
See script directory for method. The script to run in the top level MaxScale directory is called maxscale-uncrustify.sh, which uses another script, list-src, from the same directory (so you need to set your PATH). The uncrustify version was 0.66.
121 lines
2.3 KiB
C++
121 lines
2.3 KiB
C++
/*
|
|
* Copyright (c) 2018 MariaDB Corporation Ab
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file and at www.mariadb.com/bsl11.
|
|
*
|
|
* Change Date: 2022-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2 or later of the General
|
|
* Public License.
|
|
*/
|
|
|
|
#include <maxbase/average.hh>
|
|
#include <iostream>
|
|
|
|
namespace maxbase
|
|
{
|
|
|
|
void CumulativeAverage::add(double ave, int num_samples)
|
|
{
|
|
m_num_samples += num_samples;
|
|
|
|
if (m_num_samples == num_samples)
|
|
{
|
|
m_ave = ave;
|
|
}
|
|
else
|
|
{
|
|
m_ave = (m_ave * (m_num_samples - m_num_last_added)
|
|
+ ave * num_samples) / m_num_samples;
|
|
}
|
|
m_num_last_added = num_samples;
|
|
}
|
|
|
|
double CumulativeAverage::average() const
|
|
{
|
|
return m_ave;
|
|
}
|
|
|
|
int CumulativeAverage::num_samples() const
|
|
{
|
|
return m_num_samples;
|
|
}
|
|
|
|
CumulativeAverage& CumulativeAverage::operator+=(const CumulativeAverage& rhs)
|
|
{
|
|
this->add(rhs.m_ave, rhs.m_num_samples);
|
|
return *this;
|
|
}
|
|
|
|
CumulativeAverage operator+(const CumulativeAverage& lhs, const CumulativeAverage& rhs)
|
|
{
|
|
return CumulativeAverage(lhs) += rhs;
|
|
}
|
|
|
|
void CumulativeAverage::reset()
|
|
{
|
|
m_ave = 0;
|
|
m_num_samples = 0;
|
|
m_num_last_added = 0;
|
|
}
|
|
|
|
EMAverage::EMAverage(double min_alpha, double max_alpha, int sample_max)
|
|
: m_min_alpha{min_alpha}
|
|
, m_max_alpha{max_alpha}
|
|
, m_sample_max{sample_max}
|
|
{
|
|
}
|
|
|
|
void EMAverage::add(double ave, int num_samples)
|
|
{
|
|
// Give more weight to initial samples.
|
|
int sample_max = std::min(m_num_samples ? m_num_samples : 1, m_sample_max);
|
|
|
|
double alpha = m_min_alpha + m_max_alpha
|
|
* std::min(double(num_samples) / sample_max, 1.0);
|
|
|
|
m_num_samples += num_samples;
|
|
if (m_num_samples == num_samples)
|
|
{
|
|
m_ave = ave;
|
|
}
|
|
else
|
|
{
|
|
m_ave = alpha * ave + (1 - alpha) * m_ave;
|
|
}
|
|
}
|
|
|
|
void EMAverage::add(const CumulativeAverage& ca)
|
|
{
|
|
add(ca.average(), ca.num_samples());
|
|
}
|
|
|
|
double EMAverage::average() const
|
|
{
|
|
return m_ave;
|
|
}
|
|
|
|
int EMAverage::num_samples() const
|
|
{
|
|
return m_num_samples;
|
|
}
|
|
|
|
void EMAverage::set_sample_max(int sample_max)
|
|
{
|
|
m_sample_max = sample_max;
|
|
}
|
|
|
|
int EMAverage::sample_max() const
|
|
{
|
|
return m_sample_max;
|
|
}
|
|
|
|
void EMAverage::reset()
|
|
{
|
|
m_ave = 0;
|
|
m_num_samples = 0;
|
|
}
|
|
} // maxbase
|