 | |
|     ax[i*2+1].isTkn = 0;
 | |
|     ax[i*2+1].nAction = stp->nNtAct;
 | |
|   }
 | |
|   mxTknOfst = mnTknOfst = 0;
 | |
|   mxNtOfst = mnNtOfst = 0;
 | |
|   /* In an effort to minimize the action table size, use the heuristic
 | |
|   ** of placing the largest action sets first */
 | |
|   for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
 | |
|   qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
 | |
|   pActtab = acttab_alloc();
 | |
|   for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
 | |
|     stp = ax[i].stp;
 | |
|     if( ax[i].isTkn ){
 | |
|       for(ap=stp->ap; ap; ap=ap->next){
 | |
|         int action;
 | |
|         if( ap->sp->index>=lemp->nterminal ) continue;
 | |
|         action = compute_action(lemp, ap);
 | |
|         if( action<0 ) continue;
 | |
|         acttab_action(pActtab, ap->sp->index, action);
 | |
|       }
 | |
|       stp->iTknOfst = acttab_insert(pActtab);
 | |
|       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
 | |
|       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
 | |
|     }else{
 | |
|       for(ap=stp->ap; ap; ap=ap->next){
 | |
|         int action;
 | |
|         if( ap->sp->index<lemp->nterminal ) continue;
 | |
|         if( ap->sp->index==lemp->nsymbol ) continue;
 | |
|         action = compute_action(lemp, ap);
 | |
|         if( action<0 ) continue;
 | |
|         acttab_action(pActtab, ap->sp->index, action);
 | |
|       }
 | |
|       stp->iNtOfst = acttab_insert(pActtab);
 | |
|       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
 | |
|       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
 | |
|     }
 | |
| #if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
 | |
|     { int jj, nn;
 | |
|       for(jj=nn=0; jj<pActtab->nAction; jj++){
 | |
|         if( pActtab->aAction[jj].action<0 ) nn++;
 | |
|       }
 | |
|       printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
 | |
|              i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
 | |
|              ax[i].nAction, pActtab->nAction, nn);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   free(ax);
 | |
| 
 | |
|   /* Finish rendering the constants now that the action table has
 | |
|   ** been computed */
 | |
|   fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
 | |
|   fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
 | |
|   fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
 | |
|   fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",lemp->nstate); lineno++;
 | |
|   i = lemp->nstate + lemp->nrule;
 | |
|   fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
 | |
|   fprintf(out,"#define YY_MIN_REDUCE        %d\n", i); lineno++;
 | |
|   i = lemp->nstate + lemp->nrule*2;
 | |
|   fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
 | |
|   fprintf(out,"#define YY_ERROR_ACTION      %d\n", i); lineno++;
 | |
|   fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", i+1); lineno++;
 | |
|   fprintf(out,"#define YY_NO_ACTION         %d\n", i+2); lineno++;
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Now output the action table and its associates:
 | |
|   **
 | |
|   **  yy_action[]        A single table containing all actions.
 | |
|   **  yy_lookahead[]     A table containing the lookahead for each entry in
 | |
|   **                     yy_action.  Used to detect hash collisions.
 | |
|   **  yy_shift_ofst[]    For each state, the offset into yy_action for
 | |
|   **                     shifting terminals.
 | |
|   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
 | |
|   **                     shifting non-terminals after a reduce.
 | |
|   **  yy_default[]       Default action for each state.
 | |
|   */
 | |
| 
 | |
|   /* Output the yy_action table */
 | |
|   lemp->nactiontab = n = acttab_size(pActtab);
 | |
|   lemp->tablesize += n*szActionType;
 | |
|   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
 | |
|   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
 | |
|   for(i=j=0; i<n; i++){
 | |
|     int action = acttab_yyaction(pActtab, i);
 | |
|     if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
 | |
|     if( j==0 ) fprintf(out," /* %5d */ ", i);
 | |
|     fprintf(out, " %4d,", action);
 | |
|     if( j==9 || i==n-1 ){
 | |
|       fprintf(out, "\n"); lineno++;
 | |
|       j = 0;
 | |
|     }else{
 | |
|       j++;
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "};\n"); lineno++;
 | |
| 
 | |
|   /* Output the yy_lookahead table */
 | |
|   lemp->tablesize += n*szCodeType;
 | |
|   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
 | |
|   for(i=j=0; i<n; i++){
 | |
|     int la = acttab_yylookahead(pActtab, i);
 | |
|     if( la<0 ) la = lemp->nsymbol;
 | |
|     if( j==0 ) fprintf(out," /* %5d */ ", i);
 | |
|     fprintf(out, " %4d,", la);
 | |
|     if( j==9 || i==n-1 ){
 | |
|       fprintf(out, "\n"); lineno++;
 | |
|       j = 0;
 | |
|     }else{
 | |
|       j++;
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "};\n"); lineno++;
 | |
| 
 | |
|   /* Output the yy_shift_ofst[] table */
 | |
|   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
 | |
|   n = lemp->nxstate;
 | |
|   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
 | |
|   fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
 | |
|   fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++;
 | |
|   fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++;
 | |
|   fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
 | |
|           minimum_size_type(mnTknOfst-1, mxTknOfst, &sz)); lineno++;
 | |
|   lemp->tablesize += n*sz;
 | |
|   for(i=j=0; i<n; i++){
 | |
|     int ofst;
 | |
|     stp = lemp->sorted[i];
 | |
|     ofst = stp->iTknOfst;
 | |
|     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
 | |
|     if( j==0 ) fprintf(out," /* %5d */ ", i);
 | |
|     fprintf(out, " %4d,", ofst);
 | |
|     if( j==9 || i==n-1 ){
 | |
|       fprintf(out, "\n"); lineno++;
 | |
|       j = 0;
 | |
|     }else{
 | |
|       j++;
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "};\n"); lineno++;
 | |
| 
 | |
|   /* Output the yy_reduce_ofst[] table */
 | |
|   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
 | |
|   n = lemp->nxstate;
 | |
|   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
 | |
|   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
 | |
|   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
 | |
|   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
 | |
|   fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
 | |
|           minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
 | |
|   lemp->tablesize += n*sz;
 | |
|   for(i=j=0; i<n; i++){
 | |
|     int ofst;
 | |
|     stp = lemp->sorted[i];
 | |
|     ofst = stp->iNtOfst;
 | |
|     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
 | |
|     if( j==0 ) fprintf(out," /* %5d */ ", i);
 | |
|     fprintf(out, " %4d,", ofst);
 | |
|     if( j==9 || i==n-1 ){
 | |
|       fprintf(out, "\n"); lineno++;
 | |
|       j = 0;
 | |
|     }else{
 | |
|       j++;
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "};\n"); lineno++;
 | |
| 
 | |
|   /* Output the default action table */
 | |
|   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
 | |
|   n = lemp->nxstate;
 | |
|   lemp->tablesize += n*szActionType;
 | |
|   for(i=j=0; i<n; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     if( j==0 ) fprintf(out," /* %5d */ ", i);
 | |
|     fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule);
 | |
|     if( j==9 || i==n-1 ){
 | |
|       fprintf(out, "\n"); lineno++;
 | |
|       j = 0;
 | |
|     }else{
 | |
|       j++;
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "};\n"); lineno++;
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate the table of fallback tokens.
 | |
|   */
 | |
|   if( lemp->has_fallback ){
 | |
|     int mx = lemp->nterminal - 1;
 | |
|     while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
 | |
|     lemp->tablesize += (mx+1)*szCodeType;
 | |
|     for(i=0; i<=mx; i++){
 | |
|       struct symbol *p = lemp->symbols[i];
 | |
|       if( p->fallback==0 ){
 | |
|         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
 | |
|       }else{
 | |
|         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
 | |
|           p->name, p->fallback->name);
 | |
|       }
 | |
|       lineno++;
 | |
|     }
 | |
|   }
 | |
|   tplt_xfer(lemp->name, in, out, &lineno);
 | |
| 
 | |
|   /* Generate a table containing the symbolic name of every symbol
 | |
|   */
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
 | |
|     fprintf(out,"  %-15s",line);
 | |
|     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
 | |
|   }
 | |
|   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate a table containing a text string that describes every
 | |
|   ** rule in the rule set of the grammar.  This information is used
 | |
|   ** when tracing REDUCE actions.
 | |
|   */
 | |
|   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
 | |
|     assert( rp->index==i );
 | |
|     fprintf(out," /* %3d */ \"", i);
 | |
|     writeRuleText(out, rp);
 | |
|     fprintf(out,"\",\n"); lineno++;
 | |
|   }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which executes every time a symbol is popped from
 | |
|   ** the stack while processing errors or while destroying the parser. 
 | |
|   ** (In other words, generate the %destructor actions)
 | |
|   */
 | |
|   if( lemp->tokendest ){
 | |
|     int once = 1;
 | |
|     for(i=0; i<lemp->nsymbol; i++){
 | |
|       struct symbol *sp = lemp->symbols[i];
 | |
|       if( sp==0 || sp->type!=TERMINAL ) continue;
 | |
|       if( once ){
 | |
|         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
 | |
|         once = 0;
 | |
|       }
 | |
|       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
 | |
|     }
 | |
|     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
 | |
|     if( i<lemp->nsymbol ){
 | |
|       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 | |
|       fprintf(out,"      break;\n"); lineno++;
 | |
|     }
 | |
|   }
 | |
|   if( lemp->vardest ){
 | |
|     struct symbol *dflt_sp = 0;
 | |
|     int once = 1;
 | |
|     for(i=0; i<lemp->nsymbol; i++){
 | |
|       struct symbol *sp = lemp->symbols[i];
 | |
|       if( sp==0 || sp->type==TERMINAL ||
 | |
|           sp->index<=0 || sp->destructor!=0 ) continue;
 | |
|       if( once ){
 | |
|         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n"); lineno++;
 | |
|         once = 0;
 | |
|       }
 | |
|       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
 | |
|       dflt_sp = sp;
 | |
|     }
 | |
|     if( dflt_sp!=0 ){
 | |
|       emit_destructor_code(out,dflt_sp,lemp,&lineno);
 | |
|     }
 | |
|     fprintf(out,"      break;\n"); lineno++;
 | |
|   }
 | |
|   for(i=0; i<lemp->nsymbol; i++){
 | |
|     struct symbol *sp = lemp->symbols[i];
 | |
|     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
 | |
|     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
 | |
| 
 | |
|     /* Combine duplicate destructors into a single case */
 | |
|     for(j=i+1; j<lemp->nsymbol; j++){
 | |
|       struct symbol *sp2 = lemp->symbols[j];
 | |
|       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
 | |
|           && sp2->dtnum==sp->dtnum
 | |
|           && strcmp(sp->destructor,sp2->destructor)==0 ){
 | |
|          fprintf(out,"    case %d: /* %s */\n",
 | |
|                  sp2->index, sp2->name); lineno++;
 | |
|          sp2->destructor = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
 | |
|     fprintf(out,"      break;\n"); lineno++;
 | |
|   }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which executes whenever the parser stack overflows */
 | |
|   tplt_print(out,lemp,lemp->overflow,&lineno);
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate the table of rule information 
 | |
|   **
 | |
|   ** Note: This code depends on the fact that rules are number
 | |
|   ** sequentually beginning with 0.
 | |
|   */
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
 | |
|   }
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which execution during each REDUCE action */
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     translate_code(lemp, rp);
 | |
|   }
 | |
|   /* First output rules other than the default: rule */
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     struct rule *rp2;               /* Other rules with the same action */
 | |
|     if( rp->code==0 ) continue;
 | |
|     if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
 | |
|     fprintf(out,"      case %d: /* ", rp->index);
 | |
|     writeRuleText(out, rp);
 | |
|     fprintf(out, " */\n"); lineno++;
 | |
|     for(rp2=rp->next; rp2; rp2=rp2->next){
 | |
|       if( rp2->code==rp->code ){
 | |
|         fprintf(out,"      case %d: /* ", rp2->index);
 | |
|         writeRuleText(out, rp2);
 | |
|         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
 | |
|         rp2->code = 0;
 | |
|       }
 | |
|     }
 | |
|     emit_code(out,rp,lemp,&lineno);
 | |
|     fprintf(out,"        break;\n"); lineno++;
 | |
|     rp->code = 0;
 | |
|   }
 | |
|   /* Finally, output the default: rule.  We choose as the default: all
 | |
|   ** empty actions. */
 | |
|   fprintf(out,"      default:\n"); lineno++;
 | |
|   for(rp=lemp->rule; rp; rp=rp->next){
 | |
|     if( rp->code==0 ) continue;
 | |
|     assert( rp->code[0]=='\n' && rp->code[1]==0 );
 | |
|     fprintf(out,"      /* (%d) ", rp->index);
 | |
|     writeRuleText(out, rp);
 | |
|     fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
 | |
|   }
 | |
|   fprintf(out,"        break;\n"); lineno++;
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which executes if a parse fails */
 | |
|   tplt_print(out,lemp,lemp->failure,&lineno);
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which executes when a syntax error occurs */
 | |
|   tplt_print(out,lemp,lemp->error,&lineno);
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Generate code which executes when the parser accepts its input */
 | |
|   tplt_print(out,lemp,lemp->accept,&lineno);
 | |
|   tplt_xfer(lemp->name,in,out,&lineno);
 | |
| 
 | |
|   /* Append any addition code the user desires */
 | |
|   tplt_print(out,lemp,lemp->extracode,&lineno);
 | |
| 
 | |
|   fclose(in);
 | |
|   fclose(out);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Generate a header file for the parser */
 | |
| void ReportHeader(struct lemon *lemp)
 | |
| {
 | |
|   FILE *out, *in;
 | |
|   const char *prefix;
 | |
|   char line[LINESIZE];
 | |
|   char pattern[LINESIZE];
 | |
|   int i;
 | |
| 
 | |
|   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
 | |
|   else                    prefix = "";
 | |
|   in = file_open(lemp,".h","rb");
 | |
|   if( in ){
 | |
|     int nextChar;
 | |
|     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
 | |
|       lemon_sprintf(pattern,"#define %s%-30s %3d\n",
 | |
|                     prefix,lemp->symbols[i]->name,i);
 | |
|       if( strcmp(line,pattern) ) break;
 | |
|     }
 | |
|     nextChar = fgetc(in);
 | |
|     fclose(in);
 | |
|     if( i==lemp->nterminal && nextChar==EOF ){
 | |
|       /* No change in the file.  Don't rewrite it. */
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   out = file_open(lemp,".h","wb");
 | |
|   if( out ){
 | |
|     for(i=1; i<lemp->nterminal; i++){
 | |
|       fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
 | |
|     }
 | |
|     fclose(out);  
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Reduce the size of the action tables, if possible, by making use
 | |
| ** of defaults.
 | |
| **
 | |
| ** In this version, we take the most frequent REDUCE action and make
 | |
| ** it the default.  Except, there is no default if the wildcard token
 | |
| ** is a possible look-ahead.
 | |
| */
 | |
| void CompressTables(struct lemon *lemp)
 | |
| {
 | |
|   struct state *stp;
 | |
|   struct action *ap, *ap2;
 | |
|   struct rule *rp, *rp2, *rbest;
 | |
|   int nbest, n;
 | |
|   int i;
 | |
|   int usesWildcard;
 | |
| 
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     nbest = 0;
 | |
|     rbest = 0;
 | |
|     usesWildcard = 0;
 | |
| 
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
 | |
|         usesWildcard = 1;
 | |
|       }
 | |
|       if( ap->type!=REDUCE ) continue;
 | |
|       rp = ap->x.rp;
 | |
|       if( rp->lhsStart ) continue;
 | |
|       if( rp==rbest ) continue;
 | |
|       n = 1;
 | |
|       for(ap2=ap->next; ap2; ap2=ap2->next){
 | |
|         if( ap2->type!=REDUCE ) continue;
 | |
|         rp2 = ap2->x.rp;
 | |
|         if( rp2==rbest ) continue;
 | |
|         if( rp2==rp ) n++;
 | |
|       }
 | |
|       if( n>nbest ){
 | |
|         nbest = n;
 | |
|         rbest = rp;
 | |
|       }
 | |
|     }
 | |
|  
 | |
|     /* Do not make a default if the number of rules to default
 | |
|     ** is not at least 1 or if the wildcard token is a possible
 | |
|     ** lookahead.
 | |
|     */
 | |
|     if( nbest<1 || usesWildcard ) continue;
 | |
| 
 | |
| 
 | |
|     /* Combine matching REDUCE actions into a single default */
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
 | |
|     }
 | |
|     assert( ap );
 | |
|     ap->sp = Symbol_new("{default}");
 | |
|     for(ap=ap->next; ap; ap=ap->next){
 | |
|       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
 | |
|     }
 | |
|     stp->ap = Action_sort(stp->ap);
 | |
| 
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       if( ap->type==SHIFT ) break;
 | |
|       if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
 | |
|     }
 | |
|     if( ap==0 ){
 | |
|       stp->autoReduce = 1;
 | |
|       stp->pDfltReduce = rbest;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make a second pass over all states and actions.  Convert
 | |
|   ** every action that is a SHIFT to an autoReduce state into
 | |
|   ** a SHIFTREDUCE action.
 | |
|   */
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       struct state *pNextState;
 | |
|       if( ap->type!=SHIFT ) continue;
 | |
|       pNextState = ap->x.stp;
 | |
|       if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
 | |
|         ap->type = SHIFTREDUCE;
 | |
|         ap->x.rp = pNextState->pDfltReduce;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Compare two states for sorting purposes.  The smaller state is the
 | |
| ** one with the most non-terminal actions.  If they have the same number
 | |
| ** of non-terminal actions, then the smaller is the one with the most
 | |
| ** token actions.
 | |
| */
 | |
| static int stateResortCompare(const void *a, const void *b){
 | |
|   const struct state *pA = *(const struct state**)a;
 | |
|   const struct state *pB = *(const struct state**)b;
 | |
|   int n;
 | |
| 
 | |
|   n = pB->nNtAct - pA->nNtAct;
 | |
|   if( n==0 ){
 | |
|     n = pB->nTknAct - pA->nTknAct;
 | |
|     if( n==0 ){
 | |
|       n = pB->statenum - pA->statenum;
 | |
|     }
 | |
|   }
 | |
|   assert( n!=0 );
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Renumber and resort states so that states with fewer choices
 | |
| ** occur at the end.  Except, keep state 0 as the first state.
 | |
| */
 | |
| void ResortStates(struct lemon *lemp)
 | |
| {
 | |
|   int i;
 | |
|   struct state *stp;
 | |
|   struct action *ap;
 | |
| 
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     stp = lemp->sorted[i];
 | |
|     stp->nTknAct = stp->nNtAct = 0;
 | |
|     stp->iDfltReduce = lemp->nrule;  /* Init dflt action to "syntax error" */
 | |
|     stp->iTknOfst = NO_OFFSET;
 | |
|     stp->iNtOfst = NO_OFFSET;
 | |
|     for(ap=stp->ap; ap; ap=ap->next){
 | |
|       int iAction = compute_action(lemp,ap);
 | |
|       if( iAction>=0 ){
 | |
|         if( ap->sp->index<lemp->nterminal ){
 | |
|           stp->nTknAct++;
 | |
|         }else if( ap->sp->index<lemp->nsymbol ){
 | |
|           stp->nNtAct++;
 | |
|         }else{
 | |
|           assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
 | |
|           stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
 | |
|         stateResortCompare);
 | |
|   for(i=0; i<lemp->nstate; i++){
 | |
|     lemp->sorted[i]->statenum = i;
 | |
|   }
 | |
|   lemp->nxstate = lemp->nstate;
 | |
|   while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
 | |
|     lemp->nxstate--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /***************** From the file "set.c" ************************************/
 | |
| /*
 | |
| ** Set manipulation routines for the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| static int size = 0;
 | |
| 
 | |
| /* Set the set size */
 | |
| void SetSize(int n)
 | |
| {
 | |
|   size = n+1;
 | |
| }
 | |
| 
 | |
| /* Allocate a new set */
 | |
| char *SetNew(){
 | |
|   char *s;
 | |
|   s = (char*)calloc( size, 1);
 | |
|   if( s==0 ){
 | |
|     extern void memory_error();
 | |
|     memory_error();
 | |
|   }
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| /* Deallocate a set */
 | |
| void SetFree(char *s)
 | |
| {
 | |
|   free(s);
 | |
| }
 | |
| 
 | |
| /* Add a new element to the set.  Return TRUE if the element was added
 | |
| ** and FALSE if it was already there. */
 | |
| int SetAdd(char *s, int e)
 | |
| {
 | |
|   int rv;
 | |
|   assert( e>=0 && e<size );
 | |
|   rv = s[e];
 | |
|   s[e] = 1;
 | |
|   return !rv;
 | |
| }
 | |
| 
 | |
| /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
 | |
| int SetUnion(char *s1, char *s2)
 | |
| {
 | |
|   int i, progress;
 | |
|   progress = 0;
 | |
|   for(i=0; i<size; i++){
 | |
|     if( s2[i]==0 ) continue;
 | |
|     if( s1[i]==0 ){
 | |
|       progress = 1;
 | |
|       s1[i] = 1;
 | |
|     }
 | |
|   }
 | |
|   return progress;
 | |
| }
 | |
| /********************** From the file "table.c" ****************************/
 | |
| /*
 | |
| ** All code in this file has been automatically generated
 | |
| ** from a specification in the file
 | |
| **              "table.q"
 | |
| ** by the associative array code building program "aagen".
 | |
| ** Do not edit this file!  Instead, edit the specification
 | |
| ** file, then rerun aagen.
 | |
| */
 | |
| /*
 | |
| ** Code for processing tables in the LEMON parser generator.
 | |
| */
 | |
| 
 | |
| PRIVATE unsigned strhash(const char *x)
 | |
| {
 | |
|   unsigned h = 0;
 | |
|   while( *x ) h = h*13 + *(x++);
 | |
|   return h;
 | |
| }
 | |
| 
 | |
| /* Works like strdup, sort of.  Save a string in malloced memory, but
 | |
| ** keep strings in a table so that the same string is not in more
 | |
| ** than one place.
 | |
| */
 | |
| const char *Strsafe(const char *y)
 | |
| {
 | |
|   const char *z;
 | |
|   char *cpy;
 | |
| 
 | |
|   if( y==0 ) return 0;
 | |
|   z = Strsafe_find(y);
 | |
|   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
 | |
|     lemon_strcpy(cpy,y);
 | |
|     z = cpy;
 | |
|     Strsafe_insert(z);
 | |
|   }
 | |
|   MemoryCheck(z);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /* There is one instance of the following structure for each
 | |
| ** associative array of type "x1".
 | |
| */
 | |
| struct s_x1 {
 | |
|   int size;               /* The number of available slots. */
 | |
|                           /*   Must be a power of 2 greater than or */
 | |
|                           /*   equal to 1 */
 | |
|   int count;              /* Number of currently slots filled */
 | |
|   struct s_x1node *tbl;  /* The data stored here */
 | |
|   struct s_x1node **ht;  /* Hash table for lookups */
 | |
| };
 | |
| 
 | |
| /* There is one instance of this structure for every data element
 | |
| ** in an associative array of type "x1".
 | |
| */
 | |
| typedef struct s_x1node {
 | |
|   const char *data;        /* The data */
 | |
|   struct s_x1node *next;   /* Next entry with the same hash */
 | |
|   struct s_x1node **from;  /* Previous link */
 | |
| } x1node;
 | |
| 
 | |
| /* There is only one instance of the array, which is the following */
 | |
| static struct s_x1 *x1a;
 | |
| 
 | |
| /* Allocate a new associative array */
 | |
| void Strsafe_init(){
 | |
|   if( x1a ) return;
 | |
|   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
 | |
|   if( x1a ){
 | |
|     x1a->size = 1024;
 | |
|     x1a->count = 0;
 | |
|     x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
 | |
|     if( x1a->tbl==0 ){
 | |
|       free(x1a);
 | |
|       x1a = 0;
 | |
|     }else{
 | |
|       int i;
 | |
|       x1a->ht = (x1node**)&(x1a->tbl[1024]);
 | |
|       for(i=0; i<1024; i++) x1a->ht[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /* Insert a new record into the array.  Return TRUE if successful.
 | |
| ** Prior data with the same key is NOT overwritten */
 | |
| int Strsafe_insert(const char *data)
 | |
| {
 | |
|   x1node *np;
 | |
|   unsigned h;
 | |
|   unsigned ph;
 | |
| 
 | |
|   if( x1a==0 ) return 0;
 | |
|   ph = strhash(data);
 | |
|   h = ph & (x1a->size-1);
 | |
|   np = x1a->ht[h];
 | |
|   while( np ){
 | |
|     if( strcmp(np->data,data)==0 ){
 | |
|       /* An existing entry with the same key is found. */
 | |
|       /* Fail because overwrite is not allows. */
 | |
|       return 0;
 | |
|     }
 | |
|     np = np->next;
 | |
|   }
 | |
|   if( x1a->count>=x1a->size ){
 | |
|     /* Need to make the hash table bigger */
 | |
|     int i,arrSize;
 | |
|     struct s_x1 array;
 | |
|     array.size = arrSize = x1a->size*2;
 | |
|     array.count = x1a->count;
 | |
|     array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
 | |
|     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 | |
|     array.ht = (x1node**)&(array.tbl[arrSize]);
 | |
|     for(i=0; i<arrSize; i++) array.ht[i] = 0;
 | |
|     for(i=0; i<x1a->count; i++){
 | |
|       x1node *oldnp, *newnp;
 | |
|       oldnp = &(x1a->tbl[i]);
 | |
|       h = strhash(oldnp->data) & (arrSize-1);
 | |
|       newnp = &(array.tbl[i]);
 | |
|       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 | |
|       newnp->next = array.ht[h];
 | |
|       newnp->data = oldnp->data;
 | |
|       newnp->from = &(array.ht[h]);
 | |
|       array.ht[h] = newnp;
 | |
|     }
 | |
|     free(x1a->tbl);
 | |
|     *x1a = array;
 | |
|   }
 | |
|   /* Insert the new data */
 | |
|   h = ph & (x1a->size-1);
 | |
|   np = &(x1a->tbl[x1a->count++]);
 | |
|   np->data = data;
 | |
|   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
 | |
|   np->next = x1a->ht[h];
 | |
|   x1a->ht[h] = np;
 | |
|   np->from = &(x1a->ht[h]);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to data assigned to the given key.  Return NULL
 | |
| ** if no such key. */
 | |
| const char *Strsafe_find(const char *key)
 | |
| {
 | |
|   unsigned h;
 | |
|   x1node *np;
 | |
| 
 | |
|   if( x1a==0 ) return 0;
 | |
|   h = strhash(key) & (x1a->size-1);
 | |
|   np = x1a->ht[h];
 | |
|   while( np ){
 | |
|     if( strcmp(np->data,key)==0 ) break;
 | |
|     np = np->next;
 | |
|   }
 | |
|   return np ? np->data : 0;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to the (terminal or nonterminal) symbol "x".
 | |
| ** Create a new symbol if this is the first time "x" has been seen.
 | |
| */
 | |
| struct symbol *Symbol_new(const char *x)
 | |
| {
 | |
|   struct symbol *sp;
 | |
| 
 | |
|   sp = Symbol_find(x);
 | |
|   if( sp==0 ){
 | |
|     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
 | |
|     MemoryCheck(sp);
 | |
|     sp->name = Strsafe(x);
 | |
|     sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
 | |
|     sp->rule = 0;
 | |
|     sp->fallback = 0;
 | |
|     sp->prec = -1;
 | |
|     sp->assoc = UNK;
 | |
|     sp->firstset = 0;
 | |
|     sp->lambda = LEMON_FALSE;
 | |
|     sp->destructor = 0;
 | |
|     sp->destLineno = 0;
 | |
|     sp->datatype = 0;
 | |
|     sp->useCnt = 0;
 | |
|     Symbol_insert(sp,sp->name);
 | |
|   }
 | |
|   sp->useCnt++;
 | |
|   return sp;
 | |
| }
 | |
| 
 | |
| /* Compare two symbols for sorting purposes.  Return negative,
 | |
| ** zero, or positive if a is less then, equal to, or greater
 | |
| ** than b.
 | |
| **
 | |
| ** Symbols that begin with upper case letters (terminals or tokens)
 | |
| ** must sort before symbols that begin with lower case letters
 | |
| ** (non-terminals).  And MULTITERMINAL symbols (created using the
 | |
| ** %token_class directive) must sort at the very end. Other than
 | |
| ** that, the order does not matter.
 | |
| **
 | |
| ** We find experimentally that leaving the symbols in their original
 | |
| ** order (the order they appeared in the grammar file) gives the
 | |
| ** smallest parser tables in SQLite.
 | |
| */
 | |
| int Symbolcmpp(const void *_a, const void *_b)
 | |
| {
 | |
|   const struct symbol *a = *(const struct symbol **) _a;
 | |
|   const struct symbol *b = *(const struct symbol **) _b;
 | |
|   int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
 | |
|   int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
 | |
|   return i1==i2 ? a->index - b->index : i1 - i2;
 | |
| }
 | |
| 
 | |
| /* There is one instance of the following structure for each
 | |
| ** associative array of type "x2".
 | |
| */
 | |
| struct s_x2 {
 | |
|   int size;               /* The number of available slots. */
 | |
|                           /*   Must be a power of 2 greater than or */
 | |
|                           /*   equal to 1 */
 | |
|   int count;              /* Number of currently slots filled */
 | |
|   struct s_x2node *tbl;  /* The data stored here */
 | |
|   struct s_x2node **ht;  /* Hash table for lookups */
 | |
| };
 | |
| 
 | |
| /* There is one instance of this structure for every data element
 | |
| ** in an associative array of type "x2".
 | |
| */
 | |
| typedef struct s_x2node {
 | |
|   struct symbol *data;     /* The data */
 | |
|   const char *key;         /* The key */
 | |
|   struct s_x2node *next;   /* Next entry with the same hash */
 | |
|   struct s_x2node **from;  /* Previous link */
 | |
| } x2node;
 | |
| 
 | |
| /* There is only one instance of the array, which is the following */
 | |
| static struct s_x2 *x2a;
 | |
| 
 | |
| /* Allocate a new associative array */
 | |
| void Symbol_init(){
 | |
|   if( x2a ) return;
 | |
|   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
 | |
|   if( x2a ){
 | |
|     x2a->size = 128;
 | |
|     x2a->count = 0;
 | |
|     x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
 | |
|     if( x2a->tbl==0 ){
 | |
|       free(x2a);
 | |
|       x2a = 0;
 | |
|     }else{
 | |
|       int i;
 | |
|       x2a->ht = (x2node**)&(x2a->tbl[128]);
 | |
|       for(i=0; i<128; i++) x2a->ht[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /* Insert a new record into the array.  Return TRUE if successful.
 | |
| ** Prior data with the same key is NOT overwritten */
 | |
| int Symbol_insert(struct symbol *data, const char *key)
 | |
| {
 | |
|   x2node *np;
 | |
|   unsigned h;
 | |
|   unsigned ph;
 | |
| 
 | |
|   if( x2a==0 ) return 0;
 | |
|   ph = strhash(key);
 | |
|   h = ph & (x2a->size-1);
 | |
|   np = x2a->ht[h];
 | |
|   while( np ){
 | |
|     if( strcmp(np->key,key)==0 ){
 | |
|       /* An existing entry with the same key is found. */
 | |
|       /* Fail because overwrite is not allows. */
 | |
|       return 0;
 | |
|     }
 | |
|     np = np->next;
 | |
|   }
 | |
|   if( x2a->count>=x2a->size ){
 | |
|     /* Need to make the hash table bigger */
 | |
|     int i,arrSize;
 | |
|     struct s_x2 array;
 | |
|     array.size = arrSize = x2a->size*2;
 | |
|     array.count = x2a->count;
 | |
|     array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
 | |
|     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 | |
|     array.ht = (x2node**)&(array.tbl[arrSize]);
 | |
|     for(i=0; i<arrSize; i++) array.ht[i] = 0;
 | |
|     for(i=0; i<x2a->count; i++){
 | |
|       x2node *oldnp, *newnp;
 | |
|       oldnp = &(x2a->tbl[i]);
 | |
|       h = strhash(oldnp->key) & (arrSize-1);
 | |
|       newnp = &(array.tbl[i]);
 | |
|       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 | |
|       newnp->next = array.ht[h];
 | |
|       newnp->key = oldnp->key;
 | |
|       newnp->data = oldnp->data;
 | |
|       newnp->from = &(array.ht[h]);
 | |
|       array.ht[h] = newnp;
 | |
|     }
 | |
|     free(x2a->tbl);
 | |
|     *x2a = array;
 | |
|   }
 | |
|   /* Insert the new data */
 | |
|   h = ph & (x2a->size-1);
 | |
|   np = &(x2a->tbl[x2a->count++]);
 | |
|   np->key = key;
 | |
|   np->data = data;
 | |
|   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
 | |
|   np->next = x2a->ht[h];
 | |
|   x2a->ht[h] = np;
 | |
|   np->from = &(x2a->ht[h]);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to data assigned to the given key.  Return NULL
 | |
| ** if no such key. */
 | |
| struct symbol *Symbol_find(const char *key)
 | |
| {
 | |
|   unsigned h;
 | |
|   x2node *np;
 | |
| 
 | |
|   if( x2a==0 ) return 0;
 | |
|   h = strhash(key) & (x2a->size-1);
 | |
|   np = x2a->ht[h];
 | |
|   while( np ){
 | |
|     if( strcmp(np->key,key)==0 ) break;
 | |
|     np = np->next;
 | |
|   }
 | |
|   return np ? np->data : 0;
 | |
| }
 | |
| 
 | |
| /* Return the n-th data.  Return NULL if n is out of range. */
 | |
| struct symbol *Symbol_Nth(int n)
 | |
| {
 | |
|   struct symbol *data;
 | |
|   if( x2a && n>0 && n<=x2a->count ){
 | |
|     data = x2a->tbl[n-1].data;
 | |
|   }else{
 | |
|     data = 0;
 | |
|   }
 | |
|   return data;
 | |
| }
 | |
| 
 | |
| /* Return the size of the array */
 | |
| int Symbol_count()
 | |
| {
 | |
|   return x2a ? x2a->count : 0;
 | |
| }
 | |
| 
 | |
| /* Return an array of pointers to all data in the table.
 | |
| ** The array is obtained from malloc.  Return NULL if memory allocation
 | |
| ** problems, or if the array is empty. */
 | |
| struct symbol **Symbol_arrayof()
 | |
| {
 | |
|   struct symbol **array;
 | |
|   int i,arrSize;
 | |
|   if( x2a==0 ) return 0;
 | |
|   arrSize = x2a->count;
 | |
|   array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
 | |
|   if( array ){
 | |
|     for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
 | |
|   }
 | |
|   return array;
 | |
| }
 | |
| 
 | |
| /* Compare two configurations */
 | |
| int Configcmp(const char *_a,const char *_b)
 | |
| {
 | |
|   const struct config *a = (struct config *) _a;
 | |
|   const struct config *b = (struct config *) _b;
 | |
|   int x;
 | |
|   x = a->rp->index - b->rp->index;
 | |
|   if( x==0 ) x = a->dot - b->dot;
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| /* Compare two states */
 | |
| PRIVATE int statecmp(struct config *a, struct config *b)
 | |
| {
 | |
|   int rc;
 | |
|   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
 | |
|     rc = a->rp->index - b->rp->index;
 | |
|     if( rc==0 ) rc = a->dot - b->dot;
 | |
|   }
 | |
|   if( rc==0 ){
 | |
|     if( a ) rc = 1;
 | |
|     if( b ) rc = -1;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Hash a state */
 | |
| PRIVATE unsigned statehash(struct config *a)
 | |
| {
 | |
|   unsigned h=0;
 | |
|   while( a ){
 | |
|     h = h*571 + a->rp->index*37 + a->dot;
 | |
|     a = a->bp;
 | |
|   }
 | |
|   return h;
 | |
| }
 | |
| 
 | |
| /* Allocate a new state structure */
 | |
| struct state *State_new()
 | |
| {
 | |
|   struct state *newstate;
 | |
|   newstate = (struct state *)calloc(1, sizeof(struct state) );
 | |
|   MemoryCheck(newstate);
 | |
|   return newstate;
 | |
| }
 | |
| 
 | |
| /* There is one instance of the following structure for each
 | |
| ** associative array of type "x3".
 | |
| */
 | |
| struct s_x3 {
 | |
|   int size;               /* The number of available slots. */
 | |
|                           /*   Must be a power of 2 greater than or */
 | |
|                           /*   equal to 1 */
 | |
|   int count;              /* Number of currently slots filled */
 | |
|   struct s_x3node *tbl;  /* The data stored here */
 | |
|   struct s_x3node **ht;  /* Hash table for lookups */
 | |
| };
 | |
| 
 | |
| /* There is one instance of this structure for every data element
 | |
| ** in an associative array of type "x3".
 | |
| */
 | |
| typedef struct s_x3node {
 | |
|   struct state *data;                  /* The data */
 | |
|   struct config *key;                   /* The key */
 | |
|   struct s_x3node *next;   /* Next entry with the same hash */
 | |
|   struct s_x3node **from;  /* Previous link */
 | |
| } x3node;
 | |
| 
 | |
| /* There is only one instance of the array, which is the following */
 | |
| static struct s_x3 *x3a;
 | |
| 
 | |
| /* Allocate a new associative array */
 | |
| void State_init(){
 | |
|   if( x3a ) return;
 | |
|   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
 | |
|   if( x3a ){
 | |
|     x3a->size = 128;
 | |
|     x3a->count = 0;
 | |
|     x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
 | |
|     if( x3a->tbl==0 ){
 | |
|       free(x3a);
 | |
|       x3a = 0;
 | |
|     }else{
 | |
|       int i;
 | |
|       x3a->ht = (x3node**)&(x3a->tbl[128]);
 | |
|       for(i=0; i<128; i++) x3a->ht[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /* Insert a new record into the array.  Return TRUE if successful.
 | |
| ** Prior data with the same key is NOT overwritten */
 | |
| int State_insert(struct state *data, struct config *key)
 | |
| {
 | |
|   x3node *np;
 | |
|   unsigned h;
 | |
|   unsigned ph;
 | |
| 
 | |
|   if( x3a==0 ) return 0;
 | |
|   ph = statehash(key);
 | |
|   h = ph & (x3a->size-1);
 | |
|   np = x3a->ht[h];
 | |
|   while( np ){
 | |
|     if( statecmp(np->key,key)==0 ){
 | |
|       /* An existing entry with the same key is found. */
 | |
|       /* Fail because overwrite is not allows. */
 | |
|       return 0;
 | |
|     }
 | |
|     np = np->next;
 | |
|   }
 | |
|   if( x3a->count>=x3a->size ){
 | |
|     /* Need to make the hash table bigger */
 | |
|     int i,arrSize;
 | |
|     struct s_x3 array;
 | |
|     array.size = arrSize = x3a->size*2;
 | |
|     array.count = x3a->count;
 | |
|     array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
 | |
|     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 | |
|     array.ht = (x3node**)&(array.tbl[arrSize]);
 | |
|     for(i=0; i<arrSize; i++) array.ht[i] = 0;
 | |
|     for(i=0; i<x3a->count; i++){
 | |
|       x3node *oldnp, *newnp;
 | |
|       oldnp = &(x3a->tbl[i]);
 | |
|       h = statehash(oldnp->key) & (arrSize-1);
 | |
|       newnp = &(array.tbl[i]);
 | |
|       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 | |
|       newnp->next = array.ht[h];
 | |
|       newnp->key = oldnp->key;
 | |
|       newnp->data = oldnp->data;
 | |
|       newnp->from = &(array.ht[h]);
 | |
|       array.ht[h] = newnp;
 | |
|     }
 | |
|     free(x3a->tbl);
 | |
|     *x3a = array;
 | |
|   }
 | |
|   /* Insert the new data */
 | |
|   h = ph & (x3a->size-1);
 | |
|   np = &(x3a->tbl[x3a->count++]);
 | |
|   np->key = key;
 | |
|   np->data = data;
 | |
|   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
 | |
|   np->next = x3a->ht[h];
 | |
|   x3a->ht[h] = np;
 | |
|   np->from = &(x3a->ht[h]);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to data assigned to the given key.  Return NULL
 | |
| ** if no such key. */
 | |
| struct state *State_find(struct config *key)
 | |
| {
 | |
|   unsigned h;
 | |
|   x3node *np;
 | |
| 
 | |
|   if( x3a==0 ) return 0;
 | |
|   h = statehash(key) & (x3a->size-1);
 | |
|   np = x3a->ht[h];
 | |
|   while( np ){
 | |
|     if( statecmp(np->key,key)==0 ) break;
 | |
|     np = np->next;
 | |
|   }
 | |
|   return np ? np->data : 0;
 | |
| }
 | |
| 
 | |
| /* Return an array of pointers to all data in the table.
 | |
| ** The array is obtained from malloc.  Return NULL if memory allocation
 | |
| ** problems, or if the array is empty. */
 | |
| struct state **State_arrayof()
 | |
| {
 | |
|   struct state **array;
 | |
|   int i,arrSize;
 | |
|   if( x3a==0 ) return 0;
 | |
|   arrSize = x3a->count;
 | |
|   array = (struct state **)calloc(arrSize, sizeof(struct state *));
 | |
|   if( array ){
 | |
|     for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
 | |
|   }
 | |
|   return array;
 | |
| }
 | |
| 
 | |
| /* Hash a configuration */
 | |
| PRIVATE unsigned confighash(struct config *a)
 | |
| {
 | |
|   unsigned h=0;
 | |
|   h = h*571 + a->rp->index*37 + a->dot;
 | |
|   return h;
 | |
| }
 | |
| 
 | |
| /* There is one instance of the following structure for each
 | |
| ** associative array of type "x4".
 | |
| */
 | |
| struct s_x4 {
 | |
|   int size;               /* The number of available slots. */
 | |
|                           /*   Must be a power of 2 greater than or */
 | |
|                           /*   equal to 1 */
 | |
|   int count;              /* Number of currently slots filled */
 | |
|   struct s_x4node *tbl;  /* The data stored here */
 | |
|   struct s_x4node **ht;  /* Hash table for lookups */
 | |
| };
 | |
| 
 | |
| /* There is one instance of this structure for every data element
 | |
| ** in an associative array of type "x4".
 | |
| */
 | |
| typedef struct s_x4node {
 | |
|   struct config *data;                  /* The data */
 | |
|   struct s_x4node *next;   /* Next entry with the same hash */
 | |
|   struct s_x4node **from;  /* Previous link */
 | |
| } x4node;
 | |
| 
 | |
| /* There is only one instance of the array, which is the following */
 | |
| static struct s_x4 *x4a;
 | |
| 
 | |
| /* Allocate a new associative array */
 | |
| void Configtable_init(){
 | |
|   if( x4a ) return;
 | |
|   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
 | |
|   if( x4a ){
 | |
|     x4a->size = 64;
 | |
|     x4a->count = 0;
 | |
|     x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
 | |
|     if( x4a->tbl==0 ){
 | |
|       free(x4a);
 | |
|       x4a = 0;
 | |
|     }else{
 | |
|       int i;
 | |
|       x4a->ht = (x4node**)&(x4a->tbl[64]);
 | |
|       for(i=0; i<64; i++) x4a->ht[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /* Insert a new record into the array.  Return TRUE if successful.
 | |
| ** Prior data with the same key is NOT overwritten */
 | |
| int Configtable_insert(struct config *data)
 | |
| {
 | |
|   x4node *np;
 | |
|   unsigned h;
 | |
|   unsigned ph;
 | |
| 
 | |
|   if( x4a==0 ) return 0;
 | |
|   ph = confighash(data);
 | |
|   h = ph & (x4a->size-1);
 | |
|   np = x4a->ht[h];
 | |
|   while( np ){
 | |
|     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
 | |
|       /* An existing entry with the same key is found. */
 | |
|       /* Fail because overwrite is not allows. */
 | |
|       return 0;
 | |
|     }
 | |
|     np = np->next;
 | |
|   }
 | |
|   if( x4a->count>=x4a->size ){
 | |
|     /* Need to make the hash table bigger */
 | |
|     int i,arrSize;
 | |
|     struct s_x4 array;
 | |
|     array.size = arrSize = x4a->size*2;
 | |
|     array.count = x4a->count;
 | |
|     array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
 | |
|     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
 | |
|     array.ht = (x4node**)&(array.tbl[arrSize]);
 | |
|     for(i=0; i<arrSize; i++) array.ht[i] = 0;
 | |
|     for(i=0; i<x4a->count; i++){
 | |
|       x4node *oldnp, *newnp;
 | |
|       oldnp = &(x4a->tbl[i]);
 | |
|       h = confighash(oldnp->data) & (arrSize-1);
 | |
|       newnp = &(array.tbl[i]);
 | |
|       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
 | |
|       newnp->next = array.ht[h];
 | |
|       newnp->data = oldnp->data;
 | |
|       newnp->from = &(array.ht[h]);
 | |
|       array.ht[h] = newnp;
 | |
|     }
 | |
|     free(x4a->tbl);
 | |
|     *x4a = array;
 | |
|   }
 | |
|   /* Insert the new data */
 | |
|   h = ph & (x4a->size-1);
 | |
|   np = &(x4a->tbl[x4a->count++]);
 | |
|   np->data = data;
 | |
|   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
 | |
|   np->next = x4a->ht[h];
 | |
|   x4a->ht[h] = np;
 | |
|   np->from = &(x4a->ht[h]);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* Return a pointer to data assigned to the given key.  Return NULL
 | |
| ** if no such key. */
 | |
| struct config *Configtable_find(struct config *key)
 | |
| {
 | |
|   int h;
 | |
|   x4node *np;
 | |
| 
 | |
|   if( x4a==0 ) return 0;
 | |
|   h = confighash(key) & (x4a->size-1);
 | |
|   np = x4a->ht[h];
 | |
|   while( np ){
 | |
|     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
 | |
|     np = np->next;
 | |
|   }
 | |
|   return np ? np->data : 0;
 | |
| }
 | |
| 
 | |
| /* Remove all data from the table.  Pass each data to the function "f"
 | |
| ** as it is removed.  ("f" may be null to avoid this step.) */
 | |
| void Configtable_clear(int(*f)(struct config *))
 | |
| {
 | |
|   int i;
 | |
|   if( x4a==0 || x4a->count==0 ) return;
 | |
|   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
 | |
|   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
 | |
|   x4a->count = 0;
 | |
|   return;
 | |
| }
 | 
